Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.076
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2391596, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39165035

RESUMO

Yellow fever is a vaccine preventable hemorrhagic disease that leads to morbidity and mortality in the affected individuals. The only options for preventing and controlling its spread are through vaccination. Therefore, this study was conducted to estimate yellow fever vaccination coverage and associated factors among under-five children in Kenya. The total weighted samples of 2,844 children aged under-five were included in this study. The data were taken from the Kenyan Demographic and Health Survey 2022. In the multivariable analysis, the adjusted odds ratio with a 95% CI was used to declare significant associations of yellow fever vaccine. The yellow fever vaccine coverage among children aged under-five in Kenya was 18.50%. The significant factors associated with yellow fever vaccine coverage were: the age of the child older than 24 months (AOR = 1.7; 95% CI (1.17-2.58)); higher odds of yellow fever vaccination coverage was observed among older children, place of residence (AOR = 1.76; 95% CI (1.04-2.97)); higher odds was observed among urban residents, maternal education; primary education (AOR = 1.99; 95% CI (1.04-2.97)), secondary education (AOR = 2.85; 95% CI (1.41-5.76)), mothers who attended primary or secondary education have higher odds of yellow fever vaccination coverage, wealth index (AOR = 2.38; 95% CI (1.15-4.91)); higher odds of vaccination coverage was observed among poor households. Yellow fever vaccine coverage among under-five children in Kenya was low and has become an important public health concern. Policymakers and other stakeholders are recommended to focus on vaccination programs to prevent yellow fever disease.


Assuntos
Inquéritos Epidemiológicos , Cobertura Vacinal , Vacina contra Febre Amarela , Febre Amarela , Humanos , Quênia/epidemiologia , Vacina contra Febre Amarela/administração & dosagem , Cobertura Vacinal/estatística & dados numéricos , Febre Amarela/prevenção & controle , Febre Amarela/epidemiologia , Feminino , Masculino , Lactente , Pré-Escolar , Adulto , Vacinação/estatística & dados numéricos , Recém-Nascido , Adulto Jovem
3.
Parasit Vectors ; 17(1): 329, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095920

RESUMO

BACKGROUND: Identifying mosquito vectors is crucial for controlling diseases. Automated identification studies using the convolutional neural network (CNN) have been conducted for some urban mosquito vectors but not yet for sylvatic mosquito vectors that transmit the yellow fever. We evaluated the ability of the AlexNet CNN to identify four mosquito species: Aedes serratus, Aedes scapularis, Haemagogus leucocelaenus and Sabethes albiprivus and whether there is variation in AlexNet's ability to classify mosquitoes based on pictures of four different body regions. METHODS: The specimens were photographed using a cell phone connected to a stereoscope. Photographs were taken of the full-body, pronotum and lateral view of the thorax, which were pre-processed to train the AlexNet algorithm. The evaluation was based on the confusion matrix, the accuracy (ten pseudo-replicates) and the confidence interval for each experiment. RESULTS: Our study found that the AlexNet can accurately identify mosquito pictures of the genus Aedes, Sabethes and Haemagogus with over 90% accuracy. Furthermore, the algorithm performance did not change according to the body regions submitted. It is worth noting that the state of preservation of the mosquitoes, which were often damaged, may have affected the network's ability to differentiate between these species and thus accuracy rates could have been even higher. CONCLUSIONS: Our results support the idea of applying CNNs for artificial intelligence (AI)-driven identification of mosquito vectors of tropical diseases. This approach can potentially be used in the surveillance of yellow fever vectors by health services and the population as well.


Assuntos
Aedes , Mosquitos Vetores , Redes Neurais de Computação , Febre Amarela , Animais , Mosquitos Vetores/classificação , Febre Amarela/transmissão , Aedes/classificação , Aedes/fisiologia , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Culicidae/classificação , Inteligência Artificial
4.
Hum Vaccin Immunother ; 20(1): 2318814, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38961639

RESUMO

The present study aimed at investigating whether the hydroxychloroquine (HCQ) treatment would impact the neutralizing antibody production, viremia levels and the kinetics of serum soluble mediators upon planned 17DD-Yellow Fever (YF) primovaccination (Bio-Manguinhos-FIOCRUZ) of primary Sjögren's syndrome (pSS). A total of 34 pSS patients and 23 healthy controls (HC) were enrolled. The pSS group was further categorized according to the use of HCQ (HCQ and Non-HCQ). The YF-plaque reduction neutralization test (PRNT ≥1:50), YF viremia (RNAnemia) and serum biomarkers analyses were performed at baseline and subsequent time-points (Day0/Day3-4/Day5-6/Day7/Day14-D28). The pSS group showed PRNT titers and seropositivity rates similar to those observed for HC (GeoMean = 238 vs 440, p = .11; 82% vs 96%, p = .13). However, the HCQ subgroup exhibited lower seroconversion rates as compared to HC (GeoMean = 161 vs 440, p = .04; 69% vs 96%, p = .02) and Non-HQC (GeoMean = 161 vs 337, p = .582; 69% vs 94%, p = .049). No differences in YF viremia were observed amongst subgroups. Serum biomarkers analyses demonstrated that HCQ subgroup exhibited increased levels of CCL2, CXL10, IL-6, IFN-γ, IL1-Ra, IL-9, IL-10, and IL-2 at baseline and displayed a consistent increase of several biomarkers along the kinetics timeline up to D14-28. These results indicated that HCQ subgroup exhibited a deficiency in assembling YF-specific immune response elicited by 17DD-YF primovaccination as compared to Non-HCQ subgroup. Our findings suggested that hydroxychloroquine is associated with a decrease in the humoral immune response after 17DD-YF primovaccination.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Hidroxicloroquina , Soroconversão , Síndrome de Sjogren , Febre Amarela , Humanos , Hidroxicloroquina/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Vacina contra Febre Amarela/imunologia , Idoso , Viremia/tratamento farmacológico , Viremia/imunologia , Vírus da Febre Amarela/imunologia , Citocinas/sangue , Biomarcadores/sangue
5.
BMC Infect Dis ; 24(1): 686, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982363

RESUMO

BACKGROUND: Uganda has a sentinel surveillance system in seven high-risk sites to monitor yellow fever (YF) patterns and detect outbreaks. We evaluated the performance of this system from 2017 to 2022. METHODS: We evaluated selected attributes, including timeliness (lags between different critical time points), external completeness (proportion of expected sentinel sites reporting ≥ 1 suspect case in the system annually), and internal completeness (proportion of reports with the minimum required data elements filled), using secondary data in the YF surveillance database from January 2017-July 2022. We conducted key informant interviews with stakeholders at health facility and national level to assess usefulness, flexibility, simplicity, and acceptability of the surveillance system. RESULTS: In total, 3,073 suspected and 15 confirmed YF cases were reported. The median time lag from sample collection to laboratory shipment was 37 days (IQR:21-54). External completeness was 76%; internal completeness was 65%. Stakeholders felt that the surveillance system was simple and acceptable, but were uncertain about flexibility. Most (71%) YF cases in previous outbreaks were detected through the sentinel surveillance system; data were used to inform interventions such as intensified YF vaccination. CONCLUSION: The YF sentinel surveillance system was useful in detecting outbreaks and informing public health action. Delays in case confirmation and incomplete data compromised its overall effectiveness and efficiency.


Assuntos
Surtos de Doenças , Vigilância de Evento Sentinela , Febre Amarela , Uganda/epidemiologia , Humanos , Febre Amarela/epidemiologia , Febre Amarela/diagnóstico
6.
Pathog Glob Health ; 118(5): 397-407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38972071

RESUMO

Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.


Assuntos
Aedes , Mudança Climática , Dengue , Mosquitos Vetores , Febre Amarela , Febre Amarela/transmissão , Febre Amarela/epidemiologia , Animais , Dengue/transmissão , Dengue/epidemiologia , Aedes/virologia , Aedes/fisiologia , Humanos , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia
7.
Cell Rep Med ; 5(7): 101655, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019010

RESUMO

Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Modelos Animais de Doenças , Peróxido de Hidrogênio , Macaca mulatta , Vacinas de Produtos Inativados , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Animais , Vacinas de Produtos Inativados/imunologia , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas Atenuadas/imunologia , Chlorocebus aethiops , Células Vero , Humanos
8.
BMC Infect Dis ; 24(1): 731, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054464

RESUMO

BACKGROUND: In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two districts in the Savannah region and spread to several other Districts in three regions. Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for Aedes the arboviral vector in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought to determine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. METHODS: The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance to permethrin, deltamethrin and pirimiphos-methyl was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. RESULTS: Among the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedes mosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). CONCLUSION: This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health. Hence there is a need to continue monitoring these vectors to develop an effective control strategy.


