Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Sci Rep ; 14(1): 10287, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704454

RESUMO

The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.


Assuntos
Proteínas de Ligação a RNA , Fatores de Transcrição SOXD , Humanos , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica no Desenvolvimento , Eritropoese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Hep G2 , Células K562 , Regulação Neoplásica da Expressão Gênica , Células Eritroides/metabolismo
2.
J Natl Compr Canc Netw ; 22(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38394779

RESUMO

Infant-type hemispheric glioma (IHG) is a rare pediatric brain tumor with variable response to chemotherapy and radiotherapy. Molecular insights into IHG can be useful in identifying potentially active targeted therapy. A male fetus was found to have congenital hydrocephalus at the gestational age of 37 weeks. Fetal MRI showed a 2.6 × 2.0-cm tumor located at the frontal horn of the left lateral ventricle, involving the left basal nuclei and thalamus. Tumor biopsy at the age of 2 days revealed an IHG consisting of spindle tumor cells with strong expression of GFAP and ALK. Targeted RNA sequencing detected a novel fusion gene of SOX5::ALK. After initial chemotherapy with cyclophosphamide, carboplatin, and etoposide for 2 cycles, the tumor size progressed markedly and the patient underwent a subtotal resection of brain tumor followed by treatment with lorlatinib, an ALK tyrosine kinase inhibitor with central nervous system (CNS) activity. After 3 months of treatment, reduction of tumor size was observed. After 14 months of treatment, partial response was achieved, and the infant had normal growth and development. In conclusion, we identified a case of congenital IHG with a novel SOX5::ALK fusion that had progressed after chemotherapy and showed partial response and clinical benefit after treatment with the CNS-active ALK inhibitor lorlatinib.


Assuntos
Aminopiridinas , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Glioma , Lactamas , Neoplasias Pulmonares , Pirazóis , Lactente , Criança , Masculino , Humanos , Recém-Nascido , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinase do Linfoma Anaplásico/genética , Lactamas Macrocíclicas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/terapia , Glioma/tratamento farmacológico , Fatores de Transcrição SOXD
3.
Mol Oncol ; 18(5): 1327-1346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383842

RESUMO

SRY-box transcription factor 6 (SOX6) is a member of the SOX gene family and inhibits the proliferation of cervical cancer cells by inducing cell cycle arrest. However, the final cell fate and significance of these cell-cycle-arrested cervical cancer cells induced by SOX6 remains unclear. Here, we report that SOX6 inhibits the proliferation of cervical cancer cells by inducing cellular senescence, which is mainly mediated by promoting transforming growth factor beta 2 (TGFB2) gene expression and subsequently activating the TGFß2-Smad2/3-p53-p21WAF1/CIP1-Rb pathway. SOX6 promotes TGFB2 gene expression through the MAP4K4-MAPK (JNK/ERK/p38)-ATF2 and WT1-ATF2 pathways, which is dependent on its high-mobility group (HMG) domain. In addition, the SOX6-induced senescent cervical cancer cells are resistant to cisplatin treatment. ABT-263 (navitoclax) and ABT-199 (venetoclax), two classic senolytics, can specifically eliminate the SOX6-induced senescent cervical cancer cells, and thus significantly improve the chemosensitivity of cisplatin-resistant cervical cancer cells. This study uncovers that the MAP4K4/WT1-ATF2-TGFß2 axis mediates SOX6-induced cellular senescence, which is a promising therapeutic target in improving the chemosensitivity of cervical cancer.


Assuntos
Fator 2 Ativador da Transcrição , Senescência Celular , Fatores de Transcrição SOXD , Transdução de Sinais , Proteína Smad2 , Fator de Crescimento Transformador beta2 , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Fator 2 Ativador da Transcrição/metabolismo , Fator 2 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteína Smad2/metabolismo , Proteína Smad3 , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição SOXD/genética , Fator de Crescimento Transformador beta2/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética
4.
J Cancer Res Clin Oncol ; 150(2): 59, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294713

RESUMO

PURPOSE: This study will focus on 4T1 cells, a murine mammary adenocarcinoma cell line, as the primary research subject. We aim to investigate the inhibitory effects and mechanisms of propranolol on epithelial-mesenchymal transition (EMT) in breast cancer cells, aiming to elucidate this phenomenon at the miRNA level. METHODS: In this study, the EMT inhibitory effect of propranolol was observed through in vitro and animal experiments. For the screening of potential target miRNAs and downstream target genes, second-generation sequencing (SGS) and bioinformatics analysis were conducted. Following the screening process, the identified target miRNAs and their respective target genes were confirmed using various experimental methods. To confirm the target miRNAs and target genes, Western Blot (WB), reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence experiments were performed. RESULTS: In this study, we found that propranolol significantly reduced lung metastasis in 4T1 murine breast cancer cells (p < 0.05). In vitro and in vivo experiments demonstrated that propranolol inhibited the epithelial-mesenchymal transition (EMT) as evidenced by Western Blot analysis (p < 0.05). Through next-generation sequencing (SGS), subsequent bioinformatics analysis, and PCR validation, we identified a marked downregulation of miR-499-5p (p < 0.05), suggesting its potential involvement in mediating the suppressive effects of propranolol on EMT. Overexpression of miR-499-5p promoted EMT, migration, and invasion of 4T1 cells, and these effects were not reversed or attenuated by propranolol (Validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). Sox6 was identified as a functional target of miR-499-5p, with its downregulation correlating with the observed EMT changes (p < 0.05). Silencing Sox6 or overexpressing miR-499-5p inhibited Sox6 expression, further promoting the processes of EMT, invasion, and migration in 4T1 cells. Notably, these effects were not alleviated by propranolol (validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). The direct interaction between miR-499-5p and Sox6 mRNA was confirmed by dual-luciferase reporter gene assay. CONCLUSION: These results suggest that propranolol may have potential as a therapeutic agent for breast cancer treatment by targeting EMT and its regulatory mechanisms.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , MicroRNAs , Propranolol , Animais , Camundongos , Western Blotting , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/genética , Propranolol/farmacologia , Fatores de Transcrição SOXD , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética
5.
Physiol Int ; 111(1): 19-34, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38270621

RESUMO

Background: It has been reported that long non-coding RNA THAP9-AS1 exerts carcinogenic role by mediating miRNAs and target genes in various human cancers. However, whether THAP9-AS1 influences the progression of nasopharyngeal carcinoma (NPC) remains unknown. Methods: The transcriptional levels of THAP9-AS1 and miR-185-5p were estimated via quantitative real time polymerase chain reaction (qRT-PCR) assay. The protein level of SOX13 was detected with western blotting assay. Additionally, methyl thiazolyl tetrazolium (MTT) assay as well as colony formation assay were utilized to measure cell growth. The apoptotic cells were observed by employing Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) staining analysis, and transwell assay was introduced to test cell migration in addition to invasion. Moreover, the relationship between miR-185-5p and THAP9-AS1 or SOX13 was estimated through dual-luciferase reporter gene assay. Results: THAP9-AS1 was overexpressed in head and neck squamous cell carcinoma (HNSCC) tissues and NPC cells. Besides, silencing of THAP9-AS1 depressed the life processes of NPC cells including cell growth, migration as well as invasion but facilitated cell apoptosis. Further investigation proved that miR-185-5p was the direct target of THAP9-AS1. Besides, the knockdown of THAP9-AS1 notably reduced the transcriptional level of miR-185-5p. Furthermore, THAP9-AS1 served as a sponge of miR-185-5p to modulate the expression of SOX13, which regulated the development of NPC cells. Conclusion: This work verified that THAP9-AS1 promoted NPC cell progression at least partly by mediating the miR-185-5p/SOX13 axis.


Assuntos
MicroRNAs , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Linhagem Celular Tumoral , Autoantígenos , Fatores de Transcrição SOXD , Transposases
6.
Gene ; 901: 148199, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253299

RESUMO

SET (SuVar3-9, Enhancer of Zeste, Trithorax) domain bifurcated histone lysine methyltransferase 1, setdb1, is the predominant histone lysine methyltransferase catalyzing H3K9me3. Prior studies have illustrated that setdb1 and H3K9me3 critically regulate sex differentiation and gametogenesis. However, the molecular details by which setdb1 is involved in these processes in fish have been poorly reported. Here, we cloned and characterized the setdb1 ORF (open reading frame) sequence from Chinese tongue sole (Cynoglossus semilaevis). The setdb1 ORF sequence was 3,669 bp, encoding a 1,222-amino-acid protein. Phylogenetic analysis showed that setdb1 was structurally conserved. qRT-PCR revealed that setdb1 had a high expression level in the testes at 12 mpf (months post fertilization). Single-cell RNA-seq data at 24 mpf indicated that setdb1 was generally expressed in spermatogenic cells at each stage except for sperm and was centrally expressed in oogonia. H3K9me3 modification was observed in gonads with the immunofluorescence technique. Furthermore, the overexpression experiment suggested that sox5 was a candidate target of setdb1. sox5 was abundantly expressed in male and pseudomale gonads at 24 mpf. Single-cell RNA-seq data showed that sox5 was mainly expressed in spermatogonia and its expression gradually declined with differentiation. Taken together, our findings imply that setdb1 regulates sox5 transcription in gonads, which provides molecular clues into histone modification-mediated orchestration of sex differentiation and gametogenesis.


Assuntos
Proteínas de Peixes , Linguado , Código das Histonas , Histona-Lisina N-Metiltransferase , Fatores de Transcrição SOXD , Animais , Masculino , Linguado/genética , Gônadas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Filogenia , Sêmen/metabolismo , Fatores de Transcrição SOXD/metabolismo , Proteínas de Peixes/metabolismo
7.
Environ Toxicol ; 39(4): 2197-2207, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124441

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is a complication caused by diabetes. Circular RNAs (circRNAs) are a kind of RNA with a closed circular structure, which has high stability and is involved in many disease-related processes. The mechanism of circRNA TAO kinase 1 (circTAOK1) in the pathogenesis and development of DN is unclear. METHODS: CircTAOK1, microRNA (miR)-142-3p, and sex-determining region Y-box transcription factor 6 (SOX6) mRNA levels were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Cell counting kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to analyze cell proliferation. Cell cycle distribution was detected by flow cytometry. Western blot assay was performed to test B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X (Bax), cleaved-caspase 3, and fibronectin (FN), collagen I (Col I), and collagen IV (Col IV) protein levels. ELISA assay was used to measure interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor (TNF-α) levels. The reactive oxygen species (ROS) and malondialdehyde (MDA) levels and the superoxide dismutase (SOD) activity were assessed by the corresponding kits. And the correlation between miR-142-3p and circTAOK1 or SOX6 was confirmed by dual luciferase reporter assay, RNA immunoprecipitation assay and RNA pull down assay. RESULTS: CircTAOK1 and SOX6 expression levels were up-regulated, while miR-142-3p expression was down-regulated in DN serum and HG-treated HK-2 cells. Knockdown of circTAOK1 could inhibit cell injury of HG-induced HK-2 cells. The inhibitory effect of circTAOK1 knockdown on HG-induced HK-2 cell injury was restored by miR-142-3p downregulation. CircTAOK1 acted as a sponge for miR-142-3p, and SOX6 was targeted by miR-142-3p. The overexpression of SOX6 could recover the effect of miR-142-3p overexpression on HG-induced HK-2 cell injury. CircTAOK1 regulated the expression of SOX6 by targeting miR-142-3p. CONCLUSION: CircTAOK1 knockdown inhibited HG-induced HK-2 cell damage in DN by the miR-142-3p/SOX6 axis.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Humanos , Nefropatias Diabéticas/genética , Apoptose/genética , Estresse Oxidativo/genética , Inflamação/genética , Colágeno Tipo I , Glucose/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2 , MicroRNAs/genética , Fatores de Transcrição SOXD/genética
8.
J Orthop Surg Res ; 18(1): 937, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062424

RESUMO

BACKGROUND: Multiple myeloma (MM) is a common hematological malignancy. Drug resistance remains to be a major clinical challenge in MM therapy. In this study, we aim to investigate the functional roles of bone marrow mesenchymal stem cells (BMSC)-derived exosomal miR-182 on the carfilzomib resistance of MM and its underlying mechanism. METHODS: qRT-PCR and Western blot methods were utilized to confirm the gene or protein expressions. CCK-8 and transwell assays were performed to measure the capabilities of proliferation, migration, and invasion. The molecular interactions were validated through ChIP and Dual luciferase assay. RESULTS: Our findings indicated that miR-182 expression was upregulated in serum, BMSCs and BMSC-derived exosomes from MM patients. Hypoxia-inducible factor-1α (HIF-1α), a key transcriptional factor in tumor microenvironment, could boost miR-182 expression by directly binding to its promoter, thus favoring exosomal secretion. Moreover, exosomal miR-182 from BMSCs could be transferred to MM cells and was able to promote malignant proliferation, metastasis, and invasion, as well as decrease the sensitivity of MM cells against carfilzomib. Additionally, SOX6 was identified as a downstream target of miR-182 in MM cells, and its expression was negatively regulated by miR-182. Rescue experiments proved that loss of SOX6 in MM cells dramatically reversed the promoting roles of BMSC-secreted exosomal miR-182 on proliferation, metastasis, and carfilzomib resistance in MM cells. CONCLUSION: Collectively, our findings indicated that exosomal miR-182 derived from BMSCs contributed to the metastasis and carfilzomib resistance of MM cells by targeting SOX6. This study sheds light on the pathogenesis of the BMSC-derived exosome containing miR-182 in the malignant behaviors of MM cells and carfzomib resistance.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Mieloma Múltiplo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Oligopeptídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Proliferação de Células/genética , Microambiente Tumoral , Fatores de Transcrição SOXD/metabolismo
9.
Reprod Biol ; 23(4): 100823, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979495

RESUMO

Members of the SRY-related box (SOX) subfamily D (SoxD) of transcription factors are well conserved among vertebrate species and play important roles in different stages of male reproductive development. In mammals, the SoxD subfamily contains three members: SOX5, SOX6 and SOX13. Here, we describe their implications in testicular development and spermatogenesis, contributing to fertility. We also cover the mechanisms of action of SoxD transcription factors in gene regulation throughout male development. The specificity of activation of target genes by SoxD members depends, in part, on their post-translational modifications and interactions with other partners. Sperm production in adult males requires the coordination in the regulation of gene expression by different members of the SoxD subfamily of transcription factors in the testis. Specifically, the regulation of genes promoting adequate spermatogenesis by SoxD members is discussed in comparison between species.


Assuntos
Fatores de Transcrição SOXD , Sêmen , Animais , Masculino , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Sêmen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Testículo/metabolismo , Mamíferos/metabolismo
10.
Biochem Biophys Res Commun ; 681: 225-231, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783121

RESUMO

The commitment of mesenchymal stem cells (MSCs) to preadipocytes and the termination of differentiation to adipocytes are critical for maintaining systemic energy homeostasis. However, our knowledge of the molecular mechanisms governing the commitment of MSCs to preadipocytes and the subsequent termination of their differentiation into adipocytes remain limited. Additionally, the role of Sox6 sex-determining region Y (SRY)-box6 (Sox6), a transcription factor that regulates gene transcription, is reportedly involved in various cellular processes, including adipogenesis; however, its function in regulating preadipocyte development and the factors involved in the termination of adipogenic differentiation remain unexplored. Therefore, we investigated the role of Sox6 in regulating the differentiation of adipocytes by monitoring the effects of its overexpression in C3H10T1/2 cells (in vitro) and C57BL/6J mouse (in vivo) models of adipogenesis. We observed lower Sox6 expression in the adipose tissue of obese mice than that in control mice. Sox6 overexpression inhibited the differentiation of MSC by directly binding to the lysyl oxidase (Lox) and preadipocyte factor 1 (Pref1) promoters, which was potentiated by histone deacetylase-1(HDAC1). Our findings suggest that Sox6 is a key regulator of MSC commitment to adipocytes; therefore, targeting the Sox6-mediated regulation of this process could offer potential therapeutic avenues for addressing obesity and related metabolic disorders.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo
11.
Cell Stem Cell ; 30(11): 1452-1471.e10, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37832549

RESUMO

Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Rejuvenescimento , Humanos , Camundongos , Animais , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Senescência Celular/genética , Fatores de Transcrição/genética , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo
12.
Cancer Biol Ther ; 24(1): 2270106, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37862152

RESUMO

BACKGROUND: Bladder cancer is one of the most common malignant tumors of the urinary system, and its incidence is increasing worldwide. However, the underlying mechanisms that trigger migration, invasion and chemotherapy resistance are unclear. RESULTS: Bioinformatics analysis of bladder cancer cohort indicated that LINC00839 is deregulated in bladder cancer. LINC00839 was validated and highly expressed in bladder cancer patients and cell lines. In addition, LINC00839 induced the migration, invasion and Gemcitabine resistance of bladder cancer cells. We identified that the transcription factor EGR1 directly repressed LINC00839 and thereby suppressed the migration and invasion of bladder cancer cells. Furthermore, LINC00839 interacted with miR-142, which subsequently regulated the expression of SOX5, a well-studied oncogene and targeted by miR-142. In addition, EGR1 served as a suppressive transcription factor of SOX5. Therefore, EGR1 directly or indirectly regulates SOX5 via LINC00839/miR-142 axis. LINC00839 induced Gemcitabine resistance by promoting autophagy. CONCLUSIONS: EGR1, LINC00839/miR-142 and SOX5 form a coherent feed-forward loop that modulates the migration, invasion and Gemcitabine resistance of bladder cancer.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Gencitabina , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , RNA não Traduzido/genética
13.
Clin Genet ; 104(6): 637-647, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37702321

RESUMO

Lamb-Shaffer Syndrome (LSS; OMIM #616803; ORPHA #313892; ORPHA #313884) is an infrequent genetic disorder that affects multiple aspects of human development especially those related to the development of the nervous system. LSS is caused by variants in the SOX5 gene. At the molecular level, SOX5 gene encodes for a transcription factor containing a High Mobility Group (HMG) DNA-Binding domain with relevant functions in brain development in different vertebrate species. Clinical features of Lamb-Shaffer syndrome may include intellectual disability, delayed speech and language development, attention deficits, hyperactivity, autism spectrum disorder, visual problems and seizures. Additionally, patients with the syndrome may present distinct facial dimorphism such as a wide mouth with full lips, small chin, broad nasal bridge, and deep-set eyes. Other physical features that have been reported in some patients include short stature, scoliosis, and joint hypermobility. Here, we report the clinical and molecular characterization of a Spanish LSS cohort of new 20 patients and review all the patients published so far which amount for 111 patients. The most frequent features included developmental delay, intellectual disability, visual problems, poor speech development and facial dysmorphic features. Strikingly, pain insensitivity and hypermetropia seems to be more frequent than previously reported, based on the frequency seen in the Spanish cohort. Eighty-three variants have been reported so far, single nucleotide variants (SNV) and copy number variants represent 47% and 53%, respectively, from the total of variants reported. Similarly to previous reports, the majority of the SNVs variants of the novel patients reported herein fall in the HMG domain of the protein. However, new variants, affecting other functional domains, were also detected. In conclusion, LLS is a rare genetic disorder mostly characterized by a wide range of developmental and neurological symptoms. Early diagnosis would allow to start of care programs, clinical follow up, prospective studies and appropriate genetic counseling, to promote clinical and social improvement to have profound lifelong benefits for patients and their families. Further research is needed to better understand the underlying mechanisms of the syndrome related to SOX5 haploinsufficiency.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Estudos Prospectivos , Haploinsuficiência , Síndrome , Fenótipo , Fatores de Transcrição SOXD/genética
14.
Aging (Albany NY) ; 15(15): 7565-7582, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37531195

RESUMO

BACKGROUND: This study aimed to investigate the expression and prognostic significance of SOX5 in esophageal squamous cell carcinoma (ESCC). METHODS: Gene Expression Omnibus (GEO) data were analyzed to assess SOX5 expression in ESCC and normal tissues. Survival analysis was performed to evaluate its prognostic significance. Pathway enrichment analysis was conducted to identify pathways associated with low SOX5 expression. Methylation status of CpG sites in ESCC cases was examined, and SOX5 expression was evaluated. Differential expression and ChIP-seq data analyses were used to identify genes significantly correlated with SOX5 and to obtain target genes. A protein-protein interaction (PPI) network was constructed using hub genes, and their association with immune cell infiltration was determined. In vitro ESCC cell experiments validated the findings. RESULTS: SOX5 was significantly downregulated in ESCC samples compared to normal samples. Its downregulation was associated with shorter survival in ESCC patients. Pathway enrichment analysis revealed enrichment in regulated necrosis, NLRP3 inflammasome, formation of the cornified envelope, and PD-1 signaling. Methylation status of two CpG sites negatively correlated with SOX5 expression. Differential expression analysis identified 122 genes significantly correlated with SOX5, and 28 target genes were obtained from ChIP-seq analysis. Target genes were enriched in DNA replication, cell cycle, spindle, and ATPase activity. Five hub genes were identified, and the PPI network showed significant associations with immune cell infiltration. In vitro experiments confirmed SOX5 downregulation, upregulation of hub genes, and their functional effects on ESCC cell apoptosis and proliferation. CONCLUSIONS: These findings enhance understanding of SOX5 in ESCC and potential therapeutic strategies.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/patologia , Prognóstico , Perfilação da Expressão Gênica , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Fatores de Transcrição SOXD/genética
15.
Int Immunopharmacol ; 123: 110698, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517381

RESUMO

Intracerebral hemorrhage (ICH) can result in secondary brain injury due to inflammation and breakdown of the blood-brain barrier (BBB), which are closely associated with patient prognosis. The potential of the heat shock protein 90 (Hsp90) inhibitor 17-DMAG in promoting neuroprotection has been observed in certain vascular diseases. However, the precise role of 17-DMAG treatment in ICH is not yet fully understood. In this study, we found that treatment with 17-DMAG (5 mg/kg) effectively reduced hematoma expansion and resulted in improved neurological outcomes. Meanwhile, the injection of 17-DMAG had a positive effect on reducing BBB disruption in rats with ICH. This effect was achieved by increasing the levels of BBB tight junction proteins (TJPs) such as zo-1, claudin-5, and occludin. As a result, the leakage of EB extravasation, brain edema and IgG in the peri-hematoma tissue were reduced. Furthermore, the injection of 17-DMAG decreased the infiltration of neutrophils into the brain tissues surrounding the hematoma in ICH rats and also reduced the production of proinflammatory cytokines IL-6 and TNF-α. Next, we used integrative mass spectrometry (MS) and molecular docking analysis to confirm that sex determining region Y-box protein 5 (SOX5) is a potential direct target of 17-DMAG in ICH. SOX5 encodes a positive regulator of the PI3K/Akt axis, and treatment with 17-DMAG resulted in a noticeable increase in SOX5 accumulation. To further investigate the role of SOX5, we employed virus-regulated SOX5 silencing and found that suppressing SOX5 blocked the ability of 17-DMAG to suppress neutrophil trafficking. Additionally, silencing SOX5 blocked the protective effects of 17-DMAG on the BBB by inhibiting PI3K, p-Akt, and BBB TJPs levels, which led to an increase in EB and IgG leakage in the peri-hematoma tissue after ICH. Similarly, when SOX5 was knocked down, the protective effects of 17-DMAG were lost. Overall, the results of our study indicate that the injection of 17-DMAG has the potential to mitigate neuroinflammation and prevent the disruption of the BBB caused by ICH, resulting in improved neurological outcomes in rats. These positive effects are attributed to the regulation of SOX5 and activation of the PI3K/Akt pathway. These findings highlight the possibility of targeting SOX5 and the PI3K/Akt pathway as a novel therapeutic approach for ICH.


Assuntos
Barreira Hematoencefálica , Hemorragia Cerebral , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hematoma , Imunoglobulina G/uso terapêutico , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Fatores de Transcrição SOXD/metabolismo
16.
Environ Toxicol ; 38(10): 2440-2449, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37417879

RESUMO

Dysregulated circWHSC1 has been shown to play potential roles in diverse cancer types, including ovarian cancer, endometrial cancer and hepatocellular carcinoma (HCC). The objective of this study was to investigate its expression, underlying role and regulatory mechanism in non-small-cell lung cancer (NSCLC). The expression of circWHSC1 was determined by real-time PCR. After knockdown of circWHSC1 expression in NSCLC cells, the proliferation, migration, and invasion were detected using CCK-8, colony formation, and Transwell assays, and the effects of circWHSC1 on NSCLC tumorigenesis in vivo was also investigated. With the help of luciferase reporter and pull-down assays, we further explored the downstream mechanism of circWHSC1 in NSCLC cells. CircWHSC1 was highly expressed in NSCLC tissues and cell lines. The inhibition of circWHSC1 suppressed the malignant properties of NSCLC cells, as evidenced by the reduction of proliferation, migration and invasion. CircWHSC1 sponged miR-590-5p and functioned as an oncogene in NSCLC by increasing sex determining region Y-boxprotein 5 (SOX5) expression. CircWHSC1 may contribute to the oncogenicity of NSCLC via the regulation of miR-590-5p/SOX5 axis, which might be a novel therapeutic target in NSCLC.


Assuntos
Carcinoma Hepatocelular , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Feminino , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Linhagem Celular Tumoral , Proliferação de Células/genética , Biomarcadores , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo
17.
Cell Death Dis ; 14(5): 308, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149693

RESUMO

Interleukin 34 (IL-34) mainly plays physiologic and pathologic roles through the sophisticated multi-ligand signaling system, macrophage colony-stimulating factor (M-CSF, CSF-1)/IL-34-CSF-1R axis, which exhibits functional redundancy, tissue-restriction and diversity. This axis is vital for the survival, differentiation and function of monocytic lineage cells and plays pathologic roles in a broad range of diseases. However, the role of IL-34 in leukemia has not been established. Here MLL-AF9 induced mouse acute myeloid leukemia (AML) model overexpressing IL-34 (MA9-IL-34) was used to explore its role in AML. MA9-IL-34 mice exhibited accelerated disease progression and short survival time with significant subcutaneous infiltration of AML cells. MA9-IL-34 cells showed increased proliferation. In vitro colony forming assays and limiting dilution transplantation experiments demonstrated that MA9-IL-34 cells had elevated leukemia stem cell (LSC) levels. Gene expression microarray analysis revealed a panel of differential expressed genes including Sex-determining region Y (SRY)-box 13 (Sox13). Furthermore, a positive correlation between the expressions of IL-34 and Sox13 was detected human datasets. Knockdown of Sox13 rescued the enhanced proliferation, high LSC level and subcutaneous infiltration in MA9-IL-34 cells. Moreover, more leukemia-associated macrophages (LAMs) were detected in MA9-IL-34 microenvironment. Additionally, those LAMs showed M2-like phenotype since they expressed high level of M2-associated genes and had attenuated phagocytic potential, suggesting that LAMs should also contribute to IL-34 caused adverse phenotypes. Therefore, our findings uncover the intrinsic and microenvironmental mechanisms of IL-34 in AML and broadens the knowledge of M-CSF/IL-34-CSF-1R axis in malignancies.


Assuntos
Leucemia Mieloide Aguda , Fator Estimulador de Colônias de Macrófagos , Humanos , Animais , Camundongos , Leucemia Mieloide Aguda/metabolismo , Macrófagos/metabolismo , Interleucinas/genética , Diferenciação Celular , Microambiente Tumoral , Autoantígenos , Fatores de Transcrição SOXD
18.
Front Immunol ; 14: 1134412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138862

RESUMO

Background: In the pathogenesis of osteoarthritis (OA) and metabolic syndrome (MetS), the immune system plays a particularly important role. The purpose of this study was to find key diagnostic candidate genes in OA patients who also had metabolic syndrome. Methods: We searched the Gene Expression Omnibus (GEO) database for three OA and one MetS dataset. Limma, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify and analyze the immune genes associated with OA and MetS. They were evaluated using nomograms and receiver operating characteristic (ROC) curves, and finally, immune cells dysregulated in OA were investigated using immune infiltration analysis. Results: After Limma analysis, the integrated OA dataset yielded 2263 DEGs, and the MetS dataset yielded the most relevant module containing 691 genes after WGCNA, with a total of 82 intersections between the two. The immune-related genes were mostly enriched in the enrichment analysis, and the immune infiltration analysis revealed an imbalance in multiple immune cells. Further machine learning screening yielded eight core genes that were evaluated by nomogram and diagnostic value and found to have a high diagnostic value (area under the curve from 0.82 to 0.96). Conclusion: Eight immune-related core genes were identified (FZD7, IRAK3, KDELR3, PHC2, RHOB, RNF170, SOX13, and ZKSCAN4), and a nomogram for the diagnosis of OA and MetS was established. This research could lead to the identification of potential peripheral blood diagnostic candidate genes for MetS patients who also suffer from OA.


Assuntos
Síndrome Metabólica , Osteoartrite , Humanos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Algoritmos , Biologia Computacional , Aprendizado de Máquina , Osteoartrite/diagnóstico , Osteoartrite/genética , Autoantígenos , Fatores de Transcrição SOXD , Ubiquitina-Proteína Ligases
19.
Am J Med Genet A ; 191(5): 1447-1458, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861937

RESUMO

To delineate further the clinical phenotype of Lamb-Shaffer Syndrome (LSS) 16 unpublished patients with heterozygous variation in SOX5 were identified either through the UK Decipher database or the study team was contacted by clinicians directly. Clinical phenotyping tables were completed for each patient by their responsible clinical geneticist. Photos and clinical features were compared to assess key phenotypes and genotype-phenotype correlation. We report 16 SOX5 variants all of which meet American College of Medical Genetics/Association for Clinical Genomic Science ACMG/ACGS criteria class IV or V. 7/16 have intragenic deletions of SOX5 and 9/16 have single nucleotide variants (including both truncating and missense variants). The cohort includes two sets of monozygotic twins and parental gonadal mosaicism is noted in one family. This cohort of 16 patients is compared with the 71 previously reported cases and corroborates previous phenotypic findings. As expected, the most common findings include global developmental delay with prominent speech delay, mild to moderate intellectual disability, behavioral abnormalities and sometimes subtle characteristic facial features. We expand in more detail on the behavioral phenotype and observe that there is a greater tendency toward lower growth parameters and microcephaly in patients with single nucleotide variants. This cohort provides further evidence of gonadal mosaicism in SOX5 variants; this should be considered when providing genetic counseling for couples with one affected child and an apparently de novo variant.


Assuntos
Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Criança , Humanos , Deficiências do Desenvolvimento/genética , Fenótipo , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Nucleotídeos , Fatores de Transcrição SOXD/genética
20.
Int Immunopharmacol ; 115: 109643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36610331

RESUMO

BACKGROUND: Osteoarthritis (OA) is a serious degenerative disease of articular cartilage, which has a great impact on the quality of life of patients. Circular RNA (circRNA) plays an important role in OA progression. Our study aims to explore the role and mechanism of circ_0003800 in OA. METHODS: Circ_0003800, microRNA-197-3p (miR-197-3p) and SRY-box transcription factor 5 (SOX5) contents were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Cell Counting Kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, western blot and enzyme-linked immunosorbent assay (ELISA) were deployed to evaluate cell proliferation, apoptosis, extracellular matrix (ECM) degradation, inflammatory response and oxidative stress. Interaction of miR-197-3p and circ_0003800 or SOX5 was evidenced by dual-luciferase reporter system, RNA immunoprecipitation (RIP) and RNA pull down assays. RESULTS: OA tissues and model cells had higher abundance of circ_0003800 and SOX5, while miR-197-3p content was lower. Functionally, circ_0003800 knockdown alleviated IL-1ß-mediated injury in C28/I2 cells. Mechanistically, circ_0003800 could sponge miR-197-3p, and miR-197-3p could target SOX5. Besides, in-miR-197-3p reversed the suppressive effect of circ_0003800 downregulation on IL-1ß-induced C28/I2 cell injury, and SOX5 overexpression could also diminish the inhibitory effect of miR-197-3p on IL-1ß-induced C28/I2 cell injury. CONCLUSION: Circ_0003800 exacerbates IL-1ß-induced chondrocyte injury via miR-197-3p/SOX5 axis.


Assuntos
MicroRNAs , RNA Circular , Humanos , Apoptose , Condrócitos , MicroRNAs/genética , Qualidade de Vida , RNA Circular/genética , Fatores de Transcrição SOXD/genética , Interleucina-1beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...