Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33367491

RESUMO

The human cerebral cortex undergoes profound structural and functional dynamic variations across the lifespan, whereas the underlying molecular mechanisms remain unclear. Here, with a novel method transcriptome-connectome correlation analysis (TCA), which integrates the brain functional magnetic resonance images and region-specific transcriptomes, we identify age-specific cortex (ASC) gene signatures for adolescence, early adulthood and late adulthood. The ASC gene signatures are significantly correlated with the cortical thickness (P-value <2.00e-3) and myelination (P-value <1.00e-3), two key brain structural features that vary in accordance with brain development. In addition to the molecular underpinning of age-related brain functions, the ASC gene signatures allow delineation of the molecular mechanisms of neuropsychiatric disorders, such as the regulation between ARNT2 and its target gene ETF1 involved in Schizophrenia. We further validate the ASC gene signatures with published gene sets associated with the adult cortex, and confirm the robustness of TCA on other brain image datasets. Availability: All scripts are written in R. Scripts for the TCA method and related statistics result can be freely accessed at https://github.com/Soulnature/TCA. Additional data related to this paper may be requested from the authors.


Assuntos
Envelhecimento/metabolismo , Translocador Nuclear Receptor Aril Hidrocarboneto/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Córtex Cerebral/metabolismo , Fatores de Terminação de Peptídeos/biossíntese , Esquizofrenia/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
2.
FEBS Lett ; 594(21): 3504-3517, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869294

RESUMO

Eukaryotic release factor 1 (eRF1) is a translation termination factor that binds to the ribosome at stop codons. The expression of eRF1 is strictly controlled, since its concentration defines termination efficiency and frequency of translational readthrough. Here, we show that eRF1 expression in Neurospora crassa is controlled by an autoregulatory circuit that depends on the specific 3'UTR structure of erf1 mRNA. The stop codon context of erf1 promotes readthrough that protects the mRNA from its 3'UTR-induced nonsense-mediated mRNA decay (NMD). High eRF1 concentration leads to inefficient readthrough, thereby allowing NMD-mediated erf1 degradation. We propose that eRF1 expression is controlled by similar autoregulatory circuits in many fungi and seed plants and discuss the evolution of autoregulatory systems of different translation termination factors.


Assuntos
Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Íntrons/genética , Neurospora crassa/genética , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , Regulação para Baixo , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Neurochem Res ; 45(7): 1690-1699, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333234

RESUMO

Emerging evidence underlined the crucial roles played by long non-coding RNAs (lncRNAs) in glioma. MINCR has been reported in multiple malignancies. Here, we studied its function and potential mechanism in glioma, which remain unclear. Gene expressions were analyzed by qRT-PCR assay. Both in vitro and in vivo assays were conducted to evaluate the cellular function of MINCR in glioma. The subcellular situation of MINCR was detected by subcellular fractionation and FISH assays. Luciferase reporter, RNA pull-down and RNA immunoprecipitation (RIP) assays were combined to investigate potential mechanisms of relevant genes. MINCR was up-regulated in glioma. MINCR depletion markedly refrained glioma cell proliferation, migration and invasion via sponging miR-876-5p. MiR-876-5p suppressed the malignant behaviors of glioma via binding to GSPT1. MINCR shared the binding sites with the 3'-untranslated region of GSPT1 and prevented the binding of miR-876-5p to GSPT1 mRNA, thus up-regulating the level of GSPT1. Moreover, miR-876 inhibition and GSPT1 up-regulation counteracted the functional effect induced by silencing MINCR on glioma progression. Our findings uncovered that MINCR might aggravated glioma cell proliferation and migration via acting as competing endogenous RNA (ceRNA), indicating prospective novel therapeutic target for glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , Progressão da Doença , Glioma/metabolismo , MicroRNAs/metabolismo , Fatores de Terminação de Peptídeos/biossíntese , RNA Longo não Codificante/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proliferação de Células/fisiologia , Glioma/genética , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Longo não Codificante/genética
4.
ACS Nano ; 12(9): 9363-9371, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30207696

RESUMO

Amyloid nanofibrils are excellent scaffolds for designable materials that can be endowed with biotechnologically relevant functions. However, most of all excellent ideas and concepts that have been reported in the literature might never see real-world implementation in biotechnological applications. One bottleneck is the large-scale production of these materials. In this paper, we present an attempt to create a generic and scalable platform for producing ready-to-use functionalized nanofibrils directly from a eukaryotic organism. As a model material, we assembled Sup35(1-61) amyloid nanofibrils from Saccharomyces cerevisiae decorated with the Z-domain dimer, which has a high affinity toward antibody molecules. To this end, Komagataella pastoris was engineered by inserting gene copies of Sup35(1-61) and the protein chimera Sup35(1-61)-ZZ into the genome. This strain has the capability to constantly secrete amyloidogenic proteins into the extracellular medium, where the mature functionalized fibrils form, with a production yield of 35 mg/L culture. Another striking feature of this strategy is that the separation of the fibril material from the cells requires only centrifugation and resuspension in saline water. The fast production rates, minimal hands-on time, and high stability of the assembled material are some highlights that make the direct assembly of functionalized fibrils in the extracellular medium an alternative to production methods that are not suitable for large-scale production of designed amyloids.


Assuntos
Nanofibras/química , Fatores de Terminação de Peptídeos/biossíntese , Pichia/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Modelos Moleculares , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Pichia/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Mol Cell Biol ; 38(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29784771

RESUMO

Prions of lower eukaryotes are transmissible protein particles that propagate by converting homotypic soluble proteins into growing protein assemblies. Prion activity is conferred by so-called prion domains, regions of low complexity that are often enriched in glutamines and asparagines (Q/N). The compositional similarity of fungal prion domains with intrinsically disordered domains found in many mammalian proteins raises the question of whether similar sequence elements can drive prion-like phenomena in mammals. Here, we define sequence features of the prototype Saccharomyces cerevisiae Sup35 prion domain that govern prion activities in mammalian cells by testing the ability of deletion mutants to assemble into self-perpetuating particles. Interestingly, the amino-terminal Q/N-rich tract crucially important for prion induction in yeast was dispensable for the prion life cycle in mammalian cells. Spontaneous and template-assisted prion induction, growth, and maintenance were preferentially driven by the carboxy-terminal region of the prion domain that contains a putative soft amyloid stretch recently proposed to act as a nucleation site for prion assembly. Our data demonstrate that preferred prion nucleation domains can differ between lower and higher eukaryotes, resulting in the formation of prions with strikingly different amyloid cores.


Assuntos
Príons/biossíntese , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Citosol/metabolismo , Camundongos , Modelos Moleculares , Mutação , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Proteínas Priônicas/biossíntese , Proteínas Priônicas/química , Proteínas Priônicas/genética , Príons/química , Príons/genética , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Domínios Proteicos , Dobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
6.
PLoS Genet ; 12(11): e1006431, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27828954

RESUMO

The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone balance and distribution whereby the folding of the prion protein is improved and the prion is rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that chaperone modification can block key steps of the prion life cycle and has exciting implications for potential treatment of many human protein conformational disorders.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Chaperonas Moleculares/genética , Fatores de Terminação de Peptídeos/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/biossíntese , Humanos , Chaperonas Moleculares/química , Fatores de Terminação de Peptídeos/biossíntese , Peptídeos/química , Peptídeos/genética , Príons/química , Príons/toxicidade , Agregados Proteicos/genética , Dobramento de Proteína , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Deleção de Sequência
7.
PLoS Genet ; 12(1): e1005760, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745809

RESUMO

The gaseous phytohormone ethylene participates in the regulation of root growth and development in Arabidopsis. It is known that root growth inhibition by ethylene involves auxin, which is partially mediated by the action of the WEAK ETHYLENE INSENSITIVE2/ANTHRANILATE SYNTHASE α1 (WEI2/ASA1), encoding a rate-limiting enzyme in tryptophan (Trp) biosynthesis, from which auxin is derived. However, the molecular mechanism by which ethylene decreases root growth via ASA1 is not understood. Here we report that the ethylene-responsive AP2 transcription factor, ETHYLENE RESPONSE FACTOR1 (ERF1), plays an important role in primary root elongation of Arabidopsis. Using loss- and gain-of-function transgenic lines as well as biochemical analysis, we demonstrate that ERF1 can directly up-regulate ASA1 by binding to its promoter, leading to auxin accumulation and ethylene-induced inhibition of root growth. This discloses one mechanism linking ethylene signaling and auxin biosynthesis in Arabidopsis roots.


