RESUMO
Rapid and efficient growth is a major consideration and challenge for global mariculture. The differential growth rate of the sea cucumber, Apostichopus japonicus, has significantly hampered the total production of the industry. In the present study, forward and reverse suppression subtractive hybridization libraries were constructed and sequenced from a fast-growth group and a slow-growth group of the sea cucumber. A total of 142 differentially expressed sequence tags (ESTs) with insertions longer than 150 bp were identified and further analyzed. Fifty-seven of these ESTs (approximately 40%) were functionally annotated for cell structure, energy metabolism, immunity response, and growth factor categories. Six candidate genes, arginine kinase, cytochrome c oxidase subunit I, HSP70, ß-actin, ferritin, and the ADP-ribosylation factor, were further validated by quantitative PCR. Significant differences were found between the fast- and slow-growth groups (P < 0.05) for the expression levels of arginine kinase, cytochrome c oxidase, HSP70, the ADP-ribosylation factor, and ß-actin. However, no significant difference was observed for ferritin. Our results provide promising candidate gene markers for practical size screening, and also further promote marker-assisted selective breeding of this species.
Assuntos
Etiquetas de Sequências Expressas , Regulação da Expressão Gênica no Desenvolvimento , Stichopus/genética , Fatores de Ribosilação do ADP/biossíntese , Actinas/biossíntese , Animais , Arginina Quinase/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Choque Térmico HSP70/biossíntese , Stichopus/crescimento & desenvolvimentoRESUMO
We performed a genome-wide search for novel loci encoding for Ras-related proteins based on the genome mapping coordinates of the cancer-derived EST dataset at GenBank. Partial sequences from two novel human genes were identified and subsequently used for full length transcript cloning. RASL11A and ARL9 belong to two novel subfamilies coding for small GTPases that we found to be highly conserved among eukaryotes. The Arl9/Arl10 subfamily displays a conserved interswitch toggle that places it evolutionarily closer to the Arf family. Rasl11 proteins are more closely related to the Ras branch of GTPases. All orthologues newly identified here exhibit an Asn residue in place of the highly conserved Thr35 of the G domain, suggesting that the universal switch mechanism of small GTPases may be structurally different in this subfamily. We determined by Northern blot that RASL11A is transcribed in several human tissues and that it is down-regulated in prostate tumors as measured by quantitative real-time PCR. These results highlight a previously uncharacterized subfamily of Ras-related genes that may have a tumor suppressor role in prostate cancer.