Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.931
Filtrar
1.
PLoS One ; 19(5): e0298827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722949

RESUMO

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Assuntos
Adipócitos , Glutationa Peroxidase , Sistema de Sinalização das MAP Quinases , Animais , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Adipócitos/metabolismo , Adipócitos/citologia , Suínos , Diferenciação Celular/genética , Proliferação de Células , Adipogenia/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
2.
PLoS One ; 19(5): e0301690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701072

RESUMO

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Assuntos
Desenvolvimento Muscular , Sarcômeros , Animais , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Epigênese Genética , Técnicas de Inativação de Genes , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Mioblastos/metabolismo , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
3.
Acta Biomater ; 180: 279-294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604466

RESUMO

The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.


Assuntos
Tendões , Tenócitos , Engenharia Tecidual , Humanos , Tendões/citologia , Tendões/fisiologia , Engenharia Tecidual/métodos , Tenócitos/citologia , Tenócitos/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Modelos Biológicos , Técnicas de Cocultura , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Junção Miotendínea
4.
Sci Rep ; 14(1): 9370, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653980

RESUMO

Culture of muscle cells from livestock species has typically involved laborious enzyme-based approaches that yield heterogeneous populations with limited proliferative and myogenic differentiation capacity, thus limiting their use in physiologically-meaningful studies. This study reports the use of a simple explant culture technique to derive progenitor cell populations from porcine muscle that could be maintained and differentiated long-term in culture. Fragments of semitendinosus muscle from 4 to 8 week-old piglets (n = 4) were seeded on matrigel coated culture dishes to stimulate migration of muscle-derived progenitor cells (MDPCs). Cell outgrowths appeared within a few days and were serially passaged and characterised using RT-qPCR, immunostaining and flow cytometry. MDPCs had an initial mean doubling time of 1.4 days which increased to 2.5 days by passage 14. MDPC populations displayed steady levels of the lineage-specific markers, PAX7 and MYOD, up until at least passage 2 (positive immunostaining in about 40% cells for each gene), after which the expression of myogenic markers decreased gradually. Remarkably, MDPCs were able to readily generate myotubes in culture up until passage 8. Moreover, a decrease in myogenic capacity during serial passaging was concomitant with a gradual increase in the expression of the pre-adipocyte markers, CD105 and PDGFRA, and an increase in the ability of MDPCs to differentiate into adipocytes. In conclusion, explant culture provided a simple and efficient method to harvest enriched myogenic progenitors from pig skeletal muscle which could be maintained long-term and differentiated in vitro, thus providing a suitable system for studies on porcine muscle biology and applications in the expanding field of cultured meat.


Assuntos
Diferenciação Celular , Músculo Esquelético , Células-Tronco , Animais , Suínos , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Desenvolvimento Muscular , Células Cultivadas , Técnicas de Cultura de Células/métodos , Proliferação de Células , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo
5.
Life Sci Space Res (Amst) ; 41: 146-157, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670641

RESUMO

Astronauts are exposed to severely stressful physiological conditions due to microgravity and increased space radiation. Space environment affects every organ and cell in the body and the significant adverse effects of long-term weightlessness include muscle atrophy and deterioration of the skeleton (spaceflight osteopenia). Amorphous Calcium Carbonate (ACC) emerges as a promising candidate for prevention of these effects, owing to its unique physicochemical properties and its potential to address the intricately linked nature of bone-muscle crosstalk. Reported here are two studies carried out on the International Space Station (ISS). The first, performed in 2018 as a part of the Ramon-Spacelab project, was a preliminary experiment, in which stromal murine cells were differentiated into osteoblasts when ACC was added to the culture medium. A parallel experiment was done on Earth as a control. The second study was part of Axiom-1's Rakia project mission launched to the ISS on 2022 utilizing organ-on-a-chip methodology with a specially designed autonomous module. In this experiment, human bone-marrow derived mesenchymal stem cells (hBM-MSCs) and human primary muscle cells were cultured in the presence or absence of ACC, in duplicates. The results showed that ACC enhanced differentiation of human primary skeletal muscle cells into myotubes. Similarly, hBM-MSCs were differentiated significantly better into osteocytes in the presence of ACC leading to increased calcium deposits. The results, combined with previous data, support the use of ACC as an advantageous supplement for preventing muscle and bone deterioration in outer space conditions, facilitating extended extraterrestrial voyages and colonization.


Assuntos
Carbonato de Cálcio , Diferenciação Celular , Células-Tronco Mesenquimais , Fibras Musculares Esqueléticas , Osteogênese , Ausência de Peso , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Carbonato de Cálcio/química , Células Cultivadas , Voo Espacial , Camundongos
6.
ACS Biomater Sci Eng ; 10(5): 3500-3512, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38563398

RESUMO

Cultured meat is a meat analogue produced by in vitro cell culture, which can replace the conventional animal production system. Tissue engineering using myogenic cells and biomaterials is a core technology for cultured meat production. In this study, we provide an efficient and economical method to produce skeletal muscle tissue-like structures by culturing chicken myoblasts in a fetal bovine serum (FBS)-free medium and plant-derived scaffolds. An FBS-free medium supplemented with 10% horse serum (HS) and 5% chick embryo extract (CEE) was suitable for the proliferation and differentiation of chicken myoblasts. Decellularized celery scaffolds (Decelery), manufactured using 1% sodium dodecyl sulfate (SDS), were nontoxic to cells and supported myoblast proliferation and differentiation. Decelery could support the 3D culture of chicken myoblasts, which could adhere and coagulate to the surface of the Decelery and form MYH1E+ and F-actin+ myotubes. After 2 weeks of culture on Decelery, fully grown myoblasts completely covered the surface of the scaffolds and formed fiber-like myotube structures. They further differentiated to form spontaneously contracting myofiber-like myotubes on the scaffold surface, indicating that the Decelery scaffold system could support the formation of a functional mature myofiber structure. In addition, as the spontaneously contracting myofibers did not detach from the surface of the Decelery, the Decelery system is a suitable biomaterial for the long-term culture and maintenance of the myofiber structures.


Assuntos
Diferenciação Celular , Galinhas , Músculo Esquelético , Mioblastos , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Músculo Esquelético/citologia , Engenharia Tecidual/métodos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Células Cultivadas
7.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552732

RESUMO

Canonical Wnt signaling is involved in skeletal muscle cell biology. The exact way in which this pathway exerts its contribution to myogenesis or neuromuscular junctions (NMJ) is a matter of debate. Next to the common co-receptors of canonical Wnt signaling, Lrp5 and Lrp6, the receptor tyrosine kinase MuSK was reported to bind at NMJs WNT glycoproteins by its extracellular cysteine-rich domain. Previously, we reported canonical Wnt signaling being active in fast muscle fiber types. Here, we used conditional Lrp5 or Lrp6 knockout mice to investigate the role of these receptors in muscle cells. Conditional double knockout mice died around E13 likely due to ectopic expression of the Cre recombinase. Phenotypes of single conditional knockout mice point to a very divergent role for the two receptors. First, muscle fiber type distribution and size were changed. Second, canonical Wnt signaling reporter mice suggested less signaling activity in the absence of Lrps. Third, expression of several myogenic marker genes was changed. Fourth, NMJs were of fragmented phenotype. Fifth, recordings revealed impaired neuromuscular transmission. In sum, our data show fundamental differences in absence of each of the Lrp co-receptors and suggest a differentiated view of canonical Wnt signaling pathway involvement in adult skeletal muscle cells.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Junção Neuromuscular , Receptores Wnt , Animais , Camundongos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Knockout , Músculo Esquelético/metabolismo , Junção Neuromuscular/genética , Junção Neuromuscular/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Receptores Wnt/genética , Receptores Wnt/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(24): e2103615119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671424

RESUMO

Skeletal muscle atrophy is commonly associated with aging, immobilization, muscle unloading, and congenital myopathies. Generation of mature muscle cells from skeletal muscle satellite cells (SCs) is pivotal in repairing muscle tissue. Exercise therapy promotes muscle hypertrophy and strength. Primary cilium is implicated as the mechanical sensor in some mammalian cells, but its role in skeletal muscle cells remains vague. To determine mechanical sensors for exercise-induced muscle hypertrophy, we established three SC-specific cilium dysfunctional mouse models-Myogenic factor 5 (Myf5)-Arf-like Protein 3 (Arl3)-/-, Paired box protein Pax-7 (Pax7)-Intraflagellar transport protein 88 homolog (Ift88)-/-, and Pax7-Arl3-/--by specifically deleting a ciliary protein ARL3 in MYF5-expressing SCs, or IFT88 in PAX7-expressing SCs, or ARL3 in PAX7-expressing SCs, respectively. We show that the Myf5-Arl3-/- mice develop grossly the same as WT mice. Intriguingly, mechanical stimulation-induced muscle hypertrophy or myoblast differentiation is abrogated in Myf5-Arl3-/- and Pax7-Arl3-/- mice or primary isolated Myf5-Arl3-/- and Pax7-Ift88-/- myoblasts, likely due to defective cilia-mediated Hedgehog (Hh) signaling. Collectively, we demonstrate SC cilia serve as mechanical sensors and promote exercise-induced muscle hypertrophy via Hh signaling pathway.


Assuntos
Cílios , Força Muscular , Condicionamento Físico Animal , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Cílios/fisiologia , Terapia por Exercício , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/fisiologia
9.
Sci Rep ; 12(1): 2841, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181706

RESUMO

Skeletal muscle satellite cells cultured on soft surfaces (12 kPa) show improved differentiation than cells cultured on stiff surfaces (approximately 100 kPa). To better understand the reasons for this, we performed an RNA-Seq analysis for a single satellite cell clone (C1F) derived from the H2kb-tsA58 immortomouse, which differentiates into myotubes under tightly regulated conditions (withdrawal of É£-interferon, 37 °C). The largest change in overall gene expression occurred at day 1, as cells switched from proliferation to differentiation. Surprisingly, further analysis showed that proliferating C1F cells express Pax3 and not Pax7, confirmed by immunostaining, yet their subsequent differentiation into myotubes is normal, and enhanced on softer surfaces, as evidenced by significantly higher expression levels of myogenic regulatory factors, sarcomeric genes, enhanced fusion and improved myofibrillogenesis. Levels of mRNA encoding extracellular matrix structural constituents and related genes were consistently upregulated on hard surfaces, suggesting that a consequence of differentiating satellite cells on hard surfaces is that they attempt to manipulate their niche prior to differentiating. This comprehensive RNA-Seq dataset will be a useful resource for understanding Pax3 expressing cells.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular/genética , Fator de Transcrição PAX3/genética , Propriedades de Superfície , Animais , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/metabolismo , RNA-Seq , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Análise de Célula Única
10.
Sci Rep ; 12(1): 1082, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058512

RESUMO

Contractile activity is a fundamental property of skeletal muscles. We describe the establishment of a "feeder-supported in vitro exercise model" using human-origin primary satellite cells, allowing highly-developed contractile myotubes to readily be generated by applying electrical pulse stimulation (EPS). The use of murine fibroblasts as the feeder cells allows biological responses to EPS in contractile human myotubes to be selectively evaluated with species-specific analyses such as RT-PCR. We successfully applied this feeder-supported co-culture system to myotubes derived from primary satellite cells obtained from sporadic inclusion body myositis (sIBM) patients who are incapable of strenuous exercise testing. Our results demonstrated that sIBM myotubes possess essentially normal muscle functions, including contractility development, de novo sarcomere formation, and contraction-dependent myokine upregulation, upon EPS treatment. However, we found that some of sIBM myotubes, but not healthy control myotubes, often exhibit abnormal cytoplasmic TDP-43 accumulation upon EPS-evoked contraction, suggesting potential pathogenic involvement of the contraction-inducible TDP-43 distribution peculiar to sIBM. Thus, our "feeder-supported in vitro exercise model" enables us to obtain contractile human-origin myotubes, potentially utilizable for evaluating exercise-dependent intrinsic and pathogenic properties of patient muscle cells. Our approach, using feeder layers, further expands the usefulness of the "in vitro exercise model".


Assuntos
Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Estimulação Elétrica/métodos , Células Alimentadoras/metabolismo , Humanos , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Miosite de Corpos de Inclusão/fisiopatologia , Sarcômeros/fisiologia , Células Satélites de Músculo Esquelético/metabolismo
11.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35059739

RESUMO

Ginsenoside Rg3 (Rg3), amplified by iterative heating processing with fresh ginseng, has a broad range of pharmacological activities and improves mitochondrial biogenesis in skeletal muscle. However, thus far no study has examined how Rg3 affects myotube growth or muscle atrophy, to the best of the authors' knowledge. The present study was conducted to examine the myogenic effect of Rg3 on dexamethasone (DEX)­induced myotube atrophy and the underlying molecular mechanisms. Rg3 activated Akt/mammalian target of rapamycin signaling to prevent DEX­induced myotube atrophy thereby stimulating the expression of muscle­specific genes, including myosin heavy chain and myogenin, and suppressing muscle­specific ubiquitin ligases as demonstrated by immunoblotting and immunostaining assays. Furthermore, Rg3 efficiently prevented DEX­triggered mitochondrial dysfunction of myotubes through peroxisome proliferator­activated receptor­Î³ coactivator1α activities and its mitochondrial biogenetic transcription factors, nuclear respiratory factor­1 and mitochondrial transcription factor A. These were confirmed by immunoblotting, luciferase assays, RT­qPCR and mitochondrial analysis measuring the levels of ROS, ATP and membrane potential. By providing a mechanistic insight into the effect of Rg3 on myotube atrophy, the present study suggested that Rg3 has potential as a therapeutic or nutraceutical remedy to intervene in muscle aging or diseases including cancer cachexia.


Assuntos
Ginsenosídeos/farmacologia , Glucocorticoides/toxicidade , Mitocôndrias Musculares/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/metabolismo , Biogênese de Organelas , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/toxicidade , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Camundongos , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Substâncias Protetoras/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
12.
Nutrients ; 13(12)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34960083

RESUMO

Emerging research in human studies suggests an association among vitamin B6, sarcopenia, and muscle strength. However, very little is known regarding its potential role at the cellular level, especially in muscle satellite cells. Therefore, to determine whether vitamin B6 affects the satellite cells, we isolated single myofibers from muscles of vitamin B6-deficient and vitamin B6-supplemented mice. Subsequently, we subjected them to single myofiber culture and observed the number and function of the satellite cells, which remained in their niche on the myofibers. Prior to culture, the vitamin B6-deficient myofibers exhibited a significantly lower number of quiescent satellite cells, as compared to that in the vitamin B6-supplemented myofibers, thereby suggesting that vitamin B6 deficiency induces a decline in the quiescent satellite cell pool in mouse muscles. After 48 and 72 h of culture, the number of proliferating satellite cells per cluster was similar between the vitamin B6-deficient and -supplemented myofibers, but their numbers decreased significantly after culturing the myofibers in vitamin B6-free medium. After 72 h of culture, the number of self-renewing satellite cells per cluster was significantly lower in the vitamin B6-deficient myofibers, and the vitamin B6-free medium further decreased this number. In conclusion, vitamin B6 deficiency appears to reduce the number of quiescent satellite cells and suppress the proliferation and self-renewal of satellite cells during myogenesis.


Assuntos
Fibras Musculares Esqueléticas/citologia , Células Satélites de Músculo Esquelético/fisiologia , Deficiência de Vitamina B 6/metabolismo , Vitamina B 6/farmacologia , Animais , Peso Corporal , Linhagem Celular , Ingestão de Alimentos , Masculino , Camundongos , Vitamina B 6/administração & dosagem
13.
Dev Cell ; 56(24): 3349-3363.e6, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34932950

RESUMO

Myoblast fusion is essential for muscle development and regeneration. Yet, it remains poorly understood how mononucleated myoblasts fuse with preexisting fibers. We demonstrate that ERK1/2 inhibition (ERKi) induces robust differentiation and fusion of primary mouse myoblasts through a linear pathway involving RXR, ryanodine receptors, and calcium-dependent activation of CaMKII in nascent myotubes. CaMKII activation results in myotube growth via fusion with mononucleated myoblasts at a fusogenic synapse. Mechanistically, CaMKII interacts with and regulates MYMK and Rac1, and CaMKIIδ/γ knockout mice exhibit smaller regenerated myofibers following injury. In addition, the expression of a dominant negative CaMKII inhibits the formation of large multinucleated myotubes. Finally, we demonstrate the evolutionary conservation of the pathway in chicken myoblasts. We conclude that ERK1/2 represses a signaling cascade leading to CaMKII-mediated fusion of myoblasts to myotubes, providing an attractive target for the cultivated meat industry and regenerative medicine.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Actinas/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Am J Physiol Endocrinol Metab ; 321(6): E737-E752, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719946

RESUMO

Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.


Assuntos
Nutrição Enteral , Músculo Esquelético/crescimento & desenvolvimento , Biossíntese de Proteínas , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Núcleo Celular/metabolismo , Nutrição Enteral/métodos , Nutrição Enteral/veterinária , Feminino , Crescimento e Desenvolvimento/fisiologia , Masculino , Modelos Animais , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Gravidez , Nascimento Prematuro , Suínos
15.
Amino Acids ; 53(11): 1763-1766, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34676442

RESUMO

We evaluated whether insulin could stimulate ß-alanine uptake by skeletal muscle cells in vitro. Mouse myoblasts (C2C12) (n = 3 wells per condition) were cultured with ß-alanine (350 or 700 µmol·L-1), with insulin (100 µU·mL-1) either added to the media or not. Insulin stimulated the ß-alanine uptake at the lower (350 µmol·L-1) but not higher (700 µmol·L-1) ß-alanine concentration in culture medium, indicating that transporter saturation might blunt the stimulatory effects of insulin.


Assuntos
Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , beta-Alanina/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Insulina/análise , Camundongos , Fibras Musculares Esqueléticas/citologia
16.
Stem Cell Reports ; 16(11): 2752-2767, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34653404

RESUMO

Fukutin-related protein (FKRP) is a glycosyltransferase involved in glycosylation of alpha-dystroglycan (α-DG). Mutations in FKRP are associated with muscular dystrophies (MD) ranging from limb-girdle LGMDR9 to Walker-Warburg Syndrome (WWS), a severe type of congenital MD. Although hypoglycosylation of α-DG is the main hallmark of this group of diseases, a full understanding of the underlying pathophysiology is still missing. Here, we investigated molecular mechanisms impaired by FKRP mutations in pluripotent stem (PS) cell-derived myotubes. FKRP-deficient myotubes show transcriptome alterations in genes involved in extracellular matrix receptor interactions, calcium signaling, PI3K-Akt pathway, and lysosomal function. Accordingly, using a panel of patient-specific LGMDR9 and WWS induced PS cell-derived myotubes, we found a significant reduction in the autophagy-lysosome pathway for both disease phenotypes. In addition, we show that WWS myotubes display decreased ERK1/2 activity and increased apoptosis, which were restored in gene edited myotubes. Our results suggest the autophagy-lysosome pathway and apoptosis may contribute to the FKRP-associated MD pathogenesis.


Assuntos
Apoptose/genética , Autofagia/genética , Predisposição Genética para Doença/genética , Distrofias Musculares/genética , Mutação , Pentosiltransferases/genética , Linhagem Celular , Glicosilação , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Pentosiltransferases/metabolismo , Células-Tronco Pluripotentes/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética , Transcriptoma/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patologia
17.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641349

RESUMO

High-throughput, pillar-strip-based assays have been proposed as a drug-safety screening tool for developmental toxicity. In the assay described here, muscle cell culture and differentiation were allowed to occur at the end of a pillar strip (eight pillars) compatible with commercially available 96-well plates. Previous approaches to characterize cellular differentiation with immunostaining required a burdensome number of washing steps; these multiple washes also resulted in a high proportion of cellular loss resulting in poor yield. To overcome these limitations, the approach described here utilizes cell growth by easily moving the pillars for washing and immunostaining without significant loss of cells. Thus, the present pillar-strip approach is deemed suitable for monitoring high-throughput myogenic differentiation. Using this experimental high-throughput approach, eight drugs (including two well-known myogenic inhibitory drugs) were tested at six doses in triplicate, which allows for the generation of dose-response curves of nuclei and myotubes in a 96-well platform. As a result of comparing these F-actin (an actin-cytoskeleton protein), nucleus, and myotube data, two proposed differentiation indices-curve-area-based differentiation index (CA-DI) and maximum-point-based differentiation index (MP-DI) were generated. Both indices successfully allowed for screening of high-myogenic inhibitory drugs, and the maximum-point-based differentiation index (MP-DI) experimentally demonstrated sensitivity for quantifying drugs that inhibited myogenic differentiation.


Assuntos
Bioensaio/métodos , Diferenciação Celular , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Preparações Farmacêuticas/administração & dosagem , Animais , Proliferação de Células , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/efeitos dos fármacos
18.
PLoS One ; 16(10): e0258419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644361

RESUMO

Kinetin or N6-furfuryladenine (K) belongs to a class of plant hormones called cytokinins, which are biologically active molecules modulating many aspects of plant growth and development. However, biological activities of cytokinins are not only limited to plants; their effects on animals have been widely reported in the literature. Here, we found that Kinetin is a potent small molecule that efficiently stimulates differentiation of C2C12 myoblasts into myotubes in vitro. The highest efficacy was achieved at 1µM and 10µM Kinetin concentrations, in both mitogen-poor and rich media. More importantly, Kinetin was able to strongly stimulate the MyoD-dependent conversion of fibroblasts into myotubes. Kinetin alone did not give rise to fibroblast conversion and required MyoD; this demonstrates that Kinetin augments the molecular repertoire of necessary key regulatory factors to facilitate MyoD-mediated myogenic differentiation. This novel Kinetin pro-myogenic function may be explained by its ability to alter intracellular calcium levels and by its potential to impact on Reactive Oxygen Species (ROS) signalling. Taken together, our findings unravel the effects of a new class of small molecules with potent pro-myogenic activities. This opens up new therapeutic avenues with potential for treating skeletal muscle diseases related to muscle aging and wasting.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cinetina/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 11(1): 21327, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716401

RESUMO

Skeletal muscle is an adaptive tissue with the ability to regenerate in response to exercise training. Cross-sectional area (CSA) quantification, as a main parameter to assess muscle regeneration capability, is highly tedious and time-consuming, necessitating an accurate and automated approach to analysis. Although several excellent programs are available to automate analysis of muscle histology, they fail to efficiently and accurately measure CSA in regenerating myofibers in response to exercise training. Here, we have developed a novel fully-automated image segmentation method based on neutrosophic set algorithms to analyse whole skeletal muscle cross sections in exercise-induced regenerating myofibers, referred as MyoView, designed to obtain accurate fiber size and distribution measurements. MyoView provides relatively efficient, accurate, and reliable measurements for CSA quantification and detecting different myofibers, myonuclei and satellite cells in response to the post-exercise regenerating process. We showed that MyoView is comparable with manual quantification. We also showed that MyoView is more accurate and efficient to measure CSA in post-exercise regenerating myofibers as compared with Open-CSAM, MuscleJ, SMASH and MyoVision. Furthermore, we demonstrated that to obtain an accurate CSA quantification of exercise-induced regenerating myofibers, whole muscle cross-section analysis is an essential part, especially for the measurement of different fiber-types. We present MyoView as a new tool to quantify CSA, myonuclei and satellite cells in skeletal muscle from any experimental condition including exercise-induced regenerating myofibers.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Regeneração , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Esforço Físico , Células Satélites de Músculo Esquelético
20.
Cells ; 10(10)2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34685726

RESUMO

Advancements in reprogramming somatic cells into induced pluripotent stem cells (iPSCs) have provided a strong framework for in vitro disease modeling, gene correction and stem cell-based regenerative medicine. In cases of skeletal muscle disorders, iPSCs can be used for the generation of skeletal muscle progenitors to study disease mechanisms, or implementation for the treatment of muscle disorders. We have recently developed an improved directed differentiation method for the derivation of skeletal myogenic progenitors from hiPSCs. This method allows for a short-term (2 weeks) and efficient skeletal myogenic induction (45-65% of the cells) in human pluripotent stem cells (ESCs/iPSCs) using small molecules to induce mesoderm and subsequently myotomal progenitors, without the need for any gene integration or modification. After initial differentiation, skeletal myogenic progenitors can be purified from unwanted cells using surface markers (CD10+CD24-). These myogenic progenitors have been extensively characterized using in vitro gene expression/differentiation profiling as well as in vivo engraftment studies in dystrophic (mdx) and muscle injury (VML) rodent models and have been proven to be able to engraft and form mature myofibers as well as seeding muscle stem cells. The current protocol describes a detailed, step-by-step guide for this method and outlines important experimental details and troubleshooting points for its application in any human pluripotent stem cells.


Assuntos
Biomarcadores/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Separação Celular/métodos , Desenvolvimento Muscular , Músculo Esquelético/citologia , Células-Tronco Pluripotentes/citologia , Proliferação de Células , Forma Celular , Sobrevivência Celular , Humanos , Fibras Musculares Esqueléticas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...