Assuntos
Antranilato Sintase/biossíntese , Proteínas de Arabidopsis/biossíntese , Fatores de Terminação de Peptídeos/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Raízes de Plantas/crescimento & desenvolvimento , Antranilato Sintase/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Fatores de Terminação de Peptídeos/genética , Reguladores de Crescimento de Plantas/genética , Raízes de Plantas/genética , Transdução de Sinais
8.
Mol Biol Cell ; 26(25): 4541-51, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26490118

RESUMO

Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI(+)], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI(+)] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN(+)] prion, which is not related in sequence to the Sup35/[PSI(+)] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI(+)] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI(+)] form.


Assuntos
Autofagia/genética , Doenças Neurodegenerativas/genética , Fatores de Terminação de Peptídeos/biossíntese , Príons/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Oxirredução/efeitos dos fármacos , Fatores de Terminação de Peptídeos/genética , Príons/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Espermidina/farmacologia
9.
Mol Microbiol ; 96(3): 621-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25649498

RESUMO

Cross-beta fibrous protein aggregates (amyloids and amyloid-based prions) are found in mammals (including humans) and fungi (including yeast), and are associated with both diseases and heritable traits. The Hsp104/70/40 chaperone machinery controls propagation of yeast prions. The Hsp70 chaperones Ssa and Ssb show opposite effects on [PSI(+)], a prion form of the translation termination factor Sup35 (eRF3). Ssb is bound to translating ribosomes via ribosome-associated complex (RAC), composed of Hsp40-Zuo1 and Hsp70-Ssz1. Here we demonstrate that RAC disruption increases de novo prion formation in a manner similar to Ssb depletion, but interferes with prion propagation in a manner similar to Ssb overproduction. Release of Ssb into the cytosol in RAC-deficient cells antagonizes binding of Ssa to amyloids. Thus, propagation of an amyloid formed because of lack of ribosome-associated Ssb can be counteracted by cytosolic Ssb, generating a feedback regulatory circuit. Release of Ssb from ribosomes is also observed in wild-type cells during growth in poor synthetic medium. Ssb is, in a significant part, responsible for the prion destabilization in these conditions, underlining the physiological relevance of the Ssb-based regulatory circuit.


Assuntos
Retroalimentação , Chaperonas Moleculares/metabolismo , Fatores de Terminação de Peptídeos/biossíntese , Príons/biossíntese , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/metabolismo
10.
Curr Genet ; 61(2): 165-73, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25519804

RESUMO

In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI (+)] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles.


Assuntos
Códon sem Sentido/genética , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , RNA de Transferência/genética , Proteínas de Schizosaccharomyces pombe/genética , Alelos , Códon de Terminação , Mutação , Príons/genética , Schizosaccharomyces/genética
11.
Int J Antimicrob Agents ; 43(2): 135-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24315790

RESUMO

This study was designed to evaluate the potential role of fosfomycin as a therapeutic agent in human listeriosis. The in vitro activity of fosfomycin against 154 Listeria monocytogenes clinical isolates under conditions that mimic the induction of prfA expression was determined and was correlated with fosfomycin intracellular antimicrobial activity. In vitro, partial induction of prfA expression is achieved through bacterial growth in brain-heart infusion agar supplemented with activated charcoal (BHIC). A fosfomycin pharmacokinetic/pharmacodynamic breakpoint of ≤64 mg/L was estimated using a Monte Carlo simulation to assess the success of an intravenous fosfomycin dose of 300 mg/kg/day over 5000 individuals. Eighty strains (51.9%) were susceptible to fosfomycin in BHIC, with minimum inhibitory concentrations (MICs) of ≤64 mg/L; 13 strains (8.4%) had the epidemic clone (EC) marker. In addition, 27 strains (17.5%) had a three doubling dilutions reduction in the MIC from ≥1024 mg/L to 128 mg/L (96-128 mg/L by Etest). The fosfomycin modal MIC is lower under prfA expression. However, this effect is smaller in terms of clinical categorisation of isolates and can be influenced by the serotype and clonal type. In A549 cells, the reductions in bacterial inocula of the two susceptible isolates studied after 1h and 24h of incubation with fosfomycin at 0.5× the human maximum serum concentration (Cmax) were 45.8% and 46.6%, and 93.8% and 99.1%, respectively. Slightly higher reductions were found with fosfomycin at 1× Cmax. The resistant strain tested showed significantly lower reductions in all assays.