Assuntos
Aedes , Surtos de Doenças , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Febre Amarela , Animais , Aedes/virologia , Aedes/efeitos dos fármacos , Aedes/genética , Gana/epidemiologia , Resistência a Inseticidas/genética , Febre Amarela/transmissão , Febre Amarela/epidemiologia , Mosquitos Vetores/virologia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Humanos , Inseticidas/farmacologia , Feminino , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/efeitos dos fármacos
9.
J Infect Dis ; 230(1): e60-e64, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052712

RESUMO

In 2018 there was a large yellow fever outbreak in São Paulo, Brazil, with a high fatality rate. Yellow fever virus can cause, among other symptoms, hemorrhage and disseminated intravascular coagulation, indicating a role for endothelial cells in disease pathogenesis. Here, we conducted a case-control study and measured markers related to endothelial damage in plasma and its association with mortality. We found that angiopoietin 2 is strongly associated with a fatal outcome and could serve as a predictive marker for mortality. This could be used to monitor severe cases and provide care to improve disease outcome.


Assuntos
Angiopoietina-2 , Biomarcadores , Febre Amarela , Vírus da Febre Amarela , Humanos , Estudos de Casos e Controles , Febre Amarela/mortalidade , Febre Amarela/sangue , Febre Amarela/virologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Angiopoietina-2/sangue , Biomarcadores/sangue , Brasil/epidemiologia , Idoso , Adulto Jovem
10.
J Bras Nefrol ; 46(3): e20230168, 2024.
Artigo em Inglês, Português | MEDLINE | ID: mdl-39074252

RESUMO

Arboviruses are endemic in several countries and represent a worrying public health problem. The most important of these diseases is dengue fever, whose numbers continue to rise and have reached millions of annual cases in Brazil since the last decade. Other arboviruses of public health concern are chikungunya and Zika, both of which have caused recent epidemics, and yellow fever, which has also caused epidemic outbreaks in our country. Like most infectious diseases, arboviruses have the potential to affect the kidneys through several mechanisms. These include the direct action of the viruses, systemic inflammation, hemorrhagic phenomena and other complications, in addition to the toxicity of the drugs used in treatment. In this review article, the epidemiological aspects of the main arboviruses in Brazil and other countries where these diseases are endemic, clinical aspects and the main laboratory changes found, including changes in renal function, are addressed. It also describes how arboviruses behave in kidney transplant patients. The pathophysiological mechanisms of kidney injury associated with arboviruses are described and finally the recommended treatment for each disease and recommendations for kidney support in this context are given.


Assuntos
Infecções por Arbovirus , Humanos , Infecções por Arbovirus/epidemiologia , Arbovírus , Brasil/epidemiologia , Transplante de Rim , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/complicações , Febre de Chikungunya/diagnóstico , Nefropatias/virologia , Nefropatias/epidemiologia , Nefropatias/terapia , Nefropatias/etiologia , Dengue/epidemiologia , Dengue/complicações , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/complicações , Febre Amarela/epidemiologia
11.
Pan Afr Med J ; 47: 120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828420

RESUMO

Introduction: Aedes albopictus, like Aedes aegypti, is a virulent vector of arboviruses especially the well-documented spread of yellow fever around the world. Although yellow fever is prevalent in Nigeria, there is a paucity of information in the Niger Delta region on the distribution of Aedes mosquito vectors and molecular detection of the virus in infected mosquitoes. This study sampled Aedes mosquitoes around houses associated with farms from four communities (Otolokpo, Ute-Okpu, Umunede, and Ute Alohen) in Ika North-East Local Government Area of Delta State, Nigeria. Methods: various sampling methods were used in Aedes mosquito collection to test their efficacy in the survey. Mosquitoes in holding cages were killed by freezing and morphologically identified. A pool of 15 mosquitoes per Eppendorf tube was preserved in RNAi later for yellow fever virus screening. Two samples were molecularly screened for each location. Results: seven hundred and twenty-five (725) mosquitoes were obtained from the various traps. The mean abundance of the mosquitoes was highest in m-HLC (42.9) compared to the mosquitoes sampled using other techniques (p<0.0001). The mean abundance of mosquitoes was lowest in Center for Disease Control (CDC) light traps without attractant (0.29). No yellow fever virus strain was detected in all the mosquitoes sampled at the four locations. Conclusion: this study suggests that Aedes albopictus are the mosquitoes commonly biting around houses associated with farms. More so, yellow fever virus was not detected in the mosquitoes probably due to the mass vaccination exercise that was carried out the previous year in the study area. More studies are required using the m-HLC to determine the infection rate in this endemic area.


Assuntos
Aedes , Mosquitos Vetores , Febre Amarela , Vírus da Febre Amarela , Animais , Aedes/virologia , Nigéria , Vírus da Febre Amarela/isolamento & purificação , Mosquitos Vetores/virologia , Febre Amarela/transmissão , Febre Amarela/epidemiologia , Febre Amarela/virologia , Humanos
12.
Viruses ; 16(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38932129

RESUMO

The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/ß receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic.


Assuntos
Proteção Cruzada , Vírus da Dengue , Modelos Animais de Doenças , Camundongos Knockout , Receptor de Interferon alfa e beta , Febre Amarela , Vírus da Febre Amarela , Infecção por Zika virus , Zika virus , Animais , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Camundongos , Proteção Cruzada/imunologia , Vírus da Febre Amarela/imunologia , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia , Vírus da Dengue/imunologia , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/deficiência , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Flavivirus/imunologia , Aedes/virologia , Aedes/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Dengue/virologia , Feminino , Viremia/imunologia , Mosquitos Vetores/virologia , Mosquitos Vetores/imunologia , Infecções por Flavivirus/imunologia , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/virologia , Camundongos Endogâmicos C57BL
13.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900788

RESUMO

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Assuntos
Desinfetantes , Inativação de Vírus , Organização Mundial da Saúde , Vírus da Febre Amarela , Vírus da Febre Amarela/efeitos dos fármacos , Desinfetantes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/transmissão , Febre Amarela/virologia , Desinfecção das Mãos/métodos , Animais , Chlorocebus aethiops
15.
Cell Rep ; 43(7): 114354, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38906147

RESUMO

Female mosquitoes engage in blood feeding from their hosts to facilitate egg maturation but cease feeding once a sufficient blood meal has been acquired. Abdominal distention has been proposed as a contributing factor; however, it has also been suggested that there are chemical controls. In this study, we focus on negative chemical regulators of blood feeding, particularly those present in the host blood. Serum derived from animal blood inhibits the feeding of ATP, a phagostimulant of blood feeding in Aedes aegypti. Fibrinopeptide A (FPA), a 16-amino acid peptide cleaved from fibrinogen during blood coagulation, serves as an inhibitory factor in the serum. Our findings suggest that blood-feeding arrest in female mosquitoes is triggered by the detection of FPA in the host blood, which increases as blood coagulation proceeds in the mosquito's midgut, highlighting the role of host-derived substances as negative regulators of mosquito behavior.


Assuntos
Aedes , Animais , Aedes/fisiologia , Feminino , Comportamento Alimentar , Febre Amarela/transmissão , Mosquitos Vetores
16.
JCI Insight ; 9(14)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861490

RESUMO

Memory T cells are conventionally associated with durable recall responses. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found CD45RO-CCR7+ virus-specific CD4+ T cells that expanded shortly after vaccination and persisted months to years after immunization. Further phenotypic analyses revealed the presence of stem cell-like memory T cells within this subset. In addition, after vaccination T cells lacking known memory markers and functionally resembling genuine naive T cells were identified, referred to herein as marker-negative T (TMN) cells. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified TMN TCRs shared with memory and effector T cells. Longitudinal tracking of YFV-specific responses over subsequent years revealed superior stability of TMN cells, which correlated with the longevity of the overall tetramer+ population. These findings uncover additional complexity within the post-immune T cell compartment and implicate TMN cells in durable immune responses.


Assuntos
Linfócitos T CD4-Positivos , Células T de Memória , Vacinação , Vacina contra Febre Amarela , Humanos , Linfócitos T CD4-Positivos/imunologia , Vacina contra Febre Amarela/imunologia , Células T de Memória/imunologia , Vírus da Febre Amarela/imunologia , Masculino , Feminino , Memória Imunológica/imunologia , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Adulto , Estudos Longitudinais , Fenótipo
17.
Artigo em Inglês | MEDLINE | ID: mdl-38791823

RESUMO

In the Americas, wild yellow fever (WYF) is an infectious disease that is highly lethal for some non-human primate species and non-vaccinated people. Specifically, in the Brazilian Atlantic Forest, Haemagogus leucocelaenus and Haemagogus janthinomys mosquitoes act as the major vectors. Despite transmission risk being related to vector densities, little is known about how landscape structure affects vector abundance and movement. To fill these gaps, we used vector abundance data and a model-selection approach to assess how landscape structure affects vector abundance, aiming to identify connecting elements for virus dispersion in the state of São Paulo, Brazil. Our findings show that Hg. leucocelaenus and Hg. janthinomys abundances, in highly degraded and fragmented landscapes, are mainly affected by increases in forest cover at scales of 2.0 and 2.5 km, respectively. Fragmented landscapes provide ecological corridors for vector dispersion, which, along with high vector abundance, promotes the creation of risk areas for WYF virus spread, especially along the border with Minas Gerais state, the upper edges of the Serra do Mar, in the Serra da Cantareira, and in areas of the metropolitan regions of São Paulo and Campinas.


Assuntos
Mosquitos Vetores , Febre Amarela , Brasil , Animais , Febre Amarela/transmissão , Mosquitos Vetores/virologia , Ecossistema , Clima Tropical , Vírus da Febre Amarela , Densidade Demográfica , Culicidae/virologia , Culicidae/fisiologia
18.
Sci Rep ; 14(1): 10842, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735993

RESUMO

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Assuntos
Epitopos de Linfócito T , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Vacinologia/métodos , Modelos Moleculares , Desenvolvimento de Vacinas , Simulação de Dinâmica Molecular , Linfócitos T Citotóxicos/imunologia
19.
PLoS One ; 19(5): e0302496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709760

RESUMO

Adult mosquitoes require regular sugar meals, including nectar, to survive in natural habitats. Both males and females locate potential sugar sources using sensory proteins called odorant receptors (ORs) activated by plant volatiles to orient toward flowers or honeydew. The yellow fever mosquito, Aedes aegypti (Linnaeus, 1762), possesses a large gene family of ORs, many of which are likely to detect floral odors. In this study, we have uncovered ligand-receptor pairings for a suite of Aedes aegypti ORs using a panel of environmentally relevant, plant-derived volatile chemicals and a heterologous expression system. Our results support the hypothesis that these odors mediate sensory responses to floral odors in the mosquito's central nervous system, thereby influencing appetitive or aversive behaviors. Further, these ORs are well conserved in other mosquitoes, suggesting they function similarly in diverse species. This information can be used to assess mosquito foraging behavior and develop novel control strategies, especially those that incorporate mosquito bait-and-kill technologies.


Assuntos
Aedes , Flores , Receptores Odorantes , Compostos Orgânicos Voláteis , Animais , Aedes/fisiologia , Aedes/metabolismo , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Feminino , Masculino , Febre Amarela/transmissão , Odorantes/análise , Plantas/metabolismo , Plantas/química
20.
J Am Mosq Control Assoc ; 40(2): 112-116, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697617

RESUMO

Among all living beings, mosquitoes account for the highest number of human fatalities. Our study aimed to determine mosquito egg abundance fluctuation from 2015 to 2020, in order to observe which years had the highest mosquito vector densities and whether they coincided with yellow fever virus outbreaks in both human and nonhuman primates. The study area included Atlantic Forest fragments in the state of Rio de Janeiro. Studies from the Diptera Laboratory at FIOCRUZ were selected and compared along a timeline period of the field collections. The highest peak in egg abundance from the analyzed studies was observed from 2016 to 2017 and from 2015 to 2016. The lowest egg abundance was during the collection periods from 2018 to 2019 and 2019 to 2020. The species with the highest abundance throughout all the periods of the studies analyzed was Haemagogus leucocelaenus, representing 87% of all epidemiological species identified. The species with the lowest abundance was Hg. Janthinomys, representing only 1%. Monitoring the population of mosquitoes is imperative for disease surveillance, as the rise in specimens of various vector species directly impacts the occurrence of yellow fever cases in both nonhuman primates and human populations.


Assuntos
Culicidae , Surtos de Doenças , Florestas , Mosquitos Vetores , Febre Amarela , Animais , Brasil/epidemiologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Mosquitos Vetores/fisiologia , Culicidae/fisiologia , Humanos , Densidade Demográfica , Dinâmica Populacional , Vírus da Febre Amarela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA