Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(20): 11215-11226, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747934

RESUMO

The ChIP-exo assay precisely delineates protein-DNA crosslinking patterns by combining chromatin immunoprecipitation with 5' to 3' exonuclease digestion. Within a regulatory complex, the physical distance of a regulatory protein to DNA affects crosslinking efficiencies. Therefore, the spatial organization of a protein-DNA complex could potentially be inferred by analyzing how crosslinking signatures vary between its subunits. Here, we present a computational framework that aligns ChIP-exo crosslinking patterns from multiple proteins across a set of coordinately bound regulatory regions, and which detects and quantifies protein-DNA crosslinking events within the aligned profiles. By producing consistent measurements of protein-DNA crosslinking strengths across multiple proteins, our approach enables characterization of relative spatial organization within a regulatory complex. Applying our approach to collections of ChIP-exo data, we demonstrate that it can recover aspects of regulatory complex spatial organization at yeast ribosomal protein genes and yeast tRNA genes. We also demonstrate the ability to quantify changes in protein-DNA complex organization across conditions by applying our approach to analyze Drosophila Pol II transcriptional components. Our results suggest that principled analyses of ChIP-exo crosslinking patterns enable inference of spatial organization within protein-DNA complexes.


Assuntos
Imunoprecipitação da Cromatina/métodos , Proteínas de Ligação a DNA/metabolismo , Exonucleases/química , RNA de Transferência/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Animais , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/química , Bases de Dados Genéticas , Drosophila/química , Drosophila/genética , Drosophila/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/química , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA/métodos , Fator de Transcrição TFIIIB/química , Fator de Transcrição TFIIIB/genética , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Sítio de Iniciação de Transcrição
2.
Sci Rep ; 6: 32070, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27562564

RESUMO

Treble clef (TC) zinc fingers constitute a large fold-group of structural zinc-binding protein domains that mediate numerous cellular functions. We have analysed the sequence, structure, and function relationships among all TCs in the Protein Data Bank. This led to the identification of novel TCs, such as lsr2, YggX and TFIIIC τ 60 kDa subunit, and prediction of a nuclease-like function for the DUF1364 family. The structural malleability of TCs is evident from the many examples with variations to the core structural elements of the fold. We observe domains wherein the structural core of the TC fold is circularly permuted, and also some examples where the overall fold resembles both the TC motif and another unrelated fold. All extant TC families do not share a monophyletic origin, as several TC proteins are known to have been present in the last universal common ancestor and the last eukaryotic common ancestor. We identify several TCs where the zinc-chelating site and residues are not merely responsible for structure stabilization but also perform other functions, such as being redox active in C1B domain of protein kinase C, a nucleophilic acceptor in Ada and catalytic in organomercurial lyase, MerB.


Assuntos
Bases de Dados de Proteínas , Proteínas de Escherichia coli/química , Evolução Molecular , Dobramento de Proteína , Fatores de Transcrição TFIII/química , Dedos de Zinco , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Domínios Proteicos , Relação Estrutura-Atividade , Fatores de Transcrição TFIII/genética
3.
Nat Commun ; 6: 7387, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26060179

RESUMO

In eukaryotes, RNA Polymerase III (Pol III) is specifically responsible for transcribing genes encoding tRNAs and other short non-coding RNAs. The recruitment of Pol III to tRNA-encoding genes requires the transcription factors (TF) IIIB and IIIC. TFIIIC has been described as a conserved, multi-subunit protein complex composed of two subcomplexes, called τA and τB. How these two subcomplexes are linked and how their interaction affects the formation of the Pol III pre-initiation complex (PIC) is poorly understood. Here we use chemical crosslinking mass spectrometry and determine the molecular architecture of TFIIIC. We further report the crystal structure of the essential TPR array from τA subunit τ131 and characterize its interaction with a central region of τB subunit τ138. The identified τ131-τ138 interacting region is essential in vivo and overlaps with TFIIIB-binding sites, revealing a crucial interaction platform for the regulation of tRNA transcription initiation.


