Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
Anal Biochem ; 691: 115551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702023

RESUMO

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Assuntos
Técnicas Eletroquímicas , Impressão Molecular , Fenilenodiaminas , Timol , Fenilenodiaminas/química , Timol/análise , Timol/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Polímeros Molecularmente Impressos/química , Carbono/química , Reprodutibilidade dos Testes
2.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608329

RESUMO

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Assuntos
Sobrevivência Celular , Cicloexilaminas , Desenho de Fármacos , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Piperazinas , Humanos , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/síntese química , Piperazinas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Relação Estrutura-Atividade , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Relação Dose-Resposta a Droga , Espécies Reativas de Oxigênio/metabolismo , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos
3.
J Colloid Interface Sci ; 667: 450-459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38643742

RESUMO

Single-atom catalysts (SACs) have attracted extensive attention in the field of catalysis due to their excellent catalytic ability and enhanced atomic utilization, but the multi-mode single-atom nanozymes for biosensors remain a challenging issue. In this work, iron-doped carbon dots (Fe CDs) were loaded onto the edges and pores of Mo SACs with nanoflower morphology; accordingly, a composite material Fe CDs/Mo SACs was prepared successfully, which improves the catalytic performance and develops a fluorescence mode without changing the original morphology. The steady-state kinetic data indicates that the material prepared have better affinity for substrates and faster reaction rates under optimized conditions. The specific kinetic parameters Km and Vmax were calculated as 0.39 mM and 7.502×10-7 M·s-1 respectively. The excellent peroxidase-like activity of Fe CDs/Mo SACs allows H2O2 to decompose into •OH, which in turn oxidizes colorless o-phenylenediamine (OPD) to yellow 2,3-diaminophenazine (DAP). At the same time, the fluorescence signal of Fe CDs/Mo SACs quenches obviously by DAP at 460 nm through internal filtration effect (IFE), while the characteristic fluorescence response of DAP gradually increases at 590 nm. Based on this sensing mechanism, a sensitive and accurate dual-mode (colorimetric and ratiometric fluorescent) sensor was constructed to detect H2O2 and uric acid, and the rate of recovery and linearity were acceptable for the detection of UA in human serum and urine samples. This method provides a new strategy for rapid and sensitive detection of UA, and also broadens the development of SACs in the field of biosensors.


Assuntos
Carbono , Peróxido de Hidrogênio , Ferro , Molibdênio , Pontos Quânticos , Ácido Úrico , Ácido Úrico/análise , Ácido Úrico/urina , Ácido Úrico/sangue , Ácido Úrico/química , Molibdênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Carbono/química , Ferro/química , Pontos Quânticos/química , Catálise , Humanos , Técnicas Biossensoriais , Limite de Detecção , Tamanho da Partícula , Nanoestruturas/química , Propriedades de Superfície , Fenilenodiaminas/química
4.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652326

RESUMO

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Assuntos
Cobalto , Colorimetria , Glutationa Transferase , Compostos de Manganês , Nanopartículas Metálicas , Óxidos , Polietilenoimina , Prata , Polietilenoimina/química , Prata/química , Cobalto/química , Óxidos/química , Compostos de Manganês/química , Nanopartículas Metálicas/química , Colorimetria/métodos , Glutationa Transferase/metabolismo , Glutationa Transferase/química , Limite de Detecção , Oxirredutases/química , Oxirredutases/metabolismo , Humanos , Glutationa/química , Oxirredução , Técnicas Biossensoriais/métodos , Fenilenodiaminas/química , Nanoestruturas/química
5.
Biosens Bioelectron ; 257: 116338, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677017

RESUMO

Foodborne pathogens have a substantial bearing on food safety and environmental health. The development of automated, portable and compact devices is essential for the on-site and rapid point-of-care testing (POCT) of bacteria. Here, this work developed a micro-automated microfluidic device for detecting bacteria, such as Escherichia coli (E. coli) O157:H7, using a seashell-like microfluidic chip (SMC) as an analysis and mixing platform. The automated device integrates a colorimetric/fluorescent system for the metabolism of copper (Cu2+) by E. coli affecting o-phenylenediamine (OPD) for concentration analysis. A smartphone was used to read the RGB data of the chip reaction reservoir to detect colorimetric and fluorescence patterns in the concentration range of 102-106 CFU mL-1. The automated device overcomes the low efficiency and tedious steps of traditional detection and enables high-precision automated detection that can be applied to POCT in the field, providing an ideal solution for broadening the application of E. coli detection.


Assuntos
Técnicas Biossensoriais , Colorimetria , Cobre , Desenho de Equipamento , Escherichia coli O157 , Microbiologia de Alimentos , Dispositivos Lab-On-A-Chip , Testes Imediatos , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Escherichia coli O157/isolamento & purificação , Humanos , Colorimetria/instrumentação , Cobre/química , Smartphone/instrumentação , Doenças Transmitidas por Alimentos/microbiologia , Fenilenodiaminas/química , Infecções por Escherichia coli/microbiologia , Contaminação de Alimentos/análise
6.
Angew Chem Int Ed Engl ; 63(21): e202402537, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509827

RESUMO

Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Ferroptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Simulação de Acoplamento Molecular , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia
7.
Dalton Trans ; 53(14): 6311-6322, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38487871

RESUMO

While platinum(II)-based drugs continue to be employed in cancer treatments, the escalating occurrence of severe side effects has spurred researchers to explore novel sources for potential therapeutic agents. Notably, cobalt(III) has emerged as a subject of considerable interest due to its ubiquitous role in human physiology. Several studies investigating the anticancer effects of Salphen complexes derived from cobalt(III) have unveiled intriguing antiproliferative properties. In a bid to enhance our understanding of this class of compounds, we synthesized and characterized two novel half Salphen cobalt(III) complexes. Both compounds exhibited notable stability, even in the presence of physiologically relevant concentrations of glutathione. The application of spectroscopic and computational methodologies unravelled their interactions with duplex and G4-DNAs, suggesting an external binding affinity for these structures, with preliminary indications of selectivity trends. Importantly, antiproliferative assays conducted on 3D cultured SW-1353 cancer cells unveiled a compelling anticancer activity at low micromolar concentrations, underscoring the potential therapeutic efficacy of this novel class of cobalt(III) complexes.


Assuntos
Antineoplásicos , Complexos de Coordenação , Humanos , Complexos de Coordenação/química , Cobalto/farmacologia , Cobalto/química , Fenilenodiaminas/química , DNA/química , Antineoplásicos/química
8.
Environ Sci Technol ; 58(13): 5921-5931, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512777

RESUMO

Identifying transformed emerging contaminants in complex environmental compartments is a challenging but meaningful task. Substituted para-phenylenediamine quinones (PPD-quinones) are emerging contaminants originating from rubber antioxidants and have been proven to be toxic to the aquatic species, especially salmonids. The emergence of multiple PPD-quinones in various environmental matrices and evidence of their specific hazards underscore the need to understand their environmental occurrences. Here, we introduce a fragmentation pattern-based nontargeted screening strategy combining full MS/All ion fragmentation/neutral loss-ddMS2 scans to identify potential unknown PPD-quinones in different environmental matrices. Using diagnostic fragments of m/z 170.0600, 139.0502, and characteristic neutral losses of 199.0633, 138.0429 Da, six known and three novel PPD-quinones were recognized in air particulates, surface soil, and tire tissue. Their specific structures were confirmed, and their environmental concentration and composition profiles were clarified with self-synthesized standards. N-(1-methylheptyl)-N'-phenyl-1,4-benzenediamine quinone (8PPD-Q) and N,N'-di(1,3-dimethylbutyl)-p-phenylenediamine quinone (66PD-Q) were identified and quantified for the first time, with their median concentrations found to be 0.02-0.21 µg·g-1 in tire tissue, 0.40-2.76 pg·m-3 in air particles, and 0.23-1.02 ng·g-1 in surface soil. This work provides new evidence for the presence of unknown PPD-quinones in the environment, showcasing a potential strategy for screening emerging transformed contaminants in the environment.


Assuntos
Fenilenodiaminas , Quinonas , Fenilenodiaminas/química , Benzoquinonas , Solo
9.
Environ Pollut ; 340(Pt 2): 122828, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907191

RESUMO

Numerous toxic substances are directly and indirectly discharged by humans into water bodies, causing distress to the organisms living on it. 6PPD, an amino antioxidant from tires reacts with ozone to form 6PPD-Q, which has garnered global attention due to its lethal nature to various organisms. This review aims to provide an understanding of the sources, transformation, and fate of 6PPD-Q in water and the current knowledge on its effects on aquatic organisms. Furthermore, we discuss research gaps pertaining to the mechanisms by which 6PPD-Q acts within fish bodies. Previous studies have demonstrated the ubiquitous presence of 6PPD-Q in the environment, including air, water, and soil. Moreover, this compound has shown high lethality to certain fish species while not affecting others. Toxicological studies have revealed its impact on the nervous system, intestinal barrier function, cardiac function, equilibrium loss, and oxidative stress in various fish species. Additionally, exposure to 6PPD-Q has led to organ injury, lipid accumulation, and cytokine production in C. elegans and mice. Despite studies elucidating the lethal dose and effects of 6PPD-Q in fish species, the underlying mechanisms behind these symptoms remain unclear. Future studies should prioritize investigating the mechanisms underlying the lethality of 6PPD-Q in fish species to gain a better understanding of its potential effects on different organisms.


Assuntos
Aquicultura , Benzoquinonas , Peixes , Fenilenodiaminas , Água , Animais , Humanos , Camundongos , Caenorhabditis elegans , Pesqueiros , Fenilenodiaminas/química , Fenilenodiaminas/toxicidade , Benzoquinonas/química , Benzoquinonas/toxicidade , Peixes/metabolismo , Dose Letal Mediana
10.
Environ Sci Technol ; 57(49): 20813-20821, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032317

RESUMO

The photochemical degradation pathways of 6PPD-quinone (6PPDQ, 6PPD-Q), a toxic transformation product of the tire antiozonant 6PPD, were determined under simulated sunlight conditions typical of high-latitude surface waters. Direct photochemical degradation resulted in 6PPDQ half-lives ranging from 17.5 h at 20 °C to no observable degradation over 48 h at 4 °C. Sensitization of excited triplet-state pathways using Cs+ and Ar purging demonstrated that 6PPDQ does not decompose significantly from a triplet state relative to a singlet state. However, assessment of processes involving reactive oxygen species (ROS) quenchers and sensitizers indicated that singlet oxygen and hydroxyl radical do significantly contribute to the degradation of 6PPDQ. Investigation of these processes in natural lake waters indicated no difference in attenuation rates for direct photochemical processes at 20 °C. This suggests that direct photochemical degradation will dominate in warm waters, while indirect photochemical pathways will dominate in cold waters, involving ROS mediated by chromophoric dissolved organic matter (CDOM). Overall, the aquatic photodegradation rate of 6PPDQ will be strongly influenced by the compounding effects of environmental factors such as light screening and temperature on both direct and indirect photochemical processes. Transformation products were identified via UHPLC-Orbitrap mass spectrometry, revealing four major processes: (1) oxidation and cleavage of the quinone ring in the presence of ROS, (2) dealkylation, (3) rearrangement, and (4) deamination. These data indicate that 6PPDQ can photodegrade in cool, sunlit waters under the appropriate conditions: t1/2 = 17.4 h tono observable decrease (direct); t1/2 = 5.2-11.2 h (indirect, CDOM).


Assuntos
Benzoquinonas , Matéria Orgânica Dissolvida , Lagos , Fenilenodiaminas , Fotólise , Espécies Reativas de Oxigênio , Poluentes Químicos da Água , Benzoquinonas/química , Benzoquinonas/efeitos da radiação , Matéria Orgânica Dissolvida/química , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/efeitos da radiação , Fenilenodiaminas/química , Fenilenodiaminas/efeitos da radiação , Lagos/análise , Lagos/química
11.
Environ Pollut ; 334: 122116, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394053

RESUMO

Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 µm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment.


Assuntos
Matéria Orgânica Dissolvida , Fenilenodiaminas , Plásticos , Poluentes Químicos da Água , Matéria Orgânica Dissolvida/análise , Matéria Orgânica Dissolvida/química , Matéria Orgânica Dissolvida/classificação , Cromatografia Gasosa-Espectrometria de Massas , Plásticos/análise , Plásticos/química , Plásticos/classificação , Tamanho da Partícula , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/classificação , Fenilenodiaminas/análise , Fenilenodiaminas/química , Fenilenodiaminas/classificação , Medição de Risco
12.
Environ Sci Process Impacts ; 25(5): 901-911, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37042393

RESUMO

We here report chemical characteristics relevant to the fate and transport of the recently discovered environmental toxicant 6PPD-quinone (2-((4-methylpentan-2-yl)amino)-5-(phenylamino)cyclohexa-2,5-diene-1,4-dione or "6PPDQ"). 6PPDQ is a transformation product of the tire rubber antioxidant 6PPD that is ubiquitous in roadway environments, including atmospheric particulate matter, soils, runoff, and receiving waters, after dispersal from tire rubber use and wear on roadways. The aqueous solubility and octanol-water partitioning coefficient (i.e. log KOW) for 6PPDQ were measured to be 38 ± 10 µg L-1 and 4.30 ± 0.02, respectively. Within the context of analytical measurement and laboratory processing, sorption to various laboratory materials was evaluated, indicating that glass was largely inert but loss of 6PPDQ to other materials was common. Aqueous leaching simulations from tire tread wear particles (TWPs) indicated short term release of ∼5.2 µg 6PPDQ per gram TWP over 6 h under flow-through conditions. Aqueous stability tests observed a slight-to-moderate loss of 6PPDQ over 47 days (26 ± 3% loss) for pH 5, 7 and 9. These measured physicochemical properties suggest that 6PPDQ is generally poorly soluble but fairly stable over short time periods in simple aqueous systems. 6PPDQ can also leach readily from TWPs for subsequent environmental transport, posing high potential for adverse effects in local aquatic environments.


Assuntos
Benzoquinonas , Substâncias Perigosas , Fenilenodiaminas , Borracha , Poluentes Químicos da Água , Substâncias Perigosas/química , Material Particulado/química , Água/química , Poluentes Químicos da Água/química , Fenilenodiaminas/química , Benzoquinonas/química , Solubilidade
13.
J Hazard Mater ; 452: 131245, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958160

RESUMO

Tire wear compounds N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPD-quinone have been considered as emerging pollutants and attracted much attention recently. As an antioxidant and antiozonant widely used, 6PPD would be released during the production or use of rubber-related products. Because of the mass production and wide use of rubber-related products, 6PPD and 6PPD-quinone have been identified to be ubiquitous in the environment. In this study, we firstly reviewed the current available literature on the analytical procedures, concentrations and distribution of 6PPD and 6PPD-quinone, and then investigated the potential toxic effects of these two compounds on aquatic organisms. Current studies have been mainly focused on the occurrence of 6PPD and 6PPD-quinone in dust and water, while available information on atmosphere, soil, sediments and organisms is limited. The fate and distribution of 6PPD and 6PPD-quinone would be influenced by environmental factors such as temperature, illumination, and storm events, etc. Although 6PPD and 6PPD-quinone have potential adverse effects on aquatic organisms, and 6PPD-quinone has species-specific toxicity, toxicological mechanisms of these compounds are still unclear. Based on the review and analysis of current studies, some suggestions for future research of 6PPD and 6PPD-quinone are given.


Assuntos
Benzoquinonas , Poluentes Ambientais , Fenilenodiaminas , Borracha , Benzoquinonas/análise , Benzoquinonas/química , Benzoquinonas/toxicidade , Poeira , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Fenilenodiaminas/análise , Fenilenodiaminas/química , Fenilenodiaminas/toxicidade , Borracha/química , Borracha/toxicidade , Água/química
14.
Environ Sci Technol ; 57(14): 5978-5987, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36992570

RESUMO

Rapid urbanization drives increased emission of tire wear particles (TWPs) and the contamination of a transformation product derived from tire antioxidant, termed as N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), with adverse implications for terrestrial ecosystems and human health. However, whether and how 6PPD-Q could be formed during the aging of TWPs in soils remains poorly understood. Here, we examine the accumulation and formation mechanisms of 6PPD-Q during the aging of TWPs in soils. Our results showed that biodegradation predominated the fate of 6PPD-Q in soils, whereas anaerobic flooded conditions were conducive to the 6PPD-Q formation and thus resulted in a ∼3.8-fold higher accumulation of 6PPD-Q in flooded soils than wet soils after aging of 60 days. The 6PPD-Q formation in flooded soils was enhanced by Fe reduction-coupled 6PPD oxidation in the first 30 days, while the transformation of TWP-harbored environmentally persistent free radicals (EPFRs) to superoxide radicals (O2•-) under anaerobic flooded conditions further dominated the formation of 6PPD-Q in the next 30 days. This study provides significant insight into understanding the aging behavior of TWPs and highlights an urgent need to assess the ecological risk of 6PPD-Q in soils.


Assuntos
Benzoquinonas , Fenilenodiaminas , Solo , Áreas Alagadas , Humanos , Anaerobiose , Radicais Livres/química , Ferro/química , Fenilenodiaminas/química , Benzoquinonas/química , Oxirredução , Biodegradação Ambiental , Molhabilidade
15.
Environ Sci Technol ; 57(14): 5621-5632, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36996351

RESUMO

6PPD, a tire rubber antioxidant, poses substantial ecological risks because it can form a highly toxic quinone transformation product (TP), 6PPD-quinone (6PPDQ), during exposure to gas-phase ozone. Important data gaps exist regarding the structures, reaction mechanisms, and environmental occurrence of TPs from 6PPD ozonation. To address these data gaps, gas-phase ozonation of 6PPD was conducted over 24-168 h and ozonation TPs were characterized using high-resolution mass spectrometry. The probable structures were proposed for 23 TPs with 5 subsequently standard-verified. Consistent with prior findings, 6PPDQ (C18H22N2O2) was one of the major TPs in 6PPD ozonation (∼1 to 19% yield). Notably, 6PPDQ was not observed during ozonation of 6QDI (N-(1,3-dimethylbutyl)-N'-phenyl-p-quinonediimine), indicating that 6PPDQ formation does not proceed through 6QDI or associated 6QDI TPs. Other major 6PPD TPs included multiple C18H22N2O and C18H22N2O2 isomers, with presumptive N-oxide, N,N'-dioxide, and orthoquinone structures. Standard-verified TPs were quantified in roadway-impacted environmental samples, with total concentrations of 130 ± 3.2 µg/g in methanol extracts of tire tread wear particles (TWPs), 34 ± 4 µg/g-TWP in aqueous TWP leachates, 2700 ± 1500 ng/L in roadway runoff, and 1900 ± 1200 ng/L in roadway-impacted creeks. These data demonstrate that 6PPD TPs are likely an important and ubiquitous class of contaminants in roadway-impacted environments.


Assuntos
Antioxidantes , Benzoquinonas , Fenilenodiaminas , Borracha , Antioxidantes/química , Ozônio/química , Borracha/química , Água/química , Fenilenodiaminas/química , Benzoquinonas/química
16.
Environ Sci Technol ; 57(13): 5216-5230, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961979

RESUMO

The discovery that the commercial rubber antidegradant 6PPD reacts with ozone (O3) to produce a highly toxic quinone (6PPDQ) spurred a significant research effort into nontoxic alternatives. This work has been hampered by lack of a detailed understanding of the mechanism of protection that 6PPD affords rubber compounds against ozone. Herein, we report high-level density functional theory studies into early steps of rubber and PPD (p-phenylenediamine) ozonation, identifying key steps that contribute to the antiozonant activity of PPDs. In this, we establish that our density functional theory approach can achieve chemical accuracy for many ozonation reactions, which are notoriously difficult to model. Using adiabatic energy decomposition analysis, we examine and dispel the notion that one-electron charge transfer initiates ozonation in these systems, as is sometimes argued. Instead, we find direct interaction between O3 and the PPD aromatic ring is kinetically accessible and that this motif is more significant than interactions with PPD nitrogens. The former pathway results in a hydroxylated PPD intermediate, which reacts further with O3 to afford 6PPD hydroquinone and, ultimately, 6PPDQ. This mechanism directly links the toxicity of 6PPDQ to the antiozonant function of 6PPD. These results have significant implications for development of alternative antiozonants, which are discussed.


Assuntos
Benzoquinonas , Fenilenodiaminas , Borracha , Poluentes Químicos da Água , Purificação da Água , Transporte de Elétrons , Ozônio/química , Borracha/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Fenilenodiaminas/química , Benzoquinonas/química , Cinética
17.
Environ Sci Technol ; 57(7): 2779-2791, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36758188

RESUMO

Recently, roadway releases of N,N'-substituted p-phenylenediamine (PPD) antioxidants and their transformation products (TPs) received significant attention due to the highly toxic 6PPD-quinone. However, the occurrence of PPDs and TPs in recycled tire rubber products remains uncharacterized. Here, we analyzed tire wear particles (TWPs), recycled rubber doormats, and turf-field crumb rubbers for seven PPD antioxidants, five PPD-quinones (PPDQs), and five other 6PPD TPs using liquid chromatography-tandem mass spectrometry. PPD antioxidants, PPDQs, and other TPs were present in all samples with chemical profiles dominated by 6PPD, DTPD, DPPD, and their corresponding PPDQs. Interestingly, the individual [PPDQ]/[PPD] and [TP]/[PPD] ratios significantly increased as total concentrations of the PPD-derived chemical decreased, indicating that TPs (including PPDQs) dominated the PPD-derived compounds with increased environmental weathering. Furthermore, we quantified 15 other industrial rubber additives (including bonding agents, vulcanization accelerators, benzotriazole and benzothiazole derivatives, and diphenylamine antioxidants), observing that PPD-derived chemical concentrations were 0.5-6 times higher than these often-studied additives. We also screened various other elastomeric consumer products, consistently detecting PPD-derived compounds in lab stoppers, sneaker soles, and rubber garden hose samples. These data emphasize that PPD antioxidants, PPDQs, and related TPs are important, previously overlooked contaminant classes in tire rubbers and elastomeric consumer products.


Assuntos
Antioxidantes , Benzoquinonas , Fenilenodiaminas , Borracha , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/classificação , Fenilenodiaminas/análise , Fenilenodiaminas/química , Fenilenodiaminas/classificação , Borracha/química , Benzoquinonas/análise , Benzoquinonas/química , Benzoquinonas/classificação , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Sci Total Environ ; 866: 161373, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621472

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPDQ), one of the oxidation products of rubber antioxidant 6PPD, has been identified as a novel toxicant to many organisms. However, an understanding of its underlying toxicity mechanisms remained elusive. In this study, we reported that 6PPDQ could react with deoxyguanosine to form one isomer of 3-hydroxy-1, N2-6PPD-etheno-2'-deoxyguanosine (6PPDQ-dG). Next, by employing an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method, we found that 6PPDQ-dG could be detected in genomic DNA from 6PPDQ-treated mammalian cells and Chlamydomonas reinhardtii. We observed positive correlations between concentrations of exogenous 6PPDQ and the amounts of 6PPDQ-dG, and a recovery period after removal of 6PPDQ also led to decreased levels of the adduct in both organisms, which suggested potential repair pathways for this adduct in mammalian cells and unicellular algae. Additionally, we extracted the genomic DNA from tissues of frozen capelin and observed substantial amounts of the adduct in roe and gills, as well as livers at a relatively lower level. These results provided insights into the target organs and tissues that 6PPDQ might accumulate or harm fish. Overall, our study provides a new understanding of the mechanisms of toxicity of 6PPDQ in mammalian cells and aqueous organisms.


Assuntos
Antioxidantes , Benzoquinonas , Chlamydomonas reinhardtii , Adutos de DNA , Fenilenodiaminas , Cromatografia Líquida de Alta Pressão , Desoxiguanosina/química , Adutos de DNA/metabolismo , Quinonas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Fenilenodiaminas/química , Fenilenodiaminas/metabolismo , Fenilenodiaminas/toxicidade , Benzoquinonas/química , Benzoquinonas/metabolismo , Benzoquinonas/toxicidade , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Humanos , Células A549
19.
Dalton Trans ; 52(10): 2966-2975, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36444991

RESUMO

DNA G-rich sequences can organize in four-stranded structures called G-quadruplexes (G4s). These motifs are enriched in significant sites within the human genomes, including telomeres and promoters of cancer related genes. For instance, KIT proto-oncogene promoter, associated with diverse cancers, contains three adjacent G4 units, namely Kit2, SP, and Kit1. Aiming at finding new and selective G-quadruplex binders, we have synthesized and characterized five non-charged metal complexes of Pt(II), Pd(II), Ni(II), Cu(II) and Zn(II) of a chlorine substituted Salphen ligand. The crystal structure of the Pt(II) and Pd(II) complexes was determined by XRPD. FRET measurements indicated that Pt(II) and Pd(II) compounds stabilize Kit1 and Kit2 G4s but not SP, telomeric and double stranded DNA. Spectroscopic investigations (UV-Vis, circular dichroism and fluorescence) suggested the Cu(II) complex as the most G4-selective compound. Interestingly, docking simulations indicate that the synthesized compounds fit groove binding pockets of both Kit1 and Kit2 G4s. Moreover, they exhibited dose-dependent cytotoxic activity in MCF-7, HepG2 and HeLa cancer cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Quadruplex G , Humanos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Fenilenodiaminas/química , Dicroísmo Circular , Telômero
20.
Org Biomol Chem ; 21(3): 621-631, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36562504

RESUMO

The reaction between 3,5-di(tert-butyl)-o-benzoquinone 1 and o-phenylenediamine performed under oxidative conditions that is highly sensitive to the reaction conditions (type of solvent, ratio of reactants, and duration of the reaction) gives rise to various derivatives of a new condensed 10H-quinoxalino[3,2,1-kl]phenoxazin-10-one heteropentacyclic system. The reaction of 1 with N-phenyl-o-phenylenediamine results in the formation of three phenazine-like compounds and, unexpectedly, a derivative of a new spiro[1,3]dioxole-2,2'-furanyl-1H-benzo[d]imidazole system. The molecular structures of the prepared compounds were authenticated by NMR, mass spectra and X-ray crystallography data.


Assuntos
Benzoquinonas , Fenilenodiaminas , Estrutura Molecular , Fenilenodiaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...