Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
J Immunol ; 210(10): 1463-1472, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37126806

RESUMO

The STAT family proteins provide critical signals for immune cell development, differentiation, and proinflammatory and anti-inflammatory responses. Inborn errors of immunity (IEIs) are caused by single gene defects leading to immune deficiency and/or dysregulation, and they have provided opportunities to identify genes important for regulating the human immune response. Studies of patients with IEIs due to altered STAT signaling, and mouse models of these diseases, have helped to shape current understanding of the mechanisms whereby STAT signaling and protein interactions regulate immunity. Although many STAT signaling pathways are shared, clinical and immune phenotypes in patients with monogenic defects of STAT signaling highlight both redundant and nonredundant pathways. In this review, we provide an overview of the shared and unique signaling pathways used by STATs, phenotypes of IEIs with altered STAT signaling, and recent discoveries that have provided insight into the human immune response and treatment of disease.


Assuntos
Imunidade , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Humanos , Camundongos , Transdução de Sinais/fisiologia , Fatores de Transcrição STAT/imunologia , Modelos Animais de Doenças , Fenótipo
2.
PLoS Pathog ; 18(1): e1010253, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073369

RESUMO

Flagellin is a key bacterial virulence factor that can stimulate molecular immune signaling in both animals and plants. The detailed mechanisms of recognizing flagellin and mounting an efficient immune response have been uncovered in vertebrates; however, whether invertebrates can discriminate flagellin remains largely unknown. In the present study, the homolog of human SHOC2 leucine rich repeat scaffold protein in kuruma shrimp (Marsupenaeus japonicus), designated MjShoc2, was found to interact with Vibrio anguillarum flagellin A (FlaA) using yeast two-hybrid and pull-down assays. MjShoc2 plays a role in antibacterial response by mediating the FlaA-induced expression of certain antibacterial effectors, including lectin and antimicrobial peptide. FlaA challenge, via MjShoc2, led to phosphorylation of extracellular regulated kinase (Erk), and the subsequent activation of signal transducer and activator of transcription (Stat), ultimately inducing the expression of effectors. Therefore, by establishing the FlaA/MjShoc2/Erk/Stat signaling axis, this study revealed a new antibacterial strategy in shrimp, and provides insights into the flagellin sensing mechanism in invertebrates.


Assuntos
Proteínas de Artrópodes/imunologia , Flagelina/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Penaeidae/imunologia , Vibrioses/imunologia , Animais , Sistema de Sinalização das MAP Quinases/imunologia , Penaeidae/microbiologia , Fatores de Transcrição STAT/imunologia , Vibrio
3.
Fish Shellfish Immunol ; 121: 316-321, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34998988

RESUMO

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is involved in regulating the body's immunity, cell proliferation, differentiation, and apoptosis. Members of the STAT family have been extensively studied in different mammalian species. However, there are few studies on the STAT family genes in farmed economic fish. In this study, eight STAT genes including STAT1a, STAT1b, STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6, in blunt snout bream (Megalobrama amblycephala), an economically important fish in China, were identified and characterized. Analyses of gene location, phylogeny and conserved synteny were conducted to infer the evolutionary origin of these STAT family genes. Furthermore, the evolutionary origin model of STATs was constructed based on the 2R hypothesis and teleost genome duplication (TGD) hypothesis, which clarified the evolutionary origin of the eight STATs in blunt snout bream. Besides, expression of the eight STATs was detected in 10 tissues of healthy blunt snout bream, which showed different expression patterns, and all had the highest level in the blood. In addition, expression of the STATs was significantly induced in the spleen, liver, and kidney after infection of Aeromonas hydrophila, suggesting that they play an important role in protecting the host from pathogens. In general, the evolution of cytokine-related genes parallels that of the immune system, which has likely been a main evolutionary driver. Therefore, the evolutionary model of STAT genes, constructed in the non-model organism pioneeringly, may provide some enlightenment for the evolution of the fish STAT family genes and their involvement in the immune function.


Assuntos
Cipriniformes , Proteínas de Peixes , Fatores de Transcrição STAT/genética , Aeromonas hydrophila , Animais , Cipriniformes/genética , Cipriniformes/imunologia , Evolução Molecular , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Filogenia , Fatores de Transcrição STAT/imunologia
4.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-34528064

RESUMO

Visual information is transmitted from the eye to the brain along the optic nerve, a structure composed of retinal ganglion cell (RGC) axons. The optic nerve is highly vulnerable to damage in neurodegenerative diseases, such as glaucoma, and there are currently no FDA-approved drugs or therapies to protect RGCs from death. Zebrafish possess remarkable neuroprotective and regenerative abilities. Here, utilizing an optic nerve transection (ONT) injury and an RNA-seq-based approach, we identify genes and pathways active in RGCs that may modulate their survival. Through pharmacological perturbation, we demonstrate that Jak/Stat pathway activity is required for RGC survival after ONT. Furthermore, we show that immune responses directly contribute to RGC death after ONT; macrophages/microglia are recruited to the retina and blocking neuroinflammation or depleting these cells after ONT rescues survival of RGCs. Taken together, these data support a model in which crosstalk between macrophages/microglia and RGCs, mediated by Jak/Stat pathway activity, regulates RGC survival after optic nerve injury.


Assuntos
Imunidade Inata , Janus Quinases/imunologia , Traumatismos do Nervo Óptico/imunologia , Células Ganglionares da Retina/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Feminino , Janus Quinases/genética , Masculino , Traumatismos do Nervo Óptico/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931923

RESUMO

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Assuntos
Anticarcinógenos/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/uso terapêutico , Fitoestrógenos/uso terapêutico , Atlas como Assunto , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/virologia , Ciclina D1/genética , Ciclina D1/imunologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Humanos , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Janus Quinases/genética , Janus Quinases/imunologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Terapia de Alvo Molecular/métodos , Família Multigênica , Farmacologia em Rede/métodos , PPAR gama/genética , PPAR gama/imunologia , Farmacogenética/métodos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/imunologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais
6.
Front Immunol ; 12: 734652, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867954

RESUMO

Microbial challenges, such as widespread bacterial infection in sepsis, induce endotoxin tolerance, a state of hyporesponsiveness to subsequent infections. The participation of DNA methylation in this process is poorly known. In this study, we perform integrated analysis of DNA methylation and transcriptional changes following in vitro exposure to gram-negative bacterial lipopolysaccharide, together with analysis of ex vivo monocytes from septic patients. We identify TET2-mediated demethylation and transcriptional activation of inflammation-related genes that is specific to toll-like receptor stimulation. Changes also involve phosphorylation of STAT1, STAT3 and STAT5, elements of the JAK2 pathway. JAK2 pathway inhibition impairs the activation of tolerized genes on the first encounter with lipopolysaccharide. We then confirm the implication of the JAK2-STAT pathway in the aberrant DNA methylome of patients with sepsis caused by gram-negative bacteria. Finally, JAK2 inhibition in monocytes partially recapitulates the expression changes produced in the immunosuppressive cellular state acquired by monocytes from gram-negative sepsis, as described by single cell-RNA-sequencing. Our study evidences both the crucial role the JAK2-STAT pathway in epigenetic regulation and initial response of the tolerized genes to gram-negative bacterial endotoxins and provides a pharmacological target to prevent exacerbated responses.


Assuntos
Tolerância à Endotoxina/genética , Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Monócitos/imunologia , Monócitos/microbiologia , Sepse/genética , Sepse/imunologia , Estudos de Casos e Controles , Metilação de DNA/genética , Metilação de DNA/imunologia , Tolerância à Endotoxina/efeitos dos fármacos , Tolerância à Endotoxina/imunologia , Endotoxinas/toxicidade , Epigênese Genética , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Técnicas In Vitro , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/imunologia , Lipopolissacarídeos/toxicidade , Masculino , Monócitos/efeitos dos fármacos , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Sepse/microbiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia
7.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830176

RESUMO

The unprecedented successes of immunotherapies (IOs) including immune checkpoint blockers (ICBs) and adoptive T-cell therapy (ACT) in patients with late-stage cancer provide proof-of-principle evidence that harnessing the immune system, in particular T cells, can be an effective approach to eradicate cancer. This instills strong interests in understanding the immunomodulatory effects of radiotherapy (RT), an area that was actually investigated more than a century ago but had been largely ignored for many decades. With the "newly" discovered immunogenic responses from RT, numerous endeavors have been undertaken to combine RT with IOs, in order to bolster anti-tumor immunity. However, the underlying mechanisms are not well defined, which is a subject of much investigation. We therefore conducted a systematic literature search on the molecular underpinnings of RT-induced immunomodulation and IOs, which identified the IFN-JAK-STAT pathway as a major regulator. Our further analysis of relevant studies revealed that the signaling strength and duration of this pathway in response to RT and IOs may determine eventual immunological outcomes. We propose that strategic targeting of this axis can boost the immunostimulatory effects of RT and radiosensitizing effects of IOs, thereby promoting the efficacy of combination therapy of RT and IOs.


Assuntos
Imunoterapia/métodos , Neoplasias/terapia , Radioterapia/métodos , Linfócitos T/imunologia , Terapia Combinada , Humanos , Interferons/imunologia , Interferons/metabolismo , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo
8.
J Hematol Oncol ; 14(1): 198, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809691

RESUMO

STAT proteins represent an important family of evolutionarily conserved transcription factors that play key roles in diverse biological processes, notably including blood and immune cell development and function. Classically, STAT proteins have been viewed as inducible activators of transcription that mediate cellular responses to extracellular signals, particularly cytokines. In this 'canonical' paradigm, latent STAT proteins become tyrosine phosphorylated following receptor activation, typically via downstream JAK proteins, facilitating their dimerization and translocation into the nucleus where they bind to specific sequences in the regulatory region of target genes to activate transcription. However, growing evidence has challenged this paradigm and identified alternate 'non-canonical' functions, such as transcriptional repression and roles outside the nucleus, with both phosphorylated and unphosphorylated STATs involved. This review provides a revised framework for understanding the diverse kaleidoscope of STAT protein functional modalities. It further discusses the implications of this framework for our understanding of STAT proteins in normal blood and immune cell biology and diseases such as cancer, and also provides an evolutionary context to place the origins of these alternative functional modalities.


Assuntos
Neoplasias/imunologia , Fatores de Transcrição STAT/imunologia , Animais , Humanos , Imunidade , Janus Quinases/imunologia , Janus Quinases/metabolismo , Neoplasias/metabolismo , Fosforilação , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
9.
Front Immunol ; 12: 767505, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712246

RESUMO

Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.


Assuntos
Células Epiteliais/imunologia , Imunidade Inata/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interferons/imunologia , Mucosa Intestinal/imunologia , Transdução de Sinais/imunologia , Animais , Apoptose/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Interferons/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Modelos Imunológicos , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo , Junções Íntimas/imunologia , Junções Íntimas/metabolismo , Interferon lambda
10.
Inflamm Res ; 70(10-12): 1027-1042, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652489

RESUMO

INTRODUCTION: Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS: A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION: The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.


Assuntos
Epilepsia/imunologia , Mitocôndrias/imunologia , Doenças Neuroinflamatórias/imunologia , Animais , Morte Celular , Humanos , Inflamassomos/imunologia , Neurônios/imunologia , PPAR gama/imunologia , Fosfatidilinositol 3-Quinase/imunologia , Proteínas Quinases/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Fatores de Transcrição STAT/imunologia , Proteína Desacopladora 2/imunologia
11.
J Allergy Clin Immunol ; 148(4): 953-963, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625142

RESUMO

Asthma is an inflammatory disease of the airways characterized by intermittent episodes of wheezing, chest tightness, and cough. Many of the inflammatory pathways implicated in asthma involve cytokines and growth factors that activate Janus kinases (JAKs). The discovery of the JAK/signal transducer and activator of transcription (STAT) signaling pathway was a major breakthrough that revolutionized our understanding of cell growth and differentiation. JAK inhibitors are under active investigation for immune and inflammatory diseases, and they have demonstrated clinical efficacy in diseases such as rheumatoid arthritis and atopic dermatitis. Substantial preclinical data support the idea that inhibiting JAKs will ameliorate airway inflammation and hyperreactivity in asthma. Here, we review the rationale for use of JAK inhibitors in different asthma endotypes as well as the preclinical and early clinical evidence supporting such use. We review preclinical data from the use of systemic and inhaled JAK inhibitors in animal models of asthma and safety data based on the use of JAK inhibitors in other diseases. We conclude that JAK inhibitors have the potential to usher in a new era of anti-inflammatory treatment for asthma.


Assuntos
Asma/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Animais , Vias de Administração de Medicamentos , Humanos , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/efeitos adversos , Janus Quinases/antagonistas & inibidores , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia
12.
J Allergy Clin Immunol ; 148(4): 911-925, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34625141

RESUMO

Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.


Assuntos
Doenças Genéticas Inatas/tratamento farmacológico , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/imunologia , Fatores de Transcrição STAT/imunologia , Animais , Citocinas/imunologia , Doenças Genéticas Inatas/imunologia , Humanos , Janus Quinases/genética , Mutação , Fatores de Transcrição STAT/genética , Transdução de Sinais
13.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623322

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.


Assuntos
Complexo CD3/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Tuberculose/imunologia , Proteína-Tirosina Quinase ZAP-70/imunologia , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Inata , Ativação Linfocitária , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Imunológicos , Mycobacterium tuberculosis/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores de Reconhecimento de Padrão/imunologia , Fatores de Transcrição STAT/imunologia
14.
Immunol Lett ; 240: 31-40, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34600949

RESUMO

Neuroblastoma (NB) has high morality rates and is the most common malignant tumor found in children. High aggregation of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment results in immunosuppression and affects therapeutic effectiveness. At present, doxorubicin (DOX) and dopamine (DA) are the specific drugs used to selectively remove or mature MDSCs. The aim of the present study was to explore the feasibility and underlying mechanism of targeting elimination of MDSCs via DOX or DA administration to alleviate tumor immunosuppression in NB. In the present study, a BALB/c tumor-bearing mouse model was established, and mice were grouped into the control, DOX2.5, DOX5 and DA50 mg/kg groups. DOX or DA were injected intravenously on days 7 and 12 after inoculation, following which the parameters related to the signal transducer and activator of transcription (STAT) pathway in MDSCs, the proportion of MDSCs, T cell infiltration, programmed death-1 (PD-1) on the surface of T cells, the number of regulatory T cells (Tregs), polarization of tumor-related macrophages (TAMs) and tumor growth were compared between the groups on days 14, 17 and 23 after inoculation. The results demonstrated that following DOX or DA administration, STAT1/phosphorylated (p)-STAT1 decreased, whereas STAT3/p-STAT3, STAT5/p-STAT5 and STAT6/p-STAT6 increased, which was accompanied by a decrease in the MDSC proportion in each experimental group. Simultaneously, T cell infiltration in tumors was increased, whereas expression of PD-1, the number of Tregs, TAM polarization and tumor growth were inhibited. The most significant findings were observed in the DOX2.5 mg/kg group. To conclude, low dose DOX or DA administration could effectively regulate the STAT pathway to eliminate MDSCs, alleviate immunosuppression and improve the immune response against NB tumor cells.


Assuntos
Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Neuroblastoma/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C
15.
Front Immunol ; 12: 725989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566984

RESUMO

Approximately 1 in 4 pregnant women in the United States undergo labor induction. The onset and establishment of labor, particularly induced labor, is a complex and dynamic process influenced by multiple endocrine, inflammatory, and mechanical factors as well as obstetric and pharmacological interventions. The duration from labor induction to the onset of active labor remains unpredictable. Moreover, prolonged labor is associated with severe complications for the mother and her offspring, most importantly chorioamnionitis, uterine atony, and postpartum hemorrhage. While maternal immune system adaptations that are critical for the maintenance of a healthy pregnancy have been previously characterized, the role of the immune system during the establishment of labor is poorly understood. Understanding maternal immune adaptations during labor initiation can have important ramifications for predicting successful labor induction and labor complications in both induced and spontaneous types of labor. The aim of this study was to characterize labor-associated maternal immune system dynamics from labor induction to the start of active labor. Serial blood samples from fifteen participants were collected immediately prior to labor induction (baseline) and during the latent phase until the start of active labor. Using high-dimensional mass cytometry, a total of 1,059 single-cell immune features were extracted from each sample. A multivariate machine-learning method was employed to characterize the dynamic changes of the maternal immune system after labor induction until the establishment of active labor. A cross-validated linear sparse regression model (least absolute shrinkage and selection operator, LASSO) predicted the minutes since induction of labor with high accuracy (R = 0.86, p = 6.7e-15, RMSE = 277 min). Immune features most informative for the model included STAT5 signaling in central memory CD8+ T cells and pro-inflammatory STAT3 signaling responses across multiple adaptive and innate immune cell subsets. Our study reports a peripheral immune signature of labor induction, and provides important insights into biological mechanisms that may ultimately predict labor induction success as well as complications, thereby facilitating clinical decision-making to improve maternal and fetal well-being.


Assuntos
Adaptação Fisiológica/imunologia , Trabalho de Parto Induzido , Trabalho de Parto/imunologia , Adulto , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunoensaio , Modelos Lineares , Aprendizado de Máquina , Gravidez , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Estados Unidos
16.
Biomolecules ; 11(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34439829

RESUMO

Retinitis pigmentosa (RP) is a hereditary disease of the retina that results in complete blindness. Currently, there are very few treatments for the disease and those that exist work only for the recessively inherited forms. To better understand the pathogenesis of RP, multiple mouse models have been generated bearing mutations found in human patients including the human Q344X rhodopsin knock-in mouse. In recent years, the immune system was shown to play an increasingly important role in RP degeneration. By way of electroretinography, optical coherence tomography, funduscopy, fluorescein angiography, and fluorescent immunohistochemistry, we show degenerative and vascular phenotypes, microglial activation, photoreceptor phagocytosis, and upregulation of proinflammatory pathway proteins in the retinas of the human Q344X rhodopsin knock-in mouse. We also show that an FDA-approved pharmacological agent indicated for the treatment of rheumatoid arthritis is able to halt activation of pro-inflammatory signaling in cultured retinal cells, setting the stage for pre-clinical trials using these mice to inhibit proinflammatory signaling in an attempt to preserve vision. We conclude from this work that pro- and autoinflammatory upregulation likely act to enhance the progression of the degenerative phenotype of rhodopsin Q344X-mediated RP and that inhibition of these pathways may lead to longer-lasting vision in not only the Q344X rhodopsin knock-in mice, but humans as well.


Assuntos
Antirreumáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fator Inibidor de Leucemia/farmacologia , Mutação , Retina/efeitos dos fármacos , Retinose Pigmentar/tratamento farmacológico , Rodopsina/genética , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/imunologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Retina/imunologia , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/imunologia , Retinose Pigmentar/patologia , Rodopsina/deficiência , Fatores de Transcrição STAT/antagonistas & inibidores , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Transgenes , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
17.
PLoS Genet ; 17(6): e1009600, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166401

RESUMO

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Enterotoxinas/genética , Hypocreales/patogenicidade , Imunidade Inata , Fatores de Transcrição STAT/genética , Esporos Fúngicos/patogenicidade , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Coevolução Biológica , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Enterotoxinas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Hypocreales/crescimento & desenvolvimento , Longevidade/genética , Longevidade/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Vesículas Transportadoras/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
18.
EMBO J ; 40(15): e107826, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34101213

RESUMO

SARS-CoV-2 infection causes broad-spectrum immunopathological disease, exacerbated by inflammatory co-morbidities. A better understanding of mechanisms underpinning virus-associated inflammation is required to develop effective therapeutics. Here, we discover that SARS-CoV-2 replicates rapidly in lung epithelial cells despite triggering a robust innate immune response through the activation of cytoplasmic RNA sensors RIG-I and MDA5. The inflammatory mediators produced during epithelial cell infection can stimulate primary human macrophages to enhance cytokine production and drive cellular activation. Critically, this can be limited by abrogating RNA sensing or by inhibiting downstream signalling pathways. SARS-CoV-2 further exacerbates the local inflammatory environment when macrophages or epithelial cells are primed with exogenous inflammatory stimuli. We propose that RNA sensing of SARS-CoV-2 in lung epithelium is a key driver of inflammation, the extent of which is influenced by the inflammatory state of the local environment, and that specific inhibition of innate immune pathways may beneficially mitigate inflammation-associated COVID-19.


Assuntos
COVID-19/imunologia , Proteína DEAD-box 58/imunologia , Células Epiteliais/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Macrófagos/imunologia , RNA Viral/imunologia , Receptores Imunológicos/imunologia , SARS-CoV-2 , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Citocinas/genética , Citocinas/imunologia , Células Epiteliais/virologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Janus Quinases/imunologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/virologia , Ativação de Macrófagos , NF-kappa B/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Fatores de Transcrição STAT/imunologia , Replicação Viral
19.
Front Immunol ; 12: 673454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968084

RESUMO

Dendritic cells (DCs) are key initiators of the adaptive immunity, and upon recognition of pathogens are able to skew T cell differentiation to elicit appropriate responses. DCs possess this extraordinary capacity to discern external signals using receptors that recognize pathogen-associated molecular patterns. These can be glycan-binding receptors that recognize carbohydrate structures on pathogens or pathogen-associated patterns that additionally bind receptors, such as Toll-like receptors (TLRs). This study explores the early signaling events in DCs upon binding of α2-3 sialic acid (α2-3sia) that are recognized by Immune inhibitory Sialic acid binding immunoglobulin type lectins. α2-3sias are commonly found on bacteria, e.g. Group B Streptococcus, but can also be expressed by tumor cells. We investigated whether α2-3sia conjugated to a dendrimeric core alters DC signaling properties. Through phosphoproteomic analysis, we found differential signaling profiles in DCs after α2-3sia binding alone or in combination with LPS/TLR4 co-stimulation. α2-3sia was able to modulate the TLR4 signaling cascade, resulting in 109 altered phosphoproteins. These phosphoproteins were annotated to seven biological processes, including the regulation of the IL-12 cytokine pathway. Secretion of IL-10, the inhibitory regulator of IL-12 production, by DCs was found upregulated after overnight stimulation with the α2-3sia dendrimer. Analysis of kinase activity revealed altered signatures in the JAK-STAT signaling pathway. PhosphoSTAT3 (Ser727) and phosphoSTAT5A (Ser780), involved in the regulation of the IL-12 pathway, were both downregulated. Flow cytometric quantification indeed revealed de- phosphorylation over time upon stimulation with α2-3sia, but no α2-6sia. Inhibition of both STAT3 and -5A in moDCs resulted in a similar cytokine secretion profile as α-3sia triggered DCs. Conclusively, this study revealed a specific alteration of the JAK-STAT pathway in DCs upon simultaneous α2-3sia and LPS stimulation, altering the IL10:IL-12 cytokine secretion profile associated with reduction of inflammation. Targeted control of the STAT phosphorylation status is therefore an interesting lead for the abrogation of immune escape that bacteria or tumors impose on the host.


Assuntos
Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Ácido N-Acetilneuramínico/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/imunologia , Células Cultivadas , Células Dendríticas/metabolismo , Humanos , Ligantes , Fatores de Transcrição STAT/metabolismo
20.
Front Immunol ; 12: 650708, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927721

RESUMO

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS) and a CD4+ T cell-mediated autoimmune disease. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is recognized as the major mechanism that regulates the differentiation and function of T helper (Th) 1 and Th17 cells, which are recognized as pivotal effector cells responsible for the development of EAE. We used baricitinib, a JAK 1/2 inhibitor, to investigate the therapeutic efficacy of inhibiting the JAK/STAT pathway in EAE mice. Our results showed that baricitinib significantly delayed the onset time, decreased the severity of clinical symptoms, shortened the duration of EAE, and alleviated demyelination and immune cell infiltration in the spinal cord. In addition, baricitinib treatment downregulated the proportion of interferon-γ+CD4+ Th1 and interleukin-17+CD4+ Th17 cells, decreased the levels of retinoic acid-related orphan receptor γ t and T-bet mRNA, inhibited lymphocyte proliferation, and decreased the expression of proinflammatory cytokines and chemokines in the spleen of mice with EAE. Furthermore, our results showed the role of baricitinib in suppressing the phosphorylation of STATs 1, 3, and 4 in the spleen of EAE mice. Therefore, our study demonstrates that baricitinib could potentially alleviate inflammation in mice with EAE and may be a promising candidate for treating MS.


Assuntos
Azetidinas/farmacologia , Encefalomielite Autoimune Experimental/prevenção & controle , Janus Quinases/antagonistas & inibidores , Purinas/farmacologia , Pirazóis/farmacologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Administração Oral , Animais , Azetidinas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Janus Quinases/imunologia , Janus Quinases/metabolismo , Camundongos Endogâmicos C57BL , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/imunologia , Sulfonamidas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...