Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.070
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38713624

RESUMO

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Córtex Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas do Tecido Nervoso , Células-Tronco Neurais , Neurogênese , Fator de Transcrição 2 de Oligodendrócitos , Fator de Transcrição PAX6 , Animais , Neurogênese/fisiologia , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Camundongos , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Fator de Transcrição PAX6/metabolismo , Fator de Transcrição PAX6/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética , Neuroglia/metabolismo , Neuroglia/citologia , Regulação da Expressão Gênica no Desenvolvimento , Transdução de Sinais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/citologia , Linhagem da Célula , Humanos
2.
J Med Virol ; 96(5): e29521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727013

RESUMO

Methylation panels, tools for investigating epigenetic changes associated with diseases like cancer, can identify DNA methylation patterns indicative of disease, providing diagnostic or prognostic insights. However, the application of methylation panels focusing on the sex-determining region Y-box 1 (SOX1) and paired box gene 1 (PAX1) genes for diagnosing cervical lesions is under-researched. This study aims to examine the diagnostic performance of PAX1/SOX1 gene methylation as a marker for cervical precancerous lesions and its potential application in triage diagnosis. From September 2022 to April 2023, 181 patients with abnormal HPV-DNA tests or cytological exam results requiring colposcopy were studied at Hubei Maternal and Child Health Hospital, China. Data were collected from colposcopy, cytology, HPV-DNA tests, and PAX1/SOX1 methylation detection. Patients were categorized as control, cervical intraepithelial neoplasia Grade 1 (CIN1), Grade 2 (CIN2), Grade 3 (CIN3), and cervical cancer (CC) groups based on histopathology. We performed HPV testing, liquid-based cytology, and PAX1/SOX1 gene methylation testing. We evaluated the diagnostic value of methylation detection in cervical cancer using DNA methylation positivity rate, sensitivity, specificity, and area under the curve (AUC), and explored its potential for triage diagnosis. PAX1/SOX1 methylation positivity rates were: control 17.1%, CIN1 22.5%, CIN2 100.0%, CIN3 90.0%, and CC 100.0%. The AUC values for PAX1 gene methylation detection in diagnosing CIN1+, CIN2+, and CIN3+ were 0.52 (95% confidence interval [CI]: 0.43-0.62), 0.88 (95% CI: 0.80-0.97), and 0.88 (95% CI: 0.75-1.00), respectively. Corresponding AUC values for SOX1 gene methylation detection were 0.47 (95% CI: 0.40-0.58), 0.80 (95% CI: 0.68-0.93), and 0.92 (95% CI: 0.811-1.00), respectively. In HPV16/18-negative patients, methylation detection showed sensitivity of 32.4% and specificity of 83.7% for CIN1+. For CIN2+ and CIN3+, sensitivity was all 100%, with specificities of 83.0% and 81.1%. Among the patients who underwent colposcopy examination, 166 cases had cytological examination results ≤ASCUS, of which 37 cases were positive for methylation, and the colposcopy referral rate was 22.29%. PAX1/SOX1 gene methylation detection exhibits strong diagnostic efficacy for cervical precancerous lesions and holds significant value in triage diagnosis.


Assuntos
Metilação de DNA , Fatores de Transcrição Box Pareados , Infecções por Papillomavirus , Fatores de Transcrição SOXB1 , Triagem , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Fatores de Transcrição SOXB1/genética , Adulto , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/virologia , Pessoa de Meia-Idade , Triagem/métodos , Fatores de Transcrição Box Pareados/genética , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Sensibilidade e Especificidade , Biomarcadores Tumorais/genética , China , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/genética , Adulto Jovem , Detecção Precoce de Câncer/métodos , Colposcopia
3.
Cell Commun Signal ; 22(1): 242, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664733

RESUMO

BACKGROUND: Paired box 1 (PAX1) is a transcription factor and essential for the development of pharyngeal pouches-derived tissues, including thymus. PAX1 mutations are identified in Severe Combined Immunodeficiency (SCID) patients with Otofaciocervical Syndrome Type 2 (OTFCS2). However, despite the critical roles of PAX1 in embryonic development and diseases, detailed insights into its molecular mode of action are critically missing. METHODS: The repressing roles of PAX1 and SCID associated mutants on Wnt signaling pathway were investigated by luciferase reporter assays, qRT-PCR and in situ hybridization in HEK293FT, HCT116 cells and zebrafish embryos, respectively. Co-immunoprecipitation (co-IP) and western blotting assays were carried out to identify the molecular mechanisms underlying PAX1's role on Wnt signaling pathway. hESC based endoderm differentiation, flow cytometry, high-throughput sequencing data analysis, and qRT-PCR assays were utilized to determine the roles of PAX1 during endoderm differentiation. RESULTS: Here, we show that PAX1 represses canonical Wnt signaling pathway in vertebrate cells. Mechanically, PAX1 competes with SUMO E3 ligase PIASy to bind to TCF7L2, thus perturbing TCF7L2 SUMOylation level, further reducing its transcriptional activity and protein stability. Moreover, we reveal that PAX1 plays dual roles in hESC-derived definitive and foregut/pharyngeal endoderm cells, which give rise to the thymus epithelium, by inhibiting Wnt signaling. Importantly, our data show PAX1 mutations found in SCID patients significantly compromise the suppressing ability of PAX1 on Wnt signaling. CONCLUSIONS: Our study presents a novel molecular mode of action of PAX1 in regulation of canonical Wnt signaling and endoderm differentiation, thus providing insights for the molecular basis of PAX1 associated SCID, offering better understanding of the behavior of PAX1 in embryogenesis.


Assuntos
Diferenciação Celular , Endoderma , Via de Sinalização Wnt , Peixe-Zebra , Humanos , Via de Sinalização Wnt/genética , Diferenciação Celular/genética , Endoderma/metabolismo , Endoderma/citologia , Animais , Peixe-Zebra/genética , Células HEK293 , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Células HCT116 , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/genética
4.
Methods Mol Biol ; 2779: 273-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526790

RESUMO

Oncogenic fusion genes are attractive therapeutic targets because of their tumor-specific expression and central "driver" roles in various human cancers. However, oncogenic fusions involving transcription factors such as PAX3-FOXO1 in alveolar fusion gene-positive rhabdomyosarcoma (FP-RMS) have been difficult to inhibit due to the apparent lack of tractable drug-like binding sites comparable to that recognized by Gleevec (imatinib mesylate) on the BCR-ABL1 tyrosine kinase fusion protein. Toward the identification of novel small molecules that selectively target PAX3-FOXO1, we used CRISPR-Cas9-mediated knock-in to append the pro-luminescent HiBiT tag onto the carboxy terminus of the endogenous PAX3-FOXO1 fusion protein in two human FP-RMS cell lines (RH4 and SCMC). HiBiT is an 11-amino acid peptide derived from the NanoLuc luciferase that produces a luminescence signal which is ~100-fold brighter than firefly or Renilla luciferases through high-affinity binding to a complementary NanoLuc peptide fragment called LgBiT. To facilitate single-cell clonal isolation of knock-ins, the homology-directed repair template encoding HiBiT was followed by a P2A self-cleaving peptide for coexpression of an mCherry fluorescent protein as a fluorescence-activated cell sorter (FACS)-selectable marker. HiBiT tagging thus allows highly sensitive luminescence detection of endogenous PAX3-FOXO1 levels permitting quantitative high-throughput screening of large compound libraries for the discovery of PAX3-FOXO1 inhibitors and degraders.


Assuntos
Fatores de Transcrição Box Pareados , Proteína Vermelha Fluorescente , Rabdomiossarcoma , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Sistemas CRISPR-Cas , Rabdomiossarcoma/genética , Peptídeos/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
5.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474036

RESUMO

Alveolar rhabdomyosarcoma (ARMS), an invasive subtype of rhabdomyosarcoma (RMS), is associated with chromosomal translocation events resulting in one of two oncogenic fusion genes, PAX3-FOXO1 or PAX7-FOXO1. ARMS patients exhibit an overexpression of the pleiotropic cytokine transforming growth factor beta (TGF-ß). This overexpression of TGF-ß1 causes an increased expression of a downstream transcription factor called SNAIL, which promotes epithelial to mesenchymal transition (EMT). Overexpression of TGF-ß also inhibits myogenic differentiation, making ARMS patients highly resistant to chemotherapy. In this review, we first describe different types of RMS and then focus on ARMS and the impact of TGF-ß in this tumor type. We next highlight current chemotherapy strategies, including a combination of the FDA-approved drugs vincristine, actinomycin D, and cyclophosphamide (VAC); cabozantinib; bortezomib; vinorelbine; AZD 1775; and cisplatin. Lastly, we discuss chemotherapy agents that target the differentiation of tumor cells in ARMS, which include all-trans retinoic acid (ATRA) and 5-Azacytidine. Improving our understanding of the role of signaling pathways, such as TGF-ß1, in the development of ARMS tumor cells differentiation will help inform more tailored drug administration in the future.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1 , Fatores de Transcrição Box Pareados/genética , Transição Epitelial-Mesenquimal , Rabdomiossarcoma/genética , Proteínas de Fusão Oncogênica/genética
6.
Nat Commun ; 15(1): 1703, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402212

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases/metabolismo
7.
Insect Mol Biol ; 33(3): 173-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38238257

RESUMO

Paired box (Pax) genes are highly conserved throughout evolution, and the Pax protein is an important transcription factor of embryonic development. The Pax gene Bmgsb is expressed in the silk glands of silkworm, but its biological functions remain unclear. This study aimed to investigate the expression pattern of Bmgsb in the silk gland and explore its functions using RNA interference (RNAi). Here, we identified eight Pax genes in Bombyx mori. Phylogenetic analysis showed that the B. mori Pax genes were highly homologous to the Pax genes in other insects and highly evolutionarily conserved. The tissue expression profile showed that Bmgsb was expressed in the anterior silk gland and anterior part of the middle silk gland (AMSG). RNAi of Bmgsb resulted in defective development of the AMSG, and the larvae were mostly unable to cocoon in the wandering stage. RNA-seq analysis showed that the fibroin genes fib-l, fib-h and p25, cellular heat shock response-related genes and phenol oxidase genes were considerably upregulated upon Bmgsb knockdown. Furthermore, quantitative reverse transcription-PCR results showed that the fibroin genes and ubiquitin proteolytic enzyme-related genes were significantly upregulated in the AMSG after Bmgsb knockdown. This study provides a foundation for future research on the biological functions of B. mori Pax genes. In addition, it demonstrates the important roles of Bmgsb in the transcriptional regulation of fibroin genes and silk gland development.


Assuntos
Bombyx , Proteínas de Insetos , Fatores de Transcrição Box Pareados , Seda , Bombyx/genética , Bombyx/metabolismo , Bombyx/crescimento & desenvolvimento , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Seda/genética , Seda/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
8.
Exp Eye Res ; 238: 109746, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056551

RESUMO

Heterozygous mutation of PAX6 in humans leads to congenital aniridia (OMIM 106210) which is typified by congenital iris and foveal defects, and later onset glaucoma, aniridic keratopathy, and cataract. Mice heterozygous for Pax6 mutations phenocopy many aspects of aniridia including the iris defects, keratopathy and cataract, although Pax6 mutant mice have small lenses, a phenotype which is not typically reported in human aniridia, perhaps due to difficulties in measuring lens diameter during typical ophthalmic examinations as the lens periphery is shielded by the iris. In order to overcome this, records of patients diagnosed with congenital aniridia between April 2015 and May 2021 at the Necker-Enfants Malades Hospital, and genetically confirmed with a disease-causing PAX6 variant, were retrospectively reviewed for those with normal axial length whose iris defects allowed visualization of the lens margins and corneal diameter to allow calculation of a lens/corneal diameter ratio. This value was compared with values obtained from a cohort of patients with Sjödell grade IV oculocutaneous albinism type 1 (OCA1; OMIM 203100) which allowed visualization of the lens periphery via iris transillumination. This analysis revealed that patients with congenital aniridia had a significantly lower lens/corneal ratio when compared to those with albinism, suggesting that humans haploinsufficient for PAX6, like mice, rats, frogs, and zebrafish, exhibit reductions in lens size.


Assuntos
Aniridia , Catarata , Doenças da Córnea , Humanos , Camundongos , Ratos , Animais , Fator de Transcrição PAX6/genética , Fatores de Transcrição Box Pareados/genética , Estudos Retrospectivos , Peixe-Zebra , Aniridia/genética , Aniridia/diagnóstico , Mutação , Catarata/genética , Catarata/congênito , Proteínas de Homeodomínio/genética , Proteínas do Olho/genética
9.
Exp Eye Res ; 238: 109723, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979905

RESUMO

Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.


Assuntos
Aniridia , Microftalmia , Humanos , Camundongos , Animais , Fator de Transcrição PAX6/genética , Fatores de Transcrição Box Pareados/genética , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Microftalmia/genética , Aniridia/genética , Proteínas de Homeodomínio/genética , Proteínas do Olho/genética
10.
Nat Commun ; 14(1): 7291, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968277

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Proteína Forkhead Box O1/metabolismo , Regulação Neoplásica da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Fusão Oncogênica/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Rabdomiossarcoma Alveolar/genética
11.
Nat Commun ; 14(1): 6119, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777536

RESUMO

The coding variant (p.Arg192His) in the transcription factor PAX4 is associated with an altered risk for type 2 diabetes (T2D) in East Asian populations. In mice, Pax4 is essential for beta cell formation but its role on human beta cell development and/or function is unknown. Participants carrying the PAX4 p.His192 allele exhibited decreased pancreatic beta cell function compared to homozygotes for the p.192Arg allele in a cross-sectional study in which we carried out an intravenous glucose tolerance test and an oral glucose tolerance test. In a pedigree of a patient with young onset diabetes, several members carry a newly identified p.Tyr186X allele. In the human beta cell model, EndoC-ßH1, PAX4 knockdown led to impaired insulin secretion, reduced total insulin content, and altered hormone gene expression. Deletion of PAX4 in human induced pluripotent stem cell (hiPSC)-derived islet-like cells resulted in derepression of alpha cell gene expression. In vitro differentiation of hiPSCs carrying PAX4 p.His192 and p.X186 risk alleles exhibited increased polyhormonal endocrine cell formation and reduced insulin content that can be reversed with gene correction. Together, we demonstrate the role of PAX4 in human endocrine cell development, beta cell function, and its contribution to T2D-risk.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Estudos Transversais , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo
12.
Cancer Res Commun ; 3(10): 2030-2043, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732905

RESUMO

The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE: RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Humanos , Proteína Forkhead Box O1/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX3/metabolismo , Rabdomiossarcoma/genética , Rabdomiossarcoma Alveolar/genética , Translocação Genética
13.
Clin Immunol ; 255: 109757, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689091

RESUMO

Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.


Assuntos
Fatores de Transcrição Box Pareados , Imunodeficiência Combinada Severa , Humanos , Fatores de Transcrição Box Pareados/genética , Fenótipo , Linfócitos T , Timo , Imunodeficiência Combinada Severa/genética
14.
Genes (Basel) ; 14(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510387

RESUMO

The human fovea is a specialized pit structure in the central retina. Foveal hypoplasia is a condition where the foveal pit does not fully develop, and it is associated with poor vision. Autosomal dominant isolated foveal hypoplasia (FVH1) is a rare condition of foveal hypoplasia (FH) that lacks any other ocular manifestations. FVH1 is associated with hypomorphic mutations in the PAX6 gene that encodes a sequence-specific DNA-binding transcription factor for morphogenesis and evolution of the eye. We report our findings in 17 patients with PAX6 mutations associated with FVH1 or FH with aniridia and corneal opacities. Patients with three mutations, p.V78E, p.V83F and p.R128H, in the C-terminal subdomain of the paired domain (CTS) consistently have severe FH. Luciferase assays for a single reporter containing a representative PAX6 binding site indicated that the transcriptional activities of these mutations were significantly reduced, comparable to that of the truncation mutation of p.G65Rfs*5. Patients with p.P20S in the N-terminal subdomain of the paired domain, and a patient with p.N365K in the proline-serine-threonine-rich domain (PSTD) had mild FH. A patient with p.Q255L in the homeodomain had severe FH. The P20S and Q255L mutants did not affect the transcriptional activity. Mutant N365K has a retained DNA-binding activity but a reduced transcriptional activity, due to a low PSTD transactivation. These findings demonstrated that mutations associated with FVH1 underlie a functional divergence between DNA-binding ability and transcriptional activity. We conclude that a wide range of mutations in the PAX6 gene is not limited to the CST region and are responsible for FVH1.


Assuntos
Proteínas de Homeodomínio , Fator de Transcrição PAX6 , Humanos , DNA/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX6/genética , Proteínas Repressoras/genética
15.
Hum Genomics ; 17(1): 45, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37269011

RESUMO

BACKGROUND: Haploinsufficiency of the transcription factor PAX6 is the main cause of congenital aniridia, a genetic disorder characterized by iris and foveal hypoplasia. 11p13 microdeletions altering PAX6 or its downstream regulatory region (DRR) are present in about 25% of patients; however, only a few complex rearrangements have been described to date. Here, we performed nanopore-based whole-genome sequencing to assess the presence of cryptic structural variants (SVs) on the only two unsolved "PAX6-negative" cases from a cohort of 110 patients with congenital aniridia after unsuccessfully short-read sequencing approaches. RESULTS: Long-read sequencing (LRS) unveiled balanced chromosomal rearrangements affecting the PAX6 locus at 11p13 in these two patients and allowed nucleotide-level breakpoint analysis. First, we identified a cryptic 4.9 Mb de novo inversion disrupting intron 7 of PAX6, further verified by targeted polymerase chain reaction amplification and sequencing and FISH-based cytogenetic analysis. Furthermore, LRS was decisive in correctly mapping a t(6;11) balanced translocation cytogenetically detected in a second proband with congenital aniridia and considered non-causal 15 years ago. LRS resolved that the breakpoint on chromosome 11 was indeed located at 11p13, disrupting the DNase I hypersensitive site 2 enhancer within the DRR of PAX6, 161 Kb from the causal gene. Patient-derived RNA expression analysis demonstrated PAX6 haploinsufficiency, thus supporting that the 11p13 breakpoint led to a positional effect by cleaving crucial enhancers for PAX6 transactivation. LRS analysis was also critical for mapping the exact breakpoint on chromosome 6 to the highly repetitive centromeric region at 6p11.1. CONCLUSIONS: In both cases, the LRS-based identified SVs have been deemed the hidden pathogenic cause of congenital aniridia. Our study underscores the limitations of traditional short-read sequencing in uncovering pathogenic SVs affecting low-complexity regions of the genome and the value of LRS in providing insight into hidden sources of variation in rare genetic diseases.


Assuntos
Aniridia , Fatores de Transcrição Box Pareados , Humanos , Fatores de Transcrição Box Pareados/genética , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Aniridia/genética , Inversão Cromossômica , Mutação
16.
Congenit Anom (Kyoto) ; 63(4): 109-115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37191119

RESUMO

Aniridia, which is a rare congenital defect of the eye, consists of iris hypoplasia or aplasia, and additional ocular abnormalities. It is most commonly caused by autosomal dominant PAX6 gene mutations. However, in about 30% of cases, it is associated with chromosomal rearrangements in the 11p13 region. The aim of this study was to identify the potential PAX6 gene variants, which could cause the isolated aniridia. Eight patients with isolated aniridia were included in this study. MLPA analysis allowed in the past to exclude large structural rearrangements of the PAX6 and adjacent genes like WT1. Blood samples were collected from the patients (and their families in familial cases) and genomic DNA was extracted from peripheral blood leukocytes and buccal cells. The amplification of the 11 exons of the PAX6 gene was performed. Bidirectional Sanger Sequencing was conducted for the identification of the potentially pathogenic variants, and for the segregation analysis of the identified variant in the family. The results were analyzed with the use of CodonCode Aligner software. In three patients, aniridia was sporadic, whereas in another five cases, the eye defect was familial. The potentially pathogenic variants in the PAX6 gene were found in 6 out of 8 patients with aniridia. We identified four known (c.781C > T, c.607C > T, and c.949C > T twice), and two novel variants (c.258_265del and c.495_496insG). Point mutations in the PAX6 gene are the most frequent cause of aniridia. The investigation of the genetic background of the disease is essential for patients to evaluate recurrence risk in the offspring.


Assuntos
Aniridia , Anormalidades do Olho , Humanos , Fator de Transcrição PAX6/genética , Fatores de Transcrição Box Pareados/genética , Mucosa Bucal/patologia , Aniridia/diagnóstico , Aniridia/genética , Aniridia/patologia , Anormalidades do Olho/genética , Mutação , Proteínas de Homeodomínio/genética , Linhagem
17.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175989

RESUMO

Paired box 4 (Pax4) is a key transcription factor involved in the embryonic development of the pancreatic islets of Langerhans. Consisting of a conserved paired box domain and a homeodomain, this transcription factor plays an essential role in early endocrine progenitor cells, where it is necessary for cell-fate commitment towards the insulin-secreting ß cell lineage. Knockout of Pax4 in animal models leads to the absence of ß cells, which is accompanied by a significant increase in glucagon-producing α cells, and typically results in lethality within days after birth. Mutations in Pax4 that cause an impaired Pax4 function are associated with diabetes pathogenesis in humans. In adulthood, Pax4 expression is limited to a distinct subset of ß cells that possess the ability to proliferate in response to heightened metabolic needs. Upregulation of Pax4 expression is known to promote ß cell survival and proliferation. Additionally, ectopic expression of Pax4 in pancreatic islet α cells or δ cells has been found to generate functional ß-like cells that can improve blood glucose regulation in experimental diabetes models. Therefore, Pax4 represents a promising therapeutic target for the protection and regeneration of ß cells in the treatment of diabetes. The purpose of this review is to provide a thorough and up-to-date overview of the role of Pax4 in pancreatic ß cells and its potential as a therapeutic target for diabetes.


Assuntos
Diabetes Mellitus , Ilhotas Pancreáticas , Animais , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Ilhotas Pancreáticas/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica , Diabetes Mellitus/genética
18.
Diagn Pathol ; 18(1): 54, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098593

RESUMO

BACKGROUND: Histomorphological differentiation between pancreatic serous cystadenoma (SCA) and clear cell renal cell carcinoma (RCC) can be challenging. We aimed to study Paired box 8 protein (Pax8) expression profile in cytologic and surgical specimens with pancreatic SCA to assess its utility as a differentiating marker from clear cell RCC. METHODS: We characterized Pax8 immunohistochemistry in 33 patients with pancreatic SCA (23 surgical resections and 10 cytology specimens). Nine cytology specimens from metastatic clear cell RCC involving pancreas were used as control tissue. Electronic medical records were reviewed to retrieve clinical information. RESULTS: All 10 pancreatic SCA cytology specimens, and 16 of 23 pancreatic SCA surgical resections showed absent Pax8 immunostaining, while the remaining 7 surgical resection specimens showed 1%-2% immunoreactivities. Islet and lymphoid cells adjacent to the pancreatic SCA expressed Pax8. In contrast, the proportion of Pax8 immunoreactivity ranged from 50 to 90% (average of 76%) in nine cases of metastatic clear cell RCC involving pancreas. Using a 5% immunoreactivity cutoff, all cases of pancreatic SCA are interpreted as negative for Pax8 immunostains while all cases of metastatic clear cell RCC involving pancreas are interpreted as positive for Pax8 immunostains. CONCLUSIONS: These results suggest that Pax8 immunohistochemistry staining can be a useful adjunct marker to differentiate pancreatic SCA from clear cell RCC in clinical practice. To the best of our knowledge, this is the first large-scale study of Pax8 immunostaining on surgical and cytology specimens with pancreatic SCA.


Assuntos
Carcinoma de Células Renais , Cistadenoma Seroso , Neoplasias Pancreáticas , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/cirurgia , Carcinoma de Células Renais/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Cistadenoma Seroso/diagnóstico , Cistadenoma Seroso/patologia , Fator de Transcrição PAX8 , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/metabolismo
19.
Mod Pathol ; 36(1): 100038, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36788073

RESUMO

Similar to PAX8, SOX17 was recently identified as a master transcription factor of ovarian cancer based on RNA sequencing data. We explored SOX17 utility in diagnosing ovarian tumors and other gynecologic tumors. We systematically evaluated SOX17 expression on tissue microarrays of 398 ovarian tumors of various types, 93 endometrial carcinomas, 80 cervical carcinomas, and 1371 nongynecologic carcinomas, such as those of kidney, thyroid, breast, colon, bladder, liver, bile duct, adrenal gland, pancreas, brain, and lung and malignant melanoma. In addition, we evaluated SOX17 expression in whole tissue sections from 60 gynecologic carcinomas and 10 angiosarcomas. The results demonstrated that SOX17 was highly expressed in most ovarian and endometrial tumors with strong intensity. However, unlike PAX8, it was predominately negative in other tested tumor types, including kidney and thyroid tumors. In particular, SOX17 was highly expressed in the following pathologic subtypes of ovarian tumors: serous carcinoma, clear cell carcinoma, endometrioid carcinoma, and germ cell tumors. SOX17 was mostly negative in mucinous carcinoma and sex cord stromal tumors. In addition, SOX17 was expressed in vascular endothelial cells and was positive in all tested angiosarcomas. In summary, our results demonstrate that SOX17 is a sensitive and specific marker for ovarian nonmucinous carcinomas and endometrial carcinomas. For ovarian germ cell tumors and angiosarcomas, SOX17 demonstrates higher specificity than PAX8, with comparable sensitivity. Furthermore, SOX17 positivity in endothelial cells serves as an internal positive control, making it an excellent marker.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias do Endométrio , Neoplasias dos Genitais Femininos , Hemangiossarcoma , Neoplasias Ovarianas , Humanos , Feminino , Fatores de Transcrição Box Pareados , Fator de Transcrição PAX8 , Células Endoteliais/patologia , Biomarcadores Tumorais/metabolismo , Imuno-Histoquímica , Neoplasias Ovarianas/patologia , Neoplasias dos Genitais Femininos/patologia , Neoplasias do Endométrio/diagnóstico , Fatores de Transcrição SOXF/genética
20.
Arkh Patol ; 85(1): 10-15, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36785957

RESUMO

BACKGROUND: Anomalies of the FOXO1 gene in alveolar rhabdomyosarcoma are associated with a worse clinical prognosis, which determines the high value of studying the status of this gene when choosing a therapy strategy. The «gold standard¼ for determining FOXO1 gene rearrangements is currently the fluorescent in situ hybridization (FISH) technique. OBJECTIVE: Study of the relationship between canonical FOXO1 translocation and immunohistochemical expression of new surrogate markers in alveolar rhabdomyosarcoma to determine their predictive value. MATERIAL AND METHODS: 139 cases of rhabdomyosarcoma were retrospectively studied. The study used tissue matrix technology (TMA). On sections obtained from TMA blocks, the FISH technique was implemented using the locus-specific probe MetaSystems XL FOXO1 Break Apart (Metasystems, Germany). Immunohistochemical studies were performed on similar sections from TMA blocks with OLIG2 (Cell Marque Antibodies, clone 211F1.1) and MUC4 (Cell Marque Antibodies, clone 8G7) antibodies. RESULTS: The final expression analysis and statistical processing using a 2x2 contingency table and Fisher's exact test passed 111 cases (76 without FOXO1 rearrangement and 35 with rearrangement). The specificity of OLIG2 and MUC4 expression for FOXO1-rearranged alveolar rhabdomyosarcoma was 85.53% and 80.26%, respectively (p<0.01). CONCLUSION: The present study confirms the high predictive value of the expression of surrogate markers OLIG2 and MUC4 in determining the genetic status of alveolar rhabdomyosarcoma, which makes it possible to predict with high specificity the detection of the FOXO1 gene rearrangement.


Assuntos
Rabdomiossarcoma Alveolar , Humanos , Rabdomiossarcoma Alveolar/diagnóstico , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Hibridização in Situ Fluorescente/métodos , Proteína Forkhead Box O1/genética , Estudos Retrospectivos , Biomarcadores , Translocação Genética/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...