Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 191: 1017-1025, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34600950

RESUMO

We recently reported that a highly homogeneous aqueous suspension of fibroin nanofiber (FNF) can be simply obtained by mechanical water-grinding a heterogeneous aqueous fibroin slurry and that the FNF in the suspension preserves the native ß-sheet secondary structure during this mechanical treatment. The current study reports the surface properties of well-preserved crystalline structure novel FNF film from water-grinding preparation as compared with those of typical, conventionally prepared regenerated fibroin (RF) film. RF film was not treated with alcoholic solutions and was verified to be amorphous from a WAXD diffraction diagram. The air-side surfaces of the FNF semi-crystalline and RF amorphous films were studied to clarify differences using scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), static water contact angle, and X-ray photoelectron spectroscopy (XPS). The well-preserved crystalline in the FNF film was found to exist near a slightly deep surface region and to act as a physically cross-linking domain, governing the molecular motions of the amorphous polypeptide chains at the very shallow surface region.


Assuntos
Fibroínas/química , Nