Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.101
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892319

RESUMO

The skeletal muscles of teleost fish encompass heterogeneous muscle types, termed slow-twitch muscle (SM) and fast-twitch muscle (FM), characterized by distinct morphological, anatomical, histological, biochemical, and physiological attributes, driving different swimming behaviors. Despite the central role of metabolism in regulating skeletal muscle types and functions, comprehensive metabolomics investigations focusing on the metabolic differences between these muscle types are lacking. To reveal the differences in metabolic characteristics between the SM and FM of teleost, we conducted an untargeted metabolomics analysis using Pseudocaranx dentex as a representative model and identified 411 differential metabolites (DFMs), of which 345 exhibited higher contents in SM and 66 in FM. KEGG enrichment analysis showed that these DFMs were enriched in the metabolic processes of lipids, amino acids, carbohydrates, purines, and vitamins, suggesting that there were significant differences between the SM and FM in multiple metabolic pathways, especially in the metabolism of energy substances. Furthermore, an integrative analysis of metabolite contents, enzymatic activity assays, and gene expression levels involved in ATP-PCr phosphate, anaerobic glycolysis, and aerobic oxidative energy systems was performed to explore the potential regulatory mechanisms of energy metabolism differences. The results unveiled a set of differential metabolites, enzymes, and genes between the SM and FM, providing compelling molecular evidence of the FM achieving a higher anaerobic energy supply capacity through the ATP-PCr phosphate and glycolysis energy systems, while the SM obtains greater energy supply capacity via aerobic oxidation. These findings significantly advance our understanding of the metabolic profiles and related regulatory mechanisms of skeletal muscles, thereby expanding the knowledge of metabolic physiology and ecological adaptation in teleost fish.


Assuntos
Metabolômica , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Animais , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Metabolômica/métodos , Metaboloma , Metabolismo Energético , Perfilação da Expressão Gênica , Músculo Esquelético/metabolismo , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Glicólise
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892371

RESUMO

The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.


Assuntos
Arginina , Fibras Musculares Esqueléticas , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Arginina/metabolismo , Arginina/farmacologia , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Linhagem Celular
3.
Cell Death Dis ; 15(6): 459, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942747

RESUMO

Aging and obesity pose significant threats to public health and are major contributors to muscle atrophy. The trends in muscle fiber types under these conditions and the transcriptional differences between different muscle fiber types remain unclear. Here, we demonstrate distinct responses of fast/glycolytic fibers and slow/oxidative fibers to aging and obesity. We found that in muscles dominated by oxidative fibers, the proportion of oxidative fibers remains unchanged during aging and obesity. However, in muscles dominated by glycolytic fibers, despite the low content of oxidative fibers, a significant decrease in proportion of oxidative fibers was observed. Consistently, our study uncovered that during aging and obesity, fast/glycolytic fibers specifically increased the expression of genes associated with muscle atrophy and inflammation, including Dkk3, Ccl8, Cxcl10, Cxcl13, Fbxo32, Depp1, and Chac1, while slow/oxidative fibers exhibit elevated expression of antioxidant protein Nqo-1 and downregulation of Tfrc. Additionally, we noted substantial differences in the expression of calcium-related signaling pathways between fast/glycolytic fibers and slow/oxidative fibers in response to aging and obesity. Treatment with a calcium channel inhibitor thapsigargin significantly increased the abundance of oxidative fibers. Our study provides additional evidence to support the transcriptomic differences in muscle fiber types under pathophysiological conditions, thereby establishing a theoretical basis for modulating muscle fiber types in disease treatment.


Assuntos
Envelhecimento , Perfilação da Expressão Gênica , Glicólise , Obesidade , Envelhecimento/metabolismo , Envelhecimento/genética , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Transcriptoma/genética , Fibras Musculares de Contração Lenta/metabolismo , Humanos
4.
J Physiol ; 602(12): 2751-2762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695322

RESUMO

There is a growing appreciation that regulation of muscle contraction requires both thin filament and thick filament activation in order to fully activate the sarcomere. The prevailing mechano-sensing model for thick filament activation was derived from experiments on fast-twitch muscle. We address the question whether, or to what extent, this mechanism can be extrapolated to the slow muscle in the hearts of large mammals, including humans. We investigated the similarities and differences in structural signatures of thick filament activation in porcine myocardium as compared to fast rat extensor digitorum longus (EDL) skeletal muscle under relaxed conditions and sub-maximal contraction using small angle X-ray diffraction. Thick and thin filaments were found to adopt different structural configurations under relaxing conditions, and myosin heads showed different changes in configuration upon sub-maximal activation, when comparing the two muscle types. Titin was found to have an X-ray diffraction signature distinct from those of the overall thick filament backbone, and its spacing change appeared to be positively correlated to the force exerted on the thick filament. Structural changes in fast EDL muscle were found to be consistent with the mechano-sensing model. In porcine myocardium, however, the structural basis of mechano-sensing is blunted suggesting the need for additional activation mechanism(s) in slow cardiac muscle. These differences in thick filament regulation can be related to their different physiological roles where fast muscle is optimized for rapid, burst-like, contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned, graded response to allow for their substantial functional reserve. KEY POINTS: Both thin filament and thick filament activation are required to fully activate the sarcomere. Thick and thin filaments adopt different structural configurations under relaxing conditions, and myosin heads show different changes in configuration upon sub-maximal activation in fast extensor digitorum longus muscle and slow porcine cardiac muscle. Titin has an X-ray diffraction signature distinct from those of the overall thick filament backbone and this titin reflection spacing change appeared to be directly proportional to the force exerted on the thick filament. Mechano-sensing is blunted in porcine myocardium suggesting the need for additional activation mechanism(s) in slow cardiac muscle. Fast skeletal muscle is optimized for rapid, burst-like contractions, and the slow cardiac muscle in large mammalian hearts adopts a more finely tuned graded response to allow for their substantial functional reserve.


Assuntos
Miocárdio , Animais , Suínos , Miocárdio/metabolismo , Conectina/metabolismo , Ratos , Masculino , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Sarcômeros/fisiologia , Sarcômeros/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Difração de Raios X , Contração Muscular/fisiologia , Miosinas/metabolismo , Miosinas/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38776751

RESUMO

Previous research has shown that leucine (Leu) can stimulate and enhance the proliferation of equine skeletal muscle satellite cells (SCs). The gene expression profile associated with Leu-induced proliferation of equine SCs has also been documented. However, the specific role of Leu in regulating the expression of slow-twitch muscle fibers (slow-MyHC) and mitochondrial function in equine SCs, as well as the underlying mechanism, remains unclear. During this investigation, equine SCs underwent culturing in differentiation medium and were subjected to varying concentrations of Leu (0 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, and 10 mM) over a span of 3 days. AMP-activated protein kinase (AMPK) inhibitor Compound C and mammalian target of rapamycin complex (mTOR) inhibitor Rapamycin were utilized to explore its underlying mechanism. Here we showed that the expression of slow-MyHC at 2 mM Leu level was significantly higher than the concentration levels of 0 mM,0.5 mM and 10 mM (P <0.01), and there was no significant difference compared to other groups (P > 0.05); the basal respiration, maximum respiration, standby respiration and the expression of slow-MyHC, PGC-1α, Cytc, ND1, TFAM, and COX1 were significantly increased with Leu supplementation (P < 0.01). We also found that Leu up-regulated the expression of key proteins on AMPK and mTOR signaling pathways, including LKB1, p-LKB1, AMPK, p-AMPK, S6, p-S6, 4EBP1, p-4EBP1, mTOR and p-mTOR (P < 0.05 or P < 0.01). Notably, when we treated the equine SCs with the AMPK inhibitor Compound C and the mTOR inhibitor Rapamycin, we observed a reduction in the beneficial effects of Leu on the expression of genes related to slow-MyHC and signaling pathway-related gene expressions. This study provides novel evidence that Leu promotes slow-MyHC expression and enhances mitochondrial function in equine SCs through the AMPK/mTOR signaling pathways, shedding light on the underlying mechanisms involved in these processes for the first time.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo Energético , Leucina , Fibras Musculares de Contração Lenta , Células Satélites de Músculo Esquelético , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Leucina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cavalos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Metabolismo Energético/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Células Cultivadas
6.
J Food Sci ; 89(6): 3788-3801, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638069

RESUMO

The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.


Assuntos
Ácido Butírico , Microbioma Gastrointestinal , Extrato de Sementes de Uva , Camundongos Endogâmicos BALB C , Proantocianidinas , Animais , Proantocianidinas/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Camundongos , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Ceco/microbiologia , Ceco/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/classificação
7.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Cadeias Pesadas de Miosina , RNA Circular , Animais , Autofagia/fisiologia , Diferenciação Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular/genética , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , RNA Circular/metabolismo
8.
Am J Physiol Cell Physiol ; 326(5): C1437-C1450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525542

RESUMO

Plasma apelin levels are reduced in aging and muscle wasting conditions. We aimed to investigate the significance of apelin signaling in cardiac and skeletal muscle responses to physiological stress. Apelin knockout (KO) and wild-type (WT) mice were subjected to high-intensity interval training (HIIT) by treadmill running. The effects of apelin on energy metabolism were studied in primary mouse skeletal muscle myotubes and cardiomyocytes. Apelin increased mitochondrial ATP production and mitochondrial coupling efficiency in myotubes and promoted the expression of mitochondrial genes both in primary myotubes and cardiomyocytes. HIIT induced mild concentric cardiac hypertrophy in WT mice, whereas eccentric growth was observed in the left ventricles of apelin KO mice. HIIT did not affect myofiber size in skeletal muscles of WT mice but decreased the myofiber size in apelin KO mice. The decrease in myofiber size resulted from a fiber type switch toward smaller slow-twitch type I fibers. The increased proportion of slow-twitch type I fibers in apelin KO mice was associated with upregulation of myosin heavy chain slow isoform expression, accompanied with upregulated expression of genes related to fatty acid transport and downregulated expression of genes related to glucose metabolism. Mechanistically, skeletal muscles of apelin KO mice showed defective induction of insulin-like growth factor-1 signaling in response to HIIT. In conclusion, apelin is required for proper skeletal and cardiac muscle adaptation to high-intensity exercise. Promoting apelinergic signaling may have benefits in aging- or disease-related muscle wasting conditions.NEW & NOTEWORTHY Apelin levels decline with age. This study demonstrates that in trained mice, apelin deficiency results in a switch from fast type II myofibers to slow oxidative type I myofibers. This is associated with a concomitant change in gene expression profile toward fatty acid utilization, indicating an aged-muscle phenotype in exercised apelin-deficient mice. These data are of importance in the design of exercise programs for aging individuals and could offer therapeutic target to maintain muscle mass.


Assuntos
Adaptação Fisiológica , Apelina , Camundongos Knockout , Músculo Esquelético , Condicionamento Físico Animal , Animais , Apelina/metabolismo , Apelina/genética , Camundongos , Condicionamento Físico Animal/fisiologia , Músculo Esquelético/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Masculino , Miócitos Cardíacos/metabolismo , Metabolismo Energético , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Cardiomegalia/patologia
9.
J Agric Food Chem ; 72(12): 6226-6235, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38492240

RESUMO

The sleep-breathing condition obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse, which can exacerbate oxidative stress and free radical generation, thereby detrimentally impacting both motor and sensory nerve function and inducing muscular damage. OSA development is promoted by increasing proportions of fast-twitch muscle fibers in the genioglossus. Orientin, a water-soluble dietary C-glycosyl flavonoid with antioxidant properties, increased the expression of slow myosin heavy chain (MyHC) and signaling factors associated with AMP-activated protein kinase (AMPK) activation both in vivo and in vitro. Inhibiting AMPK signaling diminished the effects of orientin on slow MyHC, fast MyHC, and Sirt1 expression. Overall, orientin enhanced type I muscle fibers in the genioglossus, enhanced antioxidant capacity, increased mitochondrial biogenesis through AMPK signaling, and ultimately improved fatigue resistance in C2C12 myotubes and mouse genioglossus. These findings suggest that orientin may contribute to upper airway stability in patients with OSA, potentially preventing airway collapse.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucosídeos , Apneia Obstrutiva do Sono , Humanos , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Biogênese de Organelas , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Flavonoides/metabolismo , Apneia Obstrutiva do Sono/metabolismo
10.
J Proteome Res ; 23(4): 1285-1297, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38480473

RESUMO

C18ORF25 was recently shown to be phosphorylated at S67 by AMP-activated protein kinase (AMPK) in the skeletal muscle, following acute exercise in humans. Phosphorylation was shown to improve the ex vivo skeletal muscle contractile function in mice, but our understanding of the molecular mechanisms is incomplete. Here, we profiled the interactome of C18ORF25 in mouse myotubes using affinity purification coupled to mass spectrometry. This analysis included an investigation of AMPK-dependent and S67-dependent protein/protein interactions. Several nucleocytoplasmic and contractile-associated proteins were identified, which revealed a subset of GTPases that associate with C18ORF25 in an AMPK- and S67 phosphorylation-dependent manner. We confirmed that C18ORF25 is localized to the nucleus and the contractile apparatus in the skeletal muscle. Mice lacking C18Orf25 display defects in calcium handling specifically in fast-twitch muscle fibers. To investigate these mechanisms, we developed an integrated single fiber physiology and single fiber proteomic platform. The approach enabled a detailed assessment of various steps in the excitation-contraction pathway including SR calcium handling and force generation, followed by paired single fiber proteomic analysis. This enabled us to identify >700 protein/phenotype associations and 36 fiber-type specific differences, following loss of C18Orf25. Taken together, our data provide unique insights into the function of C18ORF25 and its role in skeletal muscle physiology.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibras Musculares de Contração Lenta , Camundongos , Humanos , Animais , Fibras Musculares de Contração Lenta/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteômica/métodos , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Contração Muscular , Espectrometria de Massas
11.
Genes Genet Syst ; 992024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417894

RESUMO

Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.


Assuntos
Autofagia , Metiltransferases , Fibras Musculares de Contração Lenta , Cadeias Pesadas de Miosina , Condicionamento Físico Animal , Animais , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Fibras Musculares de Contração Lenta/metabolismo , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular
12.
Can J Physiol Pharmacol ; 102(5): 342-360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38118126

RESUMO

Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.


Assuntos
Envelhecimento , Benzimidazóis , Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Oxidiazóis , Ratos Sprague-Dawley , Sarcopenia , Animais , Sarcopenia/prevenção & controle , Sarcopenia/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Masculino , Oxidiazóis/farmacologia , Oxidiazóis/uso terapêutico , Envelhecimento/efeitos dos fármacos , Ratos , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/patologia , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Miostatina/metabolismo , Antioxidantes/farmacologia
13.
Mol Metab ; 79: 101854, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104652

RESUMO

OBJECTIVE: Human skeletal muscle consists of a mixture of slow- and fast-twitch fibers with distinct capacities for contraction mechanics, fermentation, and oxidative phosphorylation. While the divergence in mitochondrial volume favoring slow-twitch fibers is well established, data on the fiber type-specific intrinsic mitochondrial function and morphology are highly limited with existing data mainly being generated in animal models. This highlights the need for more human data on the topic. METHODS: Here, we utilized THRIFTY, a rapid fiber type identification protocol to detect, sort, and pool fast- and slow-twitch fibers within 6 h of muscle biopsy sampling. Respiration of permeabilized fast- and slow-twitch fiber pools was then analyzed with high-resolution respirometry. Using standardized western blot procedures, muscle fiber pools were subsequently analyzed for control proteins and key proteins related to respiratory capacity. RESULTS: Maximal complex I+II respiration was 25% higher in human slow-twitch fibers compared to fast-twitch fibers. However, per mitochondrial volume, the respiratory rate of mitochondria in fast-twitch fibers was approximately 50% higher for complex I+II, which was primarily mediated through elevated complex II respiration. Furthermore, the abundance of complex II protein and proteins regulating cristae structure were disproportionally elevated in mitochondria of the fast-twitch fibers. The difference in intrinsic respiratory rate was not reflected in fatty acid-or complex I respiration. CONCLUSION: Mitochondria of human fast-twitch muscle fibers compensate for their lack of volume by substantially elevating intrinsic respiratory rate through increased reliance on complex II.


Assuntos
Contração Muscular , Fibras Musculares de Contração Lenta , Animais , Humanos , Fibras Musculares de Contração Lenta/metabolismo , Contração Muscular/fisiologia , Mitocôndrias/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares Esqueléticas/metabolismo
14.
Cell Death Dis ; 14(10): 689, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857600

RESUMO

Skeletal muscle comprises different muscle fibers, including slow- and fast-type muscles, and satellite cells (SCs), which exist in individual muscle fibers and possess different myogenic properties. Previously, we reported that myoblasts (MBs) from slow-type enriched soleus (SOL) had a high potential to self-renew compared with cells derived from fast-type enriched tibialis anterior (TA). However, whether the functionality of myogenic cells in adult muscles is attributed to the muscle fiber in which they reside and whether the characteristics of myogenic cells derived from slow- and fast-type fibers can be distinguished at the genetic level remain unknown. Global gene expression analysis revealed that the myogenic potential of MBs was independent of the muscle fiber type they reside in but dependent on the region of muscles they are derived from. Thus, in this study, proteomic analysis was conducted to clarify the molecular differences between MBs derived from TA and SOL. NADH dehydrogenase (ubiquinone) iron-sulfur protein 8 (Ndufs8), a subunit of NADH dehydrogenase in mitochondrial complex I, significantly increased in SOL-derived MBs compared with that in TA-derived cells. Moreover, the expression level of Ndufs8 in MBs significantly decreased with age. Gain- and loss-of-function experiments revealed that Ndufs8 expression in MBs promoted differentiation, self-renewal, and apoptosis resistance. In particular, Ndufs8 suppression in MBs increased p53 acetylation, followed by a decline in NAD/NADH ratio. Nicotinamide mononucleotide treatment, which restores the intracellular NAD+ level, could decrease p53 acetylation and increase myogenic cell self-renewal ability in vivo. These results suggested that the functional differences in MBs derived from SOL and TA governed by the mitochondrial complex I-encoding gene reflect the magnitude of the decline in SC number observed with aging, indicating that the replenishment of NAD+ is a possible approach for improving impaired cellular functions caused by aging or diseases.


Assuntos
Fibras Musculares de Contração Rápida , Células Satélites de Músculo Esquelético , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NAD/metabolismo , Proteômica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo
15.
Exp Clin Endocrinol Diabetes ; 131(11): 589-594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37875146

RESUMO

Skeletal muscle is the tissue directly involved in insulin-stimulated glucose uptake. Glucose is the primary energy substrate for contracting muscles, and proper metabolism of glucose is essential for health. Contractile activity and the associated Ca2+signaling regulate functional capacity and muscle mass. A high concentration of Ca2+and the presence of calmodulin (CaM) leads to the activation of calcineurin (CaN), a protein with serine-threonine phosphatase activity. The signaling pathway linked with CaN and transcription factors like the nuclear factor of activated T cells (NFAT) is essential for skeletal muscle development and reprogramming of fast-twitch to slow-twitch fibers. CaN activation may promote metabolic adaptations in muscle cells, resulting in better insulin-stimulated glucose transport. The molecular mechanisms underlying the altered insulin response remain unclear. The role of the CaN/NFAT pathway in regulating skeletal muscle hypertrophy is better described than its involvement in the pathogenesis of insulin resistance. Thus, there are opportunities for future research in that field. This review presents the role of CaN/NFAT signaling and suggests the relationship with insulin-resistant muscles.


Assuntos
Resistência à Insulina , Humanos , Calmodulina/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/fisiologia , Insulina/metabolismo , Glucose/metabolismo
16.
Am J Physiol Endocrinol Metab ; 325(6): E723-E733, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877797

RESUMO

The proportion of the different types of fibers in a given skeletal muscle contributes to its overall metabolic and functional characteristics. Greater proportion of type I muscle fibers is associated with favorable oxidative metabolism and function of the muscle. Humans with obesity have a lower proportion of type I muscle fibers. We discuss how lower proportion of type I fibers in skeletal muscle of humans with obesity may explain metabolic and functional abnormalities reported in these individuals. These include lower muscle glucose disposal rate, mitochondrial content, protein synthesis, and quality/contractile function, as well as increased risk for heart disease, lower levels of physical activity, and propensity for weight gain/resistance to weight loss. We delineate future research directions and the need to examine hybrid muscle fiber populations, which are indicative of a transitory state of fiber phenotype within skeletal muscle. We also describe methodologies for precisely characterizing muscle fibers and gene expression at the single muscle fiber level to enhance our understanding of the regulation of muscle fiber phenotype in obesity. By contextualizing research in the field of muscle fiber type in obesity, we lay a foundation for future advancements and pave the way for translation of this knowledge to address impaired metabolism and function in obesity.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fenótipo , Cadeias Pesadas de Miosina/metabolismo
17.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550008

RESUMO

The composition of fiber types within skeletal muscle impacts the tissue's physiological characteristics and susceptibility to disease and ageing. In vitro systems should therefore account for fiber-type composition when modelling muscle conditions. To induce fiber specification in vitro, we designed a quantitative contractility assay based on optogenetics and particle image velocimetry. We submitted cultured myotubes to long-term intermittent light-stimulation patterns and characterized their structural and functional adaptations. After several days of in vitro exercise, myotubes contract faster and are more resistant to fatigue. The enhanced contractile functionality was accompanied by advanced maturation such as increased width and up-regulation of neuron receptor genes. We observed an up-regulation in the expression of fast myosin heavy-chain isoforms, which induced a shift towards a fast-twitch phenotype. This long-term in vitro exercise strategy can be used to study fiber specification and refine muscle disease modelling.


Assuntos
Fibras Musculares de Contração Rápida , Fibras Musculares de Contração Lenta , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/química , Fibras Musculares de Contração Lenta/metabolismo , Optogenética , Fibras Musculares Esqueléticas , Músculo Esquelético/metabolismo
18.
Meat Sci ; 204: 109287, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37490793

RESUMO

The purpose of this study was to evaluate the impact of resveratrol on slow-twitch muscle fiber expression in bovine myotubes. The results revealed that resveratrol enhanced slow myosin heavy chain (MyHC) and suppressed fast MyHC protein expression, accompanied by increased MyHC I/IIa and decreased MyHC IIx/IIb mRNA levels in bovine myotubes (P < 0.05). Resveratrol also enhanced the activities of succinic dehydrogenase (SDH), malate dehydrogenase (MDH) and the mitochondrial DNA (mtDNA) content, but reduced lactate dehydrogenase (LDH) activity (P < 0.05). Meanwhile, the protein and gene expression of AMPK, SIRT1 and PGC-1α were upregulated by resveratrol (P < 0.05). Furthermore, PGC-1α inhibitor SR-18292 could attenuate resveratrol-induced muscle fiber conversion from fast-twitch to slow-twitch. These results suggest that resveratrol might promote muscle fiber type transition from fast-twitch to slow-twitch through the AMPK/PGC-1α signaling pathway and mitochondrial biogenesis in bovine myotubes.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibras Musculares de Contração Lenta , Animais , Bovinos , Fibras Musculares de Contração Lenta/metabolismo , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Transdução de Sinais , Músculo Esquelético/metabolismo
19.
Am J Physiol Endocrinol Metab ; 325(3): E227-E238, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493472

RESUMO

Acute exercise induces changes in circulating proteins, which are known to alter metabolism and systemic energy balance. Skeletal muscle is a primary contributor to changes in the plasma proteome with acute exercise. An important consideration when assessing the endocrine function of muscle is the presence of different fiber types, which show distinct functional and metabolic properties and likely secrete different proteins. Similarly, adipokines are important regulators of systemic metabolism and have been shown to differ between depots. Given the health-promoting effects of exercise, we proposed that understanding depot-specific remodeling of protein secretion in muscle and adipose tissue would provide new insights into intertissue communication and uncover novel regulators of energy homeostasis. Here, we examined the effect of endurance exercise training on protein secretion from fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscle and visceral and subcutaneous adipose tissue. High-fat diet-fed mice were exercise trained for 6 wk, whereas a Control group remained sedentary. Secreted proteins from excised EDL and soleus muscle, inguinal, and epididymal adipose tissues were detected using mass spectrometry. We detected 575 and 784 secreted proteins from EDL and soleus muscle and 738 and 920 proteins from inguinal and epididymal adipose tissue, respectively. Of these, 331 proteins were secreted from all tissues, whereas secretion of many other proteins was tissue and depot specific. Exercise training led to substantial remodeling of protein secretion from EDL, whereas soleus showed only minor changes. Myokines released exclusively from EDL or soleus were associated with glycogen metabolism and cellular stress response, respectively. Adipokine secretion was completely refractory to exercise regulation in both adipose depots. This study provides an in-depth resource of protein secretion from muscle and adipose tissue, and its regulation following exercise training, and identifies distinct depot-specific secretion patterns that are related to the metabolic properties of the tissue of origin.NEW & NOTEWORTHY The present study examines the effects of exercise training on protein secretion from fast-twitch and slow-twitch muscle as well as visceral and subcutaneous adipose tissue of obese mice. Although exercise training leads to substantial remodeling of protein secretion from fast-twitch muscle, adipose tissue is completely refractory to exercise regulation.


Assuntos
Músculo Esquelético , Condicionamento Físico Animal , Masculino , Camundongos , Animais , Camundongos Obesos , Músculo Esquelético/metabolismo , Tecido Adiposo/metabolismo , Obesidade/terapia , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Adipocinas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo
20.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395281

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is vital to understanding muscle function. Oxidative and glycolytic skeletal muscle fibers differ in their contractile ability, mitochondrial activity, and metabolic properties. Fiber-type proportions vary in normal physiology and disease states, although the underlying mechanisms are unclear. In human skeletal muscle, we observed that markers of oxidative fibers and mitochondria correlated positively with expression levels of PPARGC1A and CDK4 and negatively with expression levels of CDKN2A, a locus significantly associated with type 2 diabetes. Mice expressing a constitutively active Cdk4 that cannot bind its inhibitor p16INK4a, a product of the CDKN2A locus, were protected from obesity and diabetes. Their muscles exhibited increased oxidative fibers, improved mitochondrial properties, and enhanced glucose uptake. In contrast, loss of Cdk4 or skeletal muscle-specific deletion of Cdk4's target, E2F3, depleted oxidative myofibers, deteriorated mitochondrial function, and reduced exercise capacity, while increasing diabetes susceptibility. E2F3 activated the mitochondrial sensor PPARGC1A in a Cdk4-dependent manner. CDK4, E2F3, and PPARGC1A levels correlated positively with exercise and fitness and negatively with adiposity, insulin resistance, and lipid accumulation in human and rodent muscle. All together, these findings provide mechanistic insight into regulation of skeletal muscle fiber-specification that is of relevance to metabolic and muscular diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Musculares , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Desenvolvimento Muscular , Fator de Transcrição E2F3/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...