Assuntos
Antibacterianos/farmacologia , Fosfomicina/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Proteínas de Bactérias/biossíntese , Linhagem Celular , Meios de Cultura/química , Células Epiteliais/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Fatores de Terminação de Peptídeos/biossíntese , Ativação Transcricional
12.
BMC Genomics ; 14: 285, 2013 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-23622257

RESUMO

BACKGROUND: The saprophytic pathogen Listeria monocytogenes has to cope with a variety of acidic habitats during its life cycle. The impact of low-temperature coupled with pH decrease for global gene expression and subsequent virulence properties, however, has not been elucidated. RESULTS: qRT-PCR revealed for the first time a transient, acid triggered prfA induction of approximately 4-fold, 5.7-fold, 7-fold and 9.3-fold 60 to 90 min after acid shock of L. monocytogenes at 37°C, 25°C, 18°C, and 10°C, respectively. Comparable data were obtained for seven different L. monocytogenes strains, demonstrating that prfA induction under these conditions is a general response of L. monocytogenes. Transcriptome analysis revealed that the in vivo-relevant genes bsh, clpP, glpD, hfq, inlA, inlB, inlE, lisR, and lplA1 as well as many other genes with a putative role during infection are transiently induced upon acid shock conducted at 25°C and 37°C. Twenty-five genes repressed upon acid shock are known to be down regulated during intracellular growth or by virulence regulators. These data were confirmed by qRT-PCR of twelve differentially regulated genes and by the identification of acid shock-induced genes influenced by σB. To test if up regulation of virulence genes at temperatures below 37°C correlates with pathogenicity, the capacity of L. monocytogenes to invade epithelial cells after acid shock at 25°C was measured. A 12-fold increased number of intracellular bacteria was observed (acid shock, t = 60 min) that was reduced after adaptation to the level of the unshocked control. This increased invasiveness was shown to be in line with the induction of inlAB. Using a nematode infection assay, we demonstrated that Caenorhabditis elegans fed with acid-shocked L. monocytogenes exhibits a shorter time to death of 50% (TD50) of the worms (6.4 days) compared to infection with unshocked bacteria (TD50 = 10.2 days). CONCLUSIONS: PrfA and other listerial virulence genes are induced by an inorganic acid in a temperature-dependent manner. The data presented here suggest that low pH serves as a trigger for listerial pathogenicity at environmental temperatures.


Assuntos
Proteínas de Bactérias/biossíntese , Listeria monocytogenes/patogenicidade , Fatores de Terminação de Peptídeos/biossíntese , Virulência/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Caenorhabditis elegans/microbiologia , Temperatura Baixa , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Concentração de Íons de Hidrogênio , Listeria monocytogenes/genética , Proteínas de Membrana/biossíntese , Fatores de Terminação de Peptídeos/genética , Fator sigma/fisiologia , Temperatura
13.
Nucleic Acids Res ; 40(4): 1818-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22053088

RESUMO

Expression of virulence factors in the human bacterial pathogen Listeria monocytogenes is almost exclusively regulated by the transcriptional activator PrfA. The translation of prfA is controlled by a thermosensor located in the 5'-untranslated RNA (UTR), and is high at 37°C and low at temperatures <30°C. In order to develop a thermoregulated translational expression system, the 5'-UTR and different lengths of the prfA-coding sequences were placed in front of lacZ. When expressed in Escherichia coli, the ß-galactosidase expression was directly correlated to the length of the prfA-coding mRNA lying in front of lacZ. A similar effect was detected with gfp as a reporter gene in both L. monocytogenes and E. coli, emphasizing the requirement of the prfA-coding RNA for maximal expression. In vitro transcription/translation and mutational analysis suggests a role for the first 20 codons of the native prfA-mRNA for maximal expression. By toe-print and RNA-probing analysis, a flexible hairpin-loop located immediately downstream of the start-codon was shown to be important for ribosomal binding. The present work determines the importance of an unstructured part of the 5'-coding region of the prfA-mRNA for efficient translation.


Assuntos
Proteínas de Bactérias/genética , Códon , Fatores de Terminação de Peptídeos/genética , Biossíntese de Proteínas , Proteínas de Bactérias/biossíntese , Genes Reporter , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Mutação , Conformação de Ácido Nucleico , Fatores de Terminação de Peptídeos/biossíntese , Estabilidade Proteica , Estabilidade de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
14.
Prion ; 5(4): 317-22, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22156729

RESUMO

[ISP+] is a prion form of the global transcriptional regulator Sfp1 in Saccharomyces cerevisiae that manifests phenotypically as an antisuppressor of specific sup35 nonsense suppressor mutations. Although SUP35 is a Sfp1 target, the mechanism of antisuppression is unclear. Here we show that the level of SUP35 transcription in [ISP+] cells containing the sup35 mutation is increased relative to [isp-] cells and cells with a SFP1 deletion. As a result, [ISP+] cells have increased amounts of Sup35 encoded by the mutant allele. Indeed, additional experiments showed that increased amounts of mutant Sup35 may cause antisuppression. Remarkably, [ISP+] effects are not equivalent to those produced by SFP1 deletion, so [ISP+] represents an obvious example of a functionally active prion form of a protein. This feature distinguishes [ISP+] from other yeast prions, where prion switch often has the same effect as inactivation of a prion host gene. We suggest that enhancement of SUP35 expression in [ISP+] cells is caused by specific interaction of Sfp1 in its prion form with some negative SUP35 regulator. We also demonstrate that the advantage of [ISP+] strains over [isp-] strains described in our earlier work is specific for certain genetic background and growth conditions.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Terminação de Peptídeos/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Plasmídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS Genet ; 7(5): e1001386, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625618

RESUMO

Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps⁻] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.


Assuntos
Regulação Fúngica da Expressão Gênica , Fatores de Terminação de Peptídeos/biossíntese , Peptídeos/química , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Éxons , Deleção de Genes , Fatores de Terminação de Peptídeos/genética , Peptídeos/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
16.
Microb Drug Resist ; 17(2): 181-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21388333

RESUMO

Disinfection of food contact surfaces is a challenging task, aggravated by bacteria's capacity to survive and/or resist antimicrobials by means of mechanisms not yet completely understood. This work evaluated the susceptibility of Listeria monocytogenes and Salmonella enterica biofilms to four disinfectants, and analyzed how those chemical agents influenced stress-response and virulence genes expression by surviving cells. Three strains of each bacterial species mentioned were used, and their biofilms were treated with sodium hypochlorite, benzalkonium chloride, hydrogen peroxide, and triclosan using the Calgary Biofilm Device. Expression of L. monocytogenes and S. enterica stress-response genes cplC and ropS, and virulence genes prfA and avrA, respectively, was analyzed through quantitative real-time polymerase chain reaction. Results showed sodium hypochlorite to have the lowest minimum biofilm eradication concentration values (3.125 µg/ml), whereas triclosan had the worst performance since no S. enterica biofilm eradication was achieved even at the maximum concentration used (4,000 µg/ml). L. monocytogenes stress-response gene and S. enterica virulence gene were significantly upregulated in surviving cells compared with controls. In general, this work points out sodium hypochlorite as the most effective disinfectant against biofilms of both species used, and L. monocytogenes biofilms to be more susceptible to disinfection than S. enterica biofilms. Moreover, it was found that disinfection surviving biofilm cells seem to develop a stress response and/or become more virulent, which may compromise food safety and potentiate public health risk.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Listeriose/prevenção & controle , Infecções por Salmonella/prevenção & controle , Salmonella enteritidis/efeitos dos fármacos , Hipoclorito de Sódio/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Compostos de Benzalcônio/farmacologia , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Desinfecção/métodos , Microbiologia de Alimentos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Listeriose/microbiologia , Testes de Sensibilidade Microbiana , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/genética , Infecções por Salmonella/microbiologia , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Estresse Fisiológico/genética , Triclosan/farmacologia , Virulência/genética
17.
Wei Sheng Wu Xue Bao ; 51(11): 1555-60, 2011 Nov 04.
Artigo em Chinês | MEDLINE | ID: mdl-22260054

RESUMO

OBJECTIVE: Listeria monocytogenes (Lm) is an important pathogen that can cause serious listeriosis in humans and animals. The pathogenicity of Lm has a close relationship with the PrfA protein regulating the expression of virulence genes. Therefore, we studied the regulation functions of PrfA and its role on Lm's virulence. METHODS: The prfA genes of LM4, serotype 1/2a, and F4636, serotype 4b, were deleted by homologous recombination technology, and the biological characteristics of the mutants were further studied. RESULTS: The prfA gene deleted strains LM4deltaprfA and F4636deltaprfA and their back mutation strains were successfully constructed. The results show that the hemolysis activity was lost in prfA deleted strains and was recovered in the reverse mutant strains. The prfA deleted strains lost phospholipase activity; their adhesion and invasion ability significantly decreased. Furthermore, their 50% lethal doses (LD50) were 5 logs higher comparing with wild type strains. CONCLUSION: PrfA regulates hly, plcB and inl gene family and affects significantly Lm's virulence.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Mutação , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/genética
18.
Nat Chem Biol ; 5(12): 936-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19915541

RESUMO

Safely eradicating prions, amyloids and preamyloid oligomers may ameliorate several fatal neurodegenerative disorders. Yet whether small-molecule drugs can directly antagonize the entire spectrum of distinct amyloid structures or 'strains' that underlie distinct disease states is unclear. Here, we investigated this issue using the yeast prion protein Sup35. We have established how epigallocatechin-3-gallate (EGCG) blocks synthetic Sup35 prionogenesis, eliminates preformed Sup35 prions and disrupts inter- and intramolecular prion contacts. Unexpectedly, these direct activities were strain selective, altered the repertoire of accessible infectious forms and facilitated emergence of a new prion strain that configured original, EGCG-resistant intermolecular contacts. In vivo, EGCG cured and prevented induction of susceptible, but not resistant strains, and elicited switching from susceptible to resistant forms. Importantly, 4,5-bis-(4-methoxyanilino)phthalimide directly antagonized EGCG-resistant prions and synergized with EGCG to eliminate diverse Sup35 prion strains. Thus, synergistic small-molecule combinations that directly eradicate complete strain repertoires likely hold considerable therapeutic potential.


Assuntos
Compostos de Anilina/farmacologia , Catequina/análogos & derivados , Proteínas de Choque Térmico/química , Fatores de Terminação de Peptídeos/química , Ftalimidas/farmacologia , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Bibliotecas de Moléculas Pequenas/farmacologia , Catequina/farmacologia , Sinergismo Farmacológico , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/biossíntese , Modelos Químicos , Modelos Moleculares , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Fatores de Terminação de Peptídeos/biossíntese , Príons/antagonistas & inibidores , Príons/biossíntese , Conformação Proteica , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/biossíntese
19.
Eukaryot Cell ; 8(7): 968-76, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19411620

RESUMO

During propagation, yeast prions show a strict sequence preference that confers the specificity of prion assembly. Although propagations of [PSI(+)] and [RNQ(+)] are independent of each other, the appearance of [PSI(+)] is facilitated by the presence of [RNQ(+)]. To explain the [RNQ(+)] effect on the appearance of [PSI(+)], the cross-seeding model was suggested, in which Rnq1 aggregates act as imperfect templates for Sup35 aggregation. If cross-seeding events take place in the cytoplasm of yeast cells, the collision frequency between Rnq1 aggregates and Sup35 will affect the appearance of [PSI(+)]. In this study, to address whether cross-seeding occurs in vivo, a new [PSI(+)] induction method was developed that exploits a protein fusion between the prion domain of Sup35 (NM) and Rnq1. This fusion protein successfully joins preexisting Rnq1 aggregates, which should result in the localization of NM around the Rnq1 aggregates and hence in an increased collision frequency between NM and Rnq1 aggregates. The appearance of [PSI(+)] could be induced very efficiently, even with a low expression level of the fusion protein. This study supports the occurrence of in vivo cross-seeding between Sup35 and Rnq1 and provides a new tool that can be used to dissect the mechanism of the de novo appearance of prions.


Assuntos
Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/metabolismo , Príons/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise Mutacional de DNA , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Cinética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fenótipo , Príons/genética , Príons/metabolismo , Ligação Proteica/genética , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Regulação para Cima
20.
Genetika ; 44(2): 177-84, 2008 Feb.
Artigo em Russo | MEDLINE | ID: mdl-18619035

RESUMO

The phenomenon of nonsense suppression, which leads to the reading of stop codons as sense codons, may be related to disturbances in the operation of various components of the translation apparatus and the proteins interacting with them. The phosphatase Ppzlp is one of the factors affecting the nonsense suppression efficiency in the saccharomycete yeast. In this work, the impact of the overexpression of gene PPZ1 and its mutant allele PPZ1-R451L on the phenotypic expression of various mutant alleles of genes SUP35 and SUP45 or the yeast prion [PSI+] was analyzed. On the basis of the data obtained, a suggestion about the possible role of proteins Sup35p and Sup45p in the processes mediating the influence of gene PPZ1 overexpression on the efficiency of nonsense suppression is made.


Assuntos
Códon sem Sentido/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Fosfoproteínas Fosfatases/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/enzimologia , Supressão Genética/fisiologia , Alelos , Códon sem Sentido/genética , Fatores de Terminação de Peptídeos/biossíntese , Fatores de Terminação de Peptídeos/genética , Fosfoproteínas Fosfatases/genética , Príons/biossíntese , Príons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...