Assuntos
RNA Polimerase III/metabolismo , Fatores de Transcrição TFIII/metabolismo , Cristalografia por Raios X , RNA Polimerase III/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem , Fatores de Transcrição TFIII/química
4.
Nucleic Acids Res ; 41(19): 9183-96, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23921640

RESUMO

Transcription of tRNA-encoding genes by RNA polymerase (Pol) III requires the six-subunit general transcription factor IIIC that uses subcomplexes τA and τB to recognize two gene-internal promoter elements named A- and B-box. The Schizosaccharomyces pombe τA subcomplex comprises subunits Sfc1, Sfc4 and Sfc7. The crystal structure of the Sfc1/Sfc7 heterodimer reveals similar domains and overall domain architecture to the Pol II-specific general transcription factor TFIIF Rap30/Rap74. The N-terminal Sfc1/Sfc7 dimerization module consists of a triple ß-barrel similar to the N-terminal TFIIF Rap30/Rap74 dimerization module, whereas the C-terminal Sfc1 DNA-binding domain contains a winged-helix domain most similar to the TFIIF Rap30 C-terminal winged-helix domain. Sfc1 DNA-binding domain recognizes single and double-stranded DNA by an unknown mechanism. Several features observed for A-box recognition by τA resemble the recognition of promoters by bacterial RNA polymerase, where σ factor unfolds double-stranded DNA and stabilizes the non-coding DNA strand in an open conformation. Such a function has also been proposed for TFIIF, suggesting that the observed structural similarity between Sfc1/Sfc7 and TFIIF Rap30/Rap74 might also reflect similar functions.


Assuntos
Proteínas de Schizosaccharomyces pombe/química , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFII/química , Fatores de Transcrição/química , Sequência de Aminoácidos , DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição TFIII/metabolismo
5.
J Biol Chem ; 288(21): 15110-20, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23569204

RESUMO

Saccharomyces cerevisiae τ55, a subunit of the RNA polymerase III-specific general transcription factor TFIIIC, comprises an N-terminal histidine phosphatase domain (τ55-HPD) whose catalytic activity and cellular function is poorly understood. We solved the crystal structures of τ55-HPD and its closely related paralogue Huf and used in silico docking methods to identify phosphoserine- and phosphotyrosine-containing peptides as possible substrates that were subsequently validated using in vitro phosphatase assays. A comparative phosphoproteomic study identified additional phosphopeptides as possible targets that show the involvement of these two phosphatases in the regulation of a variety of cellular functions. Our results identify τ55-HPD and Huf as bona fide protein phosphatases, characterize their substrate specificities, and provide a small set of regulated phosphosite targets in vivo.


Assuntos
Monoéster Fosfórico Hidrolases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição TFIII/química , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Monoéster Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/genética
6.
Mol Biol Cell ; 23(14): 2741-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22496415

RESUMO

Chromatin function requires specific three-dimensional architectures of chromosomes. We investigated whether Saccharomyces cerevisiae extra TFIIIC (ETC) sites, which bind the TFIIIC transcription factor but do not recruit RNA polymerase III, show specific intranuclear positioning. We show that six of the eight known S. cerevisiae ETC sites localize predominantly at the nuclear periphery, and that ETC sites retain their tethering function when moved to a new chromosomal location. Several lines of evidence indicate that TFIIIC is central to the ETC peripheral localization mechanism. Mutating or deleting the TFIIIC-binding consensus ablated ETC -site peripheral positioning, and inducing degradation of the TFIIIC subunit Tfc3 led to rapid release of an ETC site from the nuclear periphery. We find, moreover, that anchoring one TFIIIC subunit at an ectopic chromosomal site causes recruitment of others and drives peripheral tethering. Localization of ETC sites at the nuclear periphery also requires Mps3, a Sad1-UNC-84-domain protein that spans the inner nuclear membrane. Surprisingly, we find that the chromatin barrier and insulator functions of an ETC site do not depend on correct peripheral localization. In summary, TFIIIC and Mps3 together direct the intranuclear positioning of a new class of S. cerevisiae genomic loci positioned at the nuclear periphery.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Quinase do Ponto de Checagem 2 , Cromatina/fisiologia , DNA Polimerase III , Regulação Fúngica da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética
7.
J Biol Chem ; 282(23): 17179-89, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17409385

RESUMO

TFIIIC in yeast and humans is required for transcription of tRNA and 5 S RNA genes by RNA polymerase III. In the yeast Saccharomyces cerevisiae, TFIIIC is composed of six subunits, five of which are conserved in humans. We report the identification, molecular cloning, and characterization of the sixth subunit of human TFIIIC, TFIIIC35, which is related to the smallest subunit of yeast TFIIIC. Human TFIIIC35 does not contain the phosphoglycerate mutase domain of its yeast counterpart, and these two proteins display only limited homology within a 34-amino acid domain. Homologs of the sixth TFIIIC subunit are also identified in other eukaryotes, and their phylogenic evolution is analyzed. Affinity-purified human TFIIIC from an epitope-tagged TFIIIC35 cell line is active in binding to and in transcription of the VA1 gene in vitro. Furthermore, TFIIIC35 specifically interacts with the human TFIIIC subunits TFIIIC63 and, to a lesser extent, TFIIIC90 in vitro. Finally, we determined a limited region in the smallest subunit of yeast TFIIIC that is sufficient for interacting with the yeast TFIIIC subunit ScTfc1 (orthologous to TFIIIC63) and found it to be adjacent to and overlap the 34-amino acid domain that is conserved from yeast to humans.


Assuntos
Fatores de Transcrição TFIII/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , Imunofluorescência , Humanos , Dados de Sequência Molecular , Filogenia , RNA Polimerase III/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/classificação , Fatores de Transcrição TFIII/genética
9.
Mol Cell ; 24(2): 221-32, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-17052456

RESUMO

Yeast RNA polymerase III is recruited upon binding of subcomplexes tauA and tauB of transcription factor IIIC (TFIIIC) to the A and B blocks of tRNA gene promoters. The tauB subcomplex consists of subunits tau60, tau91, and tau138. We determined the 3.2 A crystal structure of tau60 bound to a large C-terminal fragment of tau91 (Deltatau91). Deltatau91 protein contains a seven-bladed propeller preceded by an N-terminal extension, whereas tau60 contains a structurally homologous propeller followed by a C-terminal domain with a novel alpha/beta fold. The two propeller domains do not have any detectable DNA binding activity and mediate heterodimer formation that may serve as scaffold for tau138 assembly. We show that the C-terminal tau60 domain interacts with the TATA binding protein (TBP). Recombinant tauB recruits TBP and stimulates TFIIIB-directed transcription on a TATA box containing tRNA gene, implying a combined contribution of tauA and tauB to preinitiation complex formation.


Assuntos
Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/fisiologia , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Transcrição Gênica
10.
Mol Cell Biol ; 26(16): 5946-56, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16880507

RESUMO

The binding of Brf1 to the tetratricopeptide repeat (TPR)-containing transcription factor IIIC (TFIIIC) subunit (Tfc4) represents a rate-limiting step in the ordered assembly of the RNA polymerase III initiation factor TFIIIB. Tfc4 contains multiple binding sites for Brf1 within its amino terminus and adjacent TPR arrays, but the access of Brf1 to these sites is limited by autoinhibition. Moreover, the Brf1 binding sites in Tfc4 overlap with sites important for the subsequent recruitment of another TFIIIB subunit, Bdp1, implying that repositioning of Brf1 is required after its initial interaction with Tfc4. As a starting point for dissecting the steps in TFIIIC-directed assembly of TFIIIB, we conducted yeast two-hybrid screens of Brf1 peptide libraries against different TPR-containing Tfc4 fragments. Short, biochemically active peptides were identified in three distinct regions of Brf1. Two peptides defined conserved but distal regions of Brf1 that participate in stable binding of Brf1 to TFIIIC-DNA. Remarkably, a third peptide that binds specifically to TPR6-9 of Tfc4 was found to promote the formation of both TFIIIC-DNA and Brf1-TFIIIC-DNA complexes and to reduce the mobility of these complexes in native gels. The data are consistent with this peptide causing a conformational change in TFIIIC that overcomes Tfc4 autoinhibition of Brf1 binding and suggest a structural model for the Brf1-Tfc4 interaction.


Assuntos
Peptídeos/metabolismo , Subunidades Proteicas/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , DNA Fúngico/metabolismo , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Fatores Associados à Proteína de Ligação a TATA , Fator de Transcrição TFIIIB/química , Fatores de Transcrição TFIII/química , Técnicas do Sistema de Duplo-Híbrido
11.
J Biol Chem ; 281(33): 23945-57, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-16787917

RESUMO

The Saccharomyces cerevisiae SNR52 gene is unique among the snoRNA coding genes in being transcribed by RNA polymerase III. The primary transcript of SNR52 is a 250-nucleotide precursor RNA from which a long leader sequence is cleaved to generate the mature snR52 RNA. We found that the box A and box B sequence elements in the leader region are both required for the in vivo accumulation of the snoRNA. As expected box B, but not box A, was absolutely required for stable TFIIIC, yet in vitro. Surprisingly, however, the box B was found to be largely dispensable for in vitro transcription of SNR52, whereas the box A-mutated template effectively recruited TFIIIB; yet it was transcriptionally inactive. Even in the complete absence of box B and both upstream TATA-like and T-rich elements, the box A still directed efficient, TFIIIC-dependent transcription. Box B-independent transcription was also observed for two members of the tRNA(Asn)(GTT) gene family, but not for two tRNA(Pro)(AGG) gene copies. Fully recombinant TFIIIC supported box B-independent transcription of both SNR52 and tRNA(Asn) genes, but only in the presence of TFIIIB reconstituted with a crude B'' fraction. Non-TFIIIB component(s) in this fraction were also required for transcription of wild-type SNR52. Transcription of the box B-less tRNA(Asn) genes was strongly influenced by their 5'-flanking regions, and it was stimulated by TBP and Brf1 proteins synergistically. The box A can thus be viewed as a core TFIIIC-interacting element that, assisted by upstream TFIIIB-DNA contacts, is sufficient to promote class III gene transcription.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase III/fisiologia , RNA Nucleolar Pequeno/genética , RNA de Transferência/genética , Fatores de Transcrição TFIII/genética , Transcrição Gênica , Regiões 5' não Traduzidas/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Análise Mutacional de DNA , Dados de Sequência Molecular , RNA Polimerase III/química , RNA Polimerase III/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/metabolismo
12.
J Biol Chem ; 281(15): 10461-72, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16461347

RESUMO

Transcription from the yeast SNR6 (U6 small nuclear RNA) chromatin, a gene transcribed by the enzyme RNA polymerase III, depends on its transcription factor IIIC (TFIIIC) and the promoter elements (the intragenic box A and box B located downstream to its terminator) to which TFIIIC binds. The genes transcribed by polymerase III generally lack the upstream promoter elements where TFIIIC is known to recruit the transcription initiation factor TFIIIB. The TFIIIC-dependent chromatin remodeling of the gene in vitro that involves translational positioning of a nucleosome between boxes A and B is found to be essential for its transcriptional activation. We show here that the role of TFIIIC is not limited to the recruitment of TFIIIB on chromatin templates. The pre-binding of TFIIIB to the SNR6 TATA box in the upstream gene region does not alleviate TFIIIC requirement for transcriptional activation of the chromatin. Binding of TFIIIC to an array of pre-positioned nucleosomes results in an upward shift of the single nucleosome between boxes A and B. The approximately 40-bp shift of this nucleosome in the 3' to 5' direction leads to increased nuclease sensitivity of the approximately 40-bp DNA 3' to the upstream TATA box. Further chromatin remodeling accompanies the binding of TFIIIB in the next step. This two-step remodeling mechanism using the basal factors of the gene yields high transcription levels and generates a chromatin structure similar to that reported for the gene in vivo.


Assuntos
Cromatina/química , Regulação Fúngica da Expressão Gênica , Nucleossomos/química , RNA Nuclear Pequeno/química , Ativação Transcricional , Trifosfato de Adenosina/química , Animais , Sítios de Ligação , Cromatina/metabolismo , DNA/química , Drosophila , Proteínas Fúngicas/química , Genes Fúngicos , Modelos Genéticos , Nucleossomos/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Biossíntese de Proteínas , Proteínas Recombinantes de Fusão/química , Fator de Transcrição TFIIIB/química , Fatores de Transcrição TFIII/química , Transcrição Gênica
13.
J Biol Chem ; 281(11): 7445-51, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16407207

RESUMO

The binding of the RNA polymerase III (pol III) transcription factor TFIIIC to the box A intragenic promoter element of tRNA genes specifies the placement of TFIIIB on upstream-lying DNA. In turn, TFIIIB recruits pol III to the promoter and specifies transcription initiating 17-19 base pairs upstream of box A. The resolution of the pol III transcription apparatus into recombinant TFIIIB, highly purified TFIIIC, and pol III is accompanied by a loss of precision in specifying where transcription initiation occurs due to heterogeneous placement of TFIIIB. In this paper we show that Nhp6a, an abundant high mobility group B (HMGB) family, non-sequence-specific DNA-binding protein in Saccharomyces cerevisiae restores transcriptional initiation fidelity to this highly purified in vitro system. Restoration of initiation fidelity requires the presence of Nhp6a prior to TFIIIB-DNA complex formation. Chemical nuclease footprinting of TFIIIC- and TFIIIB-TFIIIC-DNA complexes reveals that Nhp6a markedly alters the TFIIIC footprint over box A and reduces the size of the TFIIIB footprint on upstream DNA sequence. Analyses of unprocessed tRNAs from yeast lacking Nhp6a and its closely related paralogue Nhp6b demonstrate that Nhp6 is required for transcriptional initiation fidelity of some but not all tRNA genes, in vivo.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares/fisiologia , RNA Polimerase III/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Fator de Transcrição TFIIIB/química , Fatores de Transcrição TFIII/química , Sequência de Bases , Sítios de Ligação , DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGN , Técnicas In Vitro , Íntrons , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA de Transferência/química , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Transcrição Gênica
14.
Protein Expr Purif ; 45(2): 255-61, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16115780

RESUMO

The transcription factor IIIC (TFIIIC) is a multisubunit DNA-binding factor required for promoter recognition and TFIIIB assembly on tRNA genes transcribed by RNA polymerase III. Yeast TFIIIC consists of six subunits, organized in the two globular subcomplexes tauA and tauB, which recognize two internal tDNA promoter elements, the A and the B block, respectively. As a first step toward a detailed structural analysis of TFIIIC, we report here the expression, proteolytic analysis, reconstitution, and crystallization of the complex between yeast TFIIIC subunits tau91 and tau60. Proteolysis provided an insight into the domain structure of tau60 and tau91. Both the proteins form a stable complex that does not require an N-terminal, protease-sensitive extension of tau91. Crystals diffracting beyond 3.2 A were obtained from a complex formed by full-length tau60 and the N-terminally truncated form of tau91 lacking this extension.


Assuntos
Subunidades Proteicas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição TFIII , Cristalização , Complexos Multiproteicos , Regiões Promotoras Genéticas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo
15.
BMC Evol Biol ; 4: 26, 2004 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-15298704

RESUMO

BACKGROUND: In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. RESULTS: Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. CONCLUSION: Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.


Assuntos
Proteínas de Arabidopsis/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase III/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição TFIII/química , Vertebrados/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Sítios de Ligação , Evolução Biológica , Fungos/genética , Fungos/metabolismo , Humanos , Insetos/genética , Insetos/metabolismo , Dados de Sequência Molecular , Filogenia , Plantas/genética , Plantas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas de Schizosaccharomyces pombe/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Fatores de Transcrição TFIII/metabolismo , Vertebrados/genética
16.
Proc Natl Acad Sci U S A ; 100(25): 14695-700, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14634212

RESUMO

RNA polymerase III (Pol III) transcribes small untranslated RNAs, such as tRNAs. To define the Pol III transcriptome in Saccharomyces cerevisiae, we performed genome-wide chromatin immunoprecipitation using subunits of Pol III, TFIIIB and TFIIIC. Virtually all of the predicted targets of Pol III, as well as several novel candidates, were occupied by Pol III machinery. Interestingly, TATA box-binding protein occupancy was greater at Pol III targets than virtually all Pol II targets, and the highly occupied Pol II targets are generally strongly transcribed. The temporal relationships between factor occupancy and gene activity were then investigated at selected targets. Nutrient deprivation rapidly reduced both Pol III transcription and Pol III occupancy of both a tRNA gene and RPR1. In contrast, TFIIIB remained bound, suggesting that TFIIIB release is not a critical aspect of the onset of repression. Remarkably, TFIIIC occupancy increased dramatically during repression. Nutrient addition generally reestablished transcription and initial occupancy levels. Our results are consistent with active Pol III displacing TFIIIC, and with inactivation/release of Pol III enabling TFIIIC to bind, marking targets for later activation. These studies reveal new aspects of the kinetics, dynamics, and targets of the Pol III system.


Assuntos
Genoma , Proteínas/química , RNA Polimerase III/química , Saccharomyces cerevisiae/metabolismo , Cromatina/metabolismo , Cinética , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Testes de Precipitina , Ligação Proteica , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , RNA de Transferência de Tirosina/química , Fatores de Tempo , Fator de Transcrição TFIIB/química , Fatores de Transcrição TFIII/química , Transcrição Gênica
17.
J Biol Chem ; 278(45): 44467-74, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-12930823

RESUMO

The RNA polymerase III initiation factor TFIIIB is assembled onto DNA through interactions involving the Tfc4 subunit of the assembly factor TFIIIC and two subunits of TFIIIB, Brf1 and Bdp1. Tfc4 contains two arrays of tetratricopeptide repeats (TPRs), each of which provides a binding site for Brf1. Dominant mutations in the ligand binding channel of the first TPR array, TPRs1-5, and on the back side of this array, increase Brf1 binding by Tfc4. Here we examine the biological importance of the second TPR array, TPRs6 -9. Radical mutations at phylogenetically conserved residues in the ligand binding channel of TPRs6 -9 impair pol III reporter gene transcription. Biochemical studies on one such mutation, L469K in TPR7, revealed a defect in the recruitment of Brf1 into TFIIIB-TFIIIC-DNA complexes and diminished the direct interaction between Tfc4 and Brf1. Multicopy suppression analysis implicates TPR9 in Brf1 binding and TPRs7 and 8 in binding to more than one ligand. Indeed, the L469K mutation also decreased the binding affinity for Bdp1 incorporation into TFIIIB-TFIIIC-DNA complexes and inhibited binary interactions between Bdp1 and Tfc4. The Bdp1 binding domain in Tfc4 was mapped to TPRs1-9, a domain that contains both TPR arrays and thus overlaps two of the known binding sites for Brf1. The properties of the L469K mutation identify both Brf1 and Bdp1 as ligands for the second TPR array.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIIB/metabolismo , Fatores de Transcrição TFIII/química , Sítios de Ligação , Sequência Conservada , DNA/metabolismo , DNA Polimerase III/genética , Deleção de Genes , Mutagênese , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes , Sequências Repetitivas de Ácido Nucleico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Temperatura , Fator de Transcrição TFIIIB/genética , Fatores de Transcrição TFIII/genética , Fatores de Transcrição TFIII/metabolismo , Transcrição Gênica , Transfecção , Técnicas do Sistema de Duplo-Híbrido
18.
J Biol Chem ; 278(12): 10450-7, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12533520

RESUMO

The yeast transcription factor IIIC (TFIIIC) is organized in two distinct multisubunit domains, tauA and tauB, that are respectively responsible for TFIIIB assembly and stable anchoring of TFIIIC on the B block of tRNA genes. Surprisingly, we found that the removal of tauA by mild proteolysis stabilizes the residual tauB.DNA complexes at high temperatures. Focusing on the well conserved tau95 subunit that belongs to the tauA domain, we found that the tau95-E447K mutation has long distance effects on the stability of TFIIIC.DNA complexes and start site selection. Mutant TFIIIC.DNA complexes presented a shift in their 5' border, generated slow-migrating TFIIIB.DNA complexes upon stripping TFIIIC by heparin or heat treatment, and allowed initiation at downstream sites. In addition, mutant TFIIIC.DNA complexes were highly unstable at high temperatures. Coimmunoprecipitation experiments indicated that tau95 participates in the interconnection of tauA with tauB via its contacts with tau138 and tau91 polypeptides. The results suggest that tau95 serves as a scaffold critical for tauA.DNA spatial configuration and tauB.DNA stability.


Assuntos
DNA/metabolismo , Proteínas Fúngicas/química , Fatores de Transcrição TFIII/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas , Relação Estrutura-Atividade , Fatores de Transcrição TFIII/fisiologia , Transcrição Gênica
19.
Mol Cell Biol ; 22(17): 6131-41, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12167707

RESUMO

The interaction between the tetratricopeptide repeat (TPR)-containing subunit of TFIIIC, TFIIIC131, and the TFIIB-related factor Brf1 represents a limiting step in the assembly of the RNA polymerase III (pol III) initiation factor TFIIIB. This assembly reaction is facilitated by dominant mutations that map in and around TPR2. Structural modeling of TPR1 to TPR3 from TFIIIC131 shows that one such mutation, PCF1-2, alters a residue in the ligand-binding groove of the TPR superhelix whereas another mutation, PCF1-1, changes a surface-accessible residue on the back side of the TPR superhelix. In this work, we show that the PCF1-1 mutation (H190Y) increases the binding affinity for Brf1, but does not affect the binding affinity for Bdp1, in the TFIIIC-dependent assembly of TFIIIB. Interestingly, binding studies with TFIIIC131 fragments indicate that Brf1 does not interact directly at the site of the PCF1-1 mutation. Rather, the data suggest that the mutation overcomes the previously documented autoinhibition of Brf1 binding. These findings together with the results from site-directed mutagenesis support the hypothesis that gain-of-function mutations at amino acid 190 in TPR2 stabilize an alternative conformation of TFIIIC131 that promotes its interaction with Brf1.


Assuntos
Substituição de Aminoácidos , Mutação de Sentido Incorreto , Sequências Repetitivas de Aminoácidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIIB , Fatores de Transcrição TFIII/genética , Fatores de Transcrição/metabolismo , DNA Fúngico/metabolismo , Genes Dominantes , Ligantes , Substâncias Macromoleculares , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Polimerase III/metabolismo , Sequências Repetitivas de Aminoácidos/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição TFIII/química , Fatores de Transcrição TFIII/metabolismo
20.
Mol Biol Cell ; 13(5): 1765-77, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12006668

RESUMO

We have cloned and sequenced a cDNA that encodes for a nuclear protein of 238 kDa in the dipteran Chironomus tentans. This protein, that we call p2D10, is structurally similar to the alpha subunit of the general transcription factor TFIIIC. Using immunoelectron microscopy we have shown that a fraction of p2D10 is located at sites of transcription, which is consistent with a possible role of this protein in transcription initiation. We have also found that a large fraction of p2D10 is located in the nucleoplasm and in the nuclear pore complexes. Using gel filtration chromatography and coimmunoprecipitation methods, we have identified and characterized two p2D10-containing complexes that differ in molecular mass and composition. The heavy p2D10-containing complex contains at least one other component of the TFIIIC complex, TFIIIC-epsilon. Based on its molecular mass and composition, the heavy p2D10-containing complex may be the Pol III holoenzyme. The light p2D10-containing complex contains RNA together with at least two proteins that are thought to be involved in mRNA trafficking, RAE1 and hrp65. The observations reported here suggest that this new TFIIIC-alpha-like protein is involved in posttranscriptional steps of premRNA metabolism in Chironomus tentans.


Assuntos
Chironomidae/fisiologia , Proteínas de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Processamento Pós-Transcricional do RNA , Motivos de Aminoácidos , Animais , Chironomidae/genética , Proteínas de Insetos/genética , Substâncias Macromoleculares , Família Multigênica , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Ligação a RNA , Glândulas Salivares , Análise de Sequência de Proteína , Fatores de Transcrição TFIII/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA