Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38749209

RESUMO

Sox transcription factors are vital in numerous fundamental biological processes. In this study, nine Sox gene family members were discovered in the Ruditapes philippinarum genome, classified into the SoxB1, SoxB2, SoxC, SoxD, SoxE, and SoxF groups, marking the first genome-wide identification of this gene family in R. philippinarum. Analyses of phylogeny, exon-intron structures, and domains bolster the support for their categorization and annotation. Furthermore, transcriptomic analyses across various developmental stages revealed that RpSox4, RpSox5, RpSox9, and RpSox11 were significantly expressed in the D-larval stage. Additionally, investigations into transcriptomes of clams with different shell colors indicated that most sox genes exhibited their highest expression levels in orange clams, followed by zebra, white zebra, and white clams, and the results of transcriptomes analysis in different tissues indicated that 8 Sox genes (except RpSox17) were highly expressed in the mantle tissue. Moreover, qPCR was used to detect the expression of Sox gene in R. philippinarum at different developmental periods, different shell colors and different tissues, and the results showed consistency with those of the transcriptomes. This study's findings lay the groundwork for additional exploration into the role of the Sox gene in melanin production in R. philippinarum shells.


Assuntos
Bivalves , Filogenia , Fatores de Transcrição SOX , Animais , Bivalves/genética , Bivalves/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Transcriptoma , Genoma , Perfilação da Expressão Gênica , Família Multigênica
2.
Gene ; 921: 148520, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38702020

RESUMO

A phylogenetic analysis of transcription factors of the Sox-Tcf/Lef-Mata (STM) family of the HMG-B superfamily was carried out in order to clarify the evolutionary roots of the Wnt signaling pathway in unicellular organisms. The data set for analysis included protein sequences of metazoans, fungi, unicellular opisthokonts, apusomonads and amoebozoans. The topology of the phylogenetic tree suggests that STM-related proteins arose in the common ancestor of Opisthokonta and Amoebozoa, two of amoebozoan STM proteins are sister-related to opisthokont ones and the three known lineages of STM transcription factors (STM family in narrow sence) are found in Opisthokonta only. Of these, the holozoan Sox protein branch is the result of either the first or second branching, that originated in the common ancestor of Opisthokonta. The lineage containing Tcf/Lef proteins (holozoan) and the lineage containing Mata proteins (holomycotan) are sister. They derived either at the time of the Holozoa and Holomycota divergence or originate from two paralogs of the common ancestor of Opisthokonta, which arose after the separation of the Sox lineage. Interaction with Armadillo-like proteins may be an original feature of the STM protein family and existed in the unicellular ancestors of multicellular animals; a connection is possible between the presence of Mata-related proteins in Aphelidium protococcorum and specific genome feature of this species.


Assuntos
Evolução Molecular , Filogenia , Animais , Fungos/genética , Fungos/metabolismo , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Via de Sinalização Wnt
3.
Cells ; 12(18)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37759439

RESUMO

We report in this study on the isolation and expansion of neural crest stem cells (NCSCs) from the epithelium of oral mucosa (OM) using reagents that are GMP-certified and FDA-approved for clinical use. Characterization analysis showed that the levels of keratins K2, K6C, K4, K13, K31, and K15-specific to OM epithelial cells-were significantly lower in the experimental NCSCs. While SOX10 was decreased with no statistically significant difference, the earliest neural crest specifier genes SNAI1/2, Ap2a, Ap2c, SOX9, SOX30, Pax3, and Twist1 showed a trend in increased expression in NCSCs. In addition, proteins of Oct4, Nestin and Noth1 were found to be greatly expressed, confirming NCSC multipotency. In conclusion, our study showed that the epithelium of OM contains NCSCs that can be isolated and expanded with clinical-grade reagents to supply the demand for multipotent cells required for clinical applications in regenerative medicine. Supported by Emmaus Medical Inc.


Assuntos
Crista Neural , Células-Tronco Neurais , Humanos , Crista Neural/metabolismo , Mucosa Bucal , Células-Tronco Neurais/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição SOX/metabolismo
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 344-351, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37096504

RESUMO

OBJECTIVE: To explore the effect of abnormal miRNA expression on the proliferation of pediatric acute lymphoblastic leukemia (ALL) cells and its related mechanism. METHODS: 15 children with ALL and 15 healthy subjects were collected from the Second Affiliated Hospital of Hainan Medical University from July 2018 to March 2021. MiRNA sequencing was performed on their bone marrow cells, and validated using qRT-PCR. MiR-1294 and miR-1294-inhibitory molecule (miR-1294-inhibitor) were transfected into Nalm-6 cells, and the proliferation of Nalm-6 cells was detected by CCK-8 and colony formation assays. Western blot and ELISA were used to detect apoptosis of Nalm-6 cells. Biological prediction of miR-1294 was performed to find the target gene, which was verified by luciferase reporter assay. Si-SOX15 was transfected into Nalm-6 cells, Western blot was used to detect the expression of Wnt signaling pathway-related proteins and to verify the effect of si-SOX15 on the proliferation and apoptosis of Nalm-6 cells. RESULTS: Compared with healthy subjects, 22 miRNAs were significantly upregulated in bone marrow cells of ALL patients, of which miR-1294 was the most significantly upregulated. In addition, the expression level of SOX15 gene was significantly reduced in bone marrow cells of ALL patients. Compared with the NC group, the miR-1294 group showed increased protein expression levels of Wnt3a and ß-catenin, faster cell proliferation, and more colony-forming units, while caspase-3 protein expression level and cell apoptosis were reduced. Compared with the NC group, the miR-1294-inhibitor group showed reduced protein expression levels of Wnt3a and ß-catenin, slower cell proliferation, and fewer colony-forming units, while caspase-3 protein expression level was increased and apoptosis rate was elevated. miR-1294 had a complementary base-pair with the 3'UTR region of SOX15 , and miR-1294 directly targeted SOX15 . The expression of miR-1294 was negatively correlated with SOX15 in ALL cells. Compared with the si-NC group, the si-SOX15 group showed increased protein expression levels of Wnt3a and ß-catenin, accelerated cell proliferation, and decreased caspase-3 protein expression level and cell apoptosis rate. CONCLUSION: MiR-1294 can target and inhibit SOX15 expression, thus activating the Wnt/ß-Catenin signaling pathway to promote the proliferation of ALL cells, inhibit cell apoptosis, and ultimately affect the disease progression.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , beta Catenina/genética , Via de Sinalização Wnt , Caspase 3/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Apoptose , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo
5.
Int J Dev Biol ; 67(1): 19-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37078362

RESUMO

SOX transcription factors play key roles in cell differentiation and cell fate determination during development. Using single-cell RNA-sequencing data, we examined the expression profiles of Sox genes in the mouse incisor dental pulp. Our analysis showed that Sox4, Sox5, Sox9, Sox11, and Sox12 are mainly expressed in mesenchymal stem/stromal cells (MSCs) representing osteogenic cells at different stages of differentiation. We found that in several MSCs, Sox genes co-expressed with regulatory genes such as Sp7, Satb2, Msx1, Snai2, Dlx1, Twist2, and Tfap2a. In addition, Sox family genes colocalized with Runx2 and Lef1, which are highly enriched in MSCs undergoing osteoblast differentiation. A protein interaction network analysis uncovered that CREBBP, CEBPB, TLE1, TWIST1, and members of the HDAC and SMAD families are interacting partners of RUNX2 and LEF1 during skeletal development. Collectively, the distinct expression patterns of the SOX transcription factors suggest that they play essential regulatory roles in directing lineage-specific gene expression during differentiation of MSCs.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Incisivo , Camundongos , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Incisivo/metabolismo , Polpa Dentária/metabolismo , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Diferenciação Celular/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Transcriptoma
6.
Curr Biol ; 33(1): 164-173.e5, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36476751

RESUMO

The localization of transcriptional activity in specialized transcription bodies is a hallmark of gene expression in eukaryotic cells.1-3 How proteins of the transcriptional machinery come together to form such bodies, however, is unclear. Here, we take advantage of two large, isolated, and long-lived transcription bodies that reproducibly form during early zebrafish embryogenesis to characterize the dynamics of transcription body formation. Once formed, these transcription bodies are enriched for initiating and elongating RNA polymerase II, as well as the transcription factors Nanog and Sox19b. Analyzing the events leading up to transcription, we find that Nanog and Sox19b cluster prior to transcription. The clustering of transcription factors is sequential; Nanog clusters first, and this is required for the clustering of Sox19b and the initiation of transcription. Mutant analysis revealed that both the DNA-binding domain as well as one of the two intrinsically disordered regions of Nanog are required to organize the two bodies of transcriptional activity. Taken together, our data suggest that the clustering of transcription factors dictates the formation of transcription bodies.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Desenvolvimento Embrionário/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Transcrição Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo
7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-982065

RESUMO

OBJECTIVE@#To explore the effect of abnormal miRNA expression on the proliferation of pediatric acute lymphoblastic leukemia (ALL) cells and its related mechanism.@*METHODS@#15 children with ALL and 15 healthy subjects were collected from the Second Affiliated Hospital of Hainan Medical University from July 2018 to March 2021. MiRNA sequencing was performed on their bone marrow cells, and validated using qRT-PCR. MiR-1294 and miR-1294-inhibitory molecule (miR-1294-inhibitor) were transfected into Nalm-6 cells, and the proliferation of Nalm-6 cells was detected by CCK-8 and colony formation assays. Western blot and ELISA were used to detect apoptosis of Nalm-6 cells. Biological prediction of miR-1294 was performed to find the target gene, which was verified by luciferase reporter assay. Si-SOX15 was transfected into Nalm-6 cells, Western blot was used to detect the expression of Wnt signaling pathway-related proteins and to verify the effect of si-SOX15 on the proliferation and apoptosis of Nalm-6 cells.@*RESULTS@#Compared with healthy subjects, 22 miRNAs were significantly upregulated in bone marrow cells of ALL patients, of which miR-1294 was the most significantly upregulated. In addition, the expression level of SOX15 gene was significantly reduced in bone marrow cells of ALL patients. Compared with the NC group, the miR-1294 group showed increased protein expression levels of Wnt3a and β-catenin, faster cell proliferation, and more colony-forming units, while caspase-3 protein expression level and cell apoptosis were reduced. Compared with the NC group, the miR-1294-inhibitor group showed reduced protein expression levels of Wnt3a and β-catenin, slower cell proliferation, and fewer colony-forming units, while caspase-3 protein expression level was increased and apoptosis rate was elevated. miR-1294 had a complementary base-pair with the 3'UTR region of SOX15 , and miR-1294 directly targeted SOX15 . The expression of miR-1294 was negatively correlated with SOX15 in ALL cells. Compared with the si-NC group, the si-SOX15 group showed increased protein expression levels of Wnt3a and β-catenin, accelerated cell proliferation, and decreased caspase-3 protein expression level and cell apoptosis rate.@*CONCLUSION@#MiR-1294 can target and inhibit SOX15 expression, thus activating the Wnt/β-Catenin signaling pathway to promote the proliferation of ALL cells, inhibit cell apoptosis, and ultimately affect the disease progression.


Assuntos
Humanos , Criança , beta Catenina/genética , Via de Sinalização Wnt , Caspase 3/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , Proliferação de Células , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptose , Fatores de Transcrição SOX/metabolismo
8.
Cell Death Dis ; 13(8): 673, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922412

RESUMO

Amine oxidase copper-containing 1 (AOC1) is considered an oncogene in many types of tumors. Nevertheless, there have been no investigations of AOC1 and its regulatory mechanism in prostate cancer. Here, we reveal a novel action of AOC1 and a tumor suppressor mechanism in prostate cancer. AOC1 is downregulated in prostate cancer. Abatement of AOC1 in prostate cancer tissue is positively correlated with the tumor size, lymph node metastasis, and Gleason score for prostate cancer. Conversely, high expression of AOC1 is significantly associated with reduced proliferation and migration in prostate cancer both in vitro and in vivo. We show that the anticancer effect of AOC1 is mediated by its action on spermidine which leads to the activation of reactive oxygen species and ferroptosis. AOC1 expression in prostate cancer is positively regulated by the transcription factor SOX15. Therefore, SOX15 can transcriptionally promote AOC1 expression and strengthen this effect. Targeting AOC1 and SOX15 may be promising for the treatment of prostate cancer.


Assuntos
Amina Oxidase (contendo Cobre) , Ferroptose , Neoplasias da Próstata , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo
9.
Cell Rep ; 40(8): 111247, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36001974

RESUMO

WNT/ß-catenin signaling controls gene expression across biological contexts from development and stem cell homeostasis to diseases including cancer. How ß-catenin is recruited to distinct enhancers to activate context-specific transcription is unclear, given that most WNT/ß-catenin-responsive transcription is thought to be mediated by TCF/LEF transcription factors (TFs). With time-resolved multi-omic analyses, we show that SOX TFs can direct lineage-specific WNT-responsive transcription during the differentiation of human pluripotent stem cells (hPSCs) into definitive endoderm and neuromesodermal progenitors. We demonstrate that SOX17 and SOX2 are required to recruit ß-catenin to lineage-specific WNT-responsive enhancers, many of which are not occupied by TCFs. At TCF-independent enhancers, SOX TFs establish a permissive chromatin landscape and recruit a WNT-enhanceosome complex to activate SOX/ß-catenin-dependent transcription. Given that SOX TFs and the WNT pathway are critical for specification of most cell types, these results have broad mechanistic implications for the specificity of WNT responses across developmental and disease contexts.


Assuntos
Células-Tronco Pluripotentes , beta Catenina , Humanos , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição TCF/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo
10.
Ecotoxicol Environ Saf ; 242: 113870, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35816841

RESUMO

Isoprocarb is a widely used carbamate insecticide in agriculture and aquaculture. Overuse of isoprocarb always leaves toxic residues in soil and water, however, the potential ecotoxicity of isoprocarb to organisms is still confusing. In this study, zebrafish embryo was used as a model to evaluate the toxicity of isoprocarb. Zebrafish embryos (96 hpf) were separately exposed at different concentrations of isoprocarb. The mortality rate, hatchability rate, average heart beat of the zebrafish embryo were separately calculated. Our results suggested that exposure to isoprocarb induced developmental toxicity in zebrafish embryos. HE staining showed that exposure to isoprocarb caused developmental defect in the hindbrain of zebrafish embryos. As expected, the behavioral analysis also showed that the motor ability of zebrafish embryos were significantly inhibited following exposure to isoprocarb. In terms of mechanism, The expressions of genes involved in neurodevelopment signaling pathways, such as foxo3a, gfap, syn2a, elavl3 and sox19b, were inhibited in zebrafish embryos after exposure to isoprocarb. The acetylcholinesterase (AChE) activity was also reduced in isoprocarb-treated zebrafish embryos. Moreover, oxidative stress was induced by increasing the reactive oxygen species (ROS) level and decreasing the activity of antioxidant enzyme (SOD) after exposure to isoprocarb. Expectedly, acridine orange (AO) staining and the detection of some apoptosis-related genes revealed that oxidative stress resulted in apoptosis. In short, the expressions of genes associated with the neurodevelopmental signaling pathway are inhibited, and oxidative stress is also induced in zebrafish embryos after exposure to isoprocarb, which may be the molecular basics of isoprocarb-induced neurotoxicity in zebrafish embryos.


Assuntos
Síndromes Neurotóxicas , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Apoptose/genética , Carbamatos/metabolismo , Embrião não Mamífero/metabolismo , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo , Fatores de Transcrição SOX/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Mol Cell ; 82(5): 986-1002.e9, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182480

RESUMO

Upon fertilization, embryos undergo chromatin reprogramming and genome activation; however, the mechanisms that regulate these processes are poorly understood. Here, we generated a triple mutant for Nanog, Pou5f3, and Sox19b (NPS) in zebrafish and found that NPS pioneer chromatin opening at >50% of active enhancers. NPS regulate acetylation across core histones at enhancers and promoters, and their function in gene activation can be bypassed by recruiting histone acetyltransferase to individual genes. NPS pioneer chromatin opening individually, redundantly, or additively depending on sequence context, and we show that high nucleosome occupancy facilitates NPS pioneering activity. Nucleosome position varies based on the input of different transcription factors (TFs), providing a flexible platform to modulate pioneering activity. Altogether, our results illuminate the sequence of events during genome activation and offer a conceptual framework to understand how pioneer factors interpret the genome and integrate different TF inputs across cell types and developmental transitions.


Assuntos
Cromatina , Nucleossomos , Animais , Cromatina/genética , Genoma/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
Transl Res ; 242: 66-78, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34695607

RESUMO

The Sry-related high-mobility-group box (SOX) gene family, with 20 known transcription factors in humans, plays an essential role during development and disease processes. Several SOX proteins (SOX4, 11, and 9) are required for normal heart morphogenesis. SOX9 was shown to contribute to cardiac fibrosis. However, differential expression of other SOXs and their roles in the failing human myocardium have not been explored. Here, we used the whole-transcriptome sequencing (RNA-seq), gene co-expression, and meta-analysis to examine whether any SOX factors might play a role in the failing human myocardium. RNA-seq analysis was performed for cardiac tissue samples from heart failure (HF) patients due to dilated cardiomyopathy (DCM), or hypertrophic cardiomyopathy (HCM) and healthy donors (NF). The RNA levels of 20 SOX genes from RNA-seq data were extracted and compared to the 3 groups. Four SOX genes whose RNA levels were significantly upregulated in DCM or HCM compared to NF. However, only SOX4 and SOX8 proteins were markedly increased in the HF groups. A moderate to strong correlation was observed between the RNA level of SOX4/8 and fibrotic genes among each individual. Gene co-expression network analysis identified genes associated and respond similarly to perturbations with SOX4 in cardiac tissues. Using a meta-analysis combining epigenetics and genome-wide association data, we reported several genomic variants associated with HF phenotype linked to SOX4 or SOX8. In summary, our results implicate that SOX4 and SOX8 have a role in cardiomyopathy, leading to HF in humans. The molecular mechanism associated with them in HF warrants further investigation.


Assuntos
Cardiomiopatia Dilatada , Fatores de Transcrição , Cardiomiopatia Dilatada/genética , Estudo de Associação Genômica Ampla , Humanos , RNA , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/genética
13.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34880131

RESUMO

In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.


Assuntos
Bass/genética , Regulação da Temperatura Corporal/genética , Genótipo , Herança Multifatorial , Processos de Determinação Sexual/genética , Animais , Tamanho Corporal , Regulação da Temperatura Corporal/fisiologia , Metilação de DNA , Metabolismo Energético , Feminino , Regulação da Expressão Gênica , Gônadas/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Reprodutibilidade dos Testes , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Temperatura
14.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768751

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.


Assuntos
Edição de Genes/métodos , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/tendências , Engenharia Genética/métodos , Genoma , Humanos , Neoplasias/genética , Neoplasias/terapia , Células-Tronco/metabolismo
15.
Biomed Pharmacother ; 144: 112335, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700233

RESUMO

Cervical cancer is the fourth common gynecologic cancer and is considered as second leading cause of death among women. Various strategies are applied in treatment of cervical cancer including radiotherapy, chemotherapy and surgery. However, cervical cancer cells demonstrate aggressive behavior in advanced phases, requiring novel strategies in their elimination. On the other hand, SOX proteins are transcription factors capable of regulating different molecular pathways and their expression varies during embryogenesis, disease development and carcinogenesis. In the present review, our aim is to reveal role of SOX transcription factors in cervical cancer. SOX transcription factors play like a double-edged sword in cancer. For instance, SOX9 possesses both tumor-suppressor and tumor-promoting role in cervical cancer. Therefore, exact role of each SOX members in cervical cancer has been discussed to direct further experiments for revealing other functions. SOX proteins can regulate proliferation and metastasis of cervical cancer cells. Furthermore, response of cervical cancer cells to chemotherapy and radiotherapy is tightly regulated by SOX transcription factors. Different downstream targets of SOX proteins such as Wnt signaling, EMT and Hedgehog have been identified. Besides, upstream mediators such as microRNAs, lncRNAs and circRNAs can regulate SOX expression in cervical cancer. In addition to pre-clinical studies, role of SOX transcription factors as prognostic and diagnostic tools in cervical cancer has been shown.


Assuntos
Biomarcadores Tumorais/metabolismo , Fatores de Transcrição SOX/metabolismo , Neoplasias do Colo do Útero/metabolismo , Animais , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , Tolerância a Radiação , Fatores de Transcrição SOX/genética , Transdução de Sinais , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia
16.
Dis Markers ; 2021: 1588220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603557

RESUMO

METHODS: In this study, qRT-PCR was used to investigate the expression levels of the SOX15 gene and of miR-182, miR-183, miR-375, and miR-96 in thyroid tumors and adjacent noncancerous tissues. We also investigated the methylation status of the SOX15 promoter by methylation-specific PCR in tumors and adjacent noncancerous tissues. RESULTS: We observed a statistically significant downregulation of SOX15 expression in tumors compared to noncancerous tissue samples. The methylation levels of tumors and matched noncancerous tissues were similar, but miR-182, miR-183, and miR-375 expression levels were elevated in tumor tissues compared to noncancerous tissue samples. CONCLUSIONS: Our results indicate that SOX15 gene expression is associated with the pathogenesis of papillary thyroid carcinoma (PTC), and the epigenetic control of the SOX15 gene is regulated by miRNAs rather than by promoter methylation.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , MicroRNAs/genética , Fatores de Transcrição SOX/antagonistas & inibidores , Câncer Papilífero da Tireoide/patologia , Apoptose , Proliferação de Células , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fatores de Transcrição SOX/genética , Fatores de Transcrição SOX/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas
17.
Sci Rep ; 11(1): 18405, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526609

RESUMO

Melanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Família Multigênica , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição SOX/genética , Animais , Apoptose/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Melanoma/patologia , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição SOX/metabolismo
18.
Cell Rep ; 36(7): 109550, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34407418

RESUMO

Spermatogonial stem cells (SSCs) are maintained in a special microenvironment called a niche. However, much is unknown about components that constitute the niche. Here, we report that Cdc42 is essential for germline niche development. Sertoli cell-specific Cdc42-deficient mice showed normal premeiotic spermatogenesis. However, germ cells gradually disappeared during haploid cell formation and few germ cells remained in the mature testes. Spermatogonial transplantation experiments revealed a significant loss of SSCs in Cdc42-deficient testes. Moreover, Cdc42 deficiency in Sertoli cells downregulated GDNF, a critical factor for SSC maintenance. Cdc42-deficient Sertoli cells also exhibited lower nuclear MAPK1/3 staining. Inhibition of MAP2K1 or depletion of Pea15a scaffold protein downregulated GDNF expression. A screen of transcription factors revealed that Cdc42-deficient Sertoli cells downregulate DMRT1 and SOX9, both of which are critical for Sertoli cell development. These results indicate that Cdc42 is essential for niche function via MAPK1/3-dependent GDNF secretion.


Assuntos
Células Germinativas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Microambiente Celular , Regulação para Baixo , Desenvolvimento Embrionário , Deleção de Genes , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Fatores de Transcrição SOX/metabolismo , Células de Sertoli/metabolismo , Espermatogônias/transplante , Testículo/metabolismo , Fatores de Transcrição/metabolismo
19.
Am J Pathol ; 191(10): 1837-1850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214505

RESUMO

Deregulated full-length anaplastic lymphoma kinase (ALK) overexpression has been found in some primary solid tumors, but little is known about its role in ovarian high-grade serous carcinoma (HGSC). The current study focused on the functional roles of ALK in HGSC. Cytoplasmic ALK immunoreactivity without chromosomal rearrangement and gene mutations was significantly higher in HGSC compared with non-HGSC-type ovarian carcinomas, and was significantly associated with several unfavorable clinicopathologic factors and poor prognosis. HGSC cell lines stably overexpressing ALK exhibited increased cell proliferation, enhanced cancer stem cell features, and accelerated cell mobility, whereas these phenotypes were abrogated in ALK-knockdown cells. Expression of the nervous system-associated gene, ELAVL3, and the corresponding protein (commonly known as HuC) was significantly increased in cells overexpressing ALK. Expression of SRY-box transcription factor (Sox)2 and Sox3 (genes associated with the neural progenitor population) increased in ALK-overexpressing but not ALK-knockdown cells. Furthermore, overexpression of Sox2 or Sox3 enhanced both ALK and ELAVL3 promoter activities, suggesting the existence of ALK/Sox/HuC signaling loops. Finally, ALK overexpression was attributed to increased expression of neuroendocrine markers, including synaptophysin, CD56, and B-cell lymphoma 2, in HGSC tissues. These findings suggest that overexpression of full-length ALK may influence the biological behavior of HGSC through cooperation with ELAVL3 and Sox factors, leading to the establishment and maintenance of the aggressive phenotypic characteristics of HGSC.


Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Cistadenocarcinoma Seroso/enzimologia , Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Citoplasma/enzimologia , Proteína Semelhante a ELAV 3/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Análise Multivariada , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/patologia , Fenótipo , Prognóstico , Intervalo Livre de Progressão , Fatores de Transcrição SOX/metabolismo
20.
Drug Deliv ; 28(1): 1290-1300, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34176372

RESUMO

In the human body, joint cartilage is of great importance. It has long been a big therapeutic problem to fix joint cartilage lesions as it appears due to different conditions. Recent stories have shown that the cartilage replacement process must delay the extracellular (ECM) cartilage deterioration and modulate the host's inflammation response. For the reconstruction of the articular cartilage, drug-loaded injectable hydrogels were developed. This hydrogel could retain the chondrocyte phenotype, but the host's inflammatory reaction could also be controlled. The bioglass (BG)/sodium alginate (SA) injectable hydrogels was combined with agarose (AG)/Naringin hydrogel in injectable thermal response for articular cartilage regeneration with a non-chargeable hydrogel that contains both Naringin and BG (Naringin-BG hydrogels). The Naringin-BG hydrogel has an adequate swelling ratio that encourages the fusion of tissue formed with host tissue and enables the gradual release of Naringin bioavailabilities enhanced in situ. The Naringin-BG hydrogel can upgrade the typical chondrocyte phenotype by upregulating aggrecan, SRY-box 9, and collagen type II alpha one chain. It may also stimulate the polarization of M2 macrophage, lower inflammations, and prevent ECM degradations through the decrease of the expressions of the indictable metalloproteinase-13 matrix, nitric oxide synthase, and metalloproteinase-1 matrix. The formed tissues were identical to normal tissues and firmly incorporated with the surrounding tissue after administering the Naringin-BG hydrogels into the rat model articular cartilage defects. Then the injectable Naringin-BG hydrogel increases the bioavailable content of Naringin and retains the chondrocyte phenotype.


Assuntos
Alginatos/química , Cartilagem Articular/metabolismo , Cerâmica/química , Flavanonas/administração & dosagem , Temperatura , Engenharia Tecidual/métodos , Agrecanas/metabolismo , Animais , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Hidrogéis/química , Camundongos , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição SOX/metabolismo , Sefarose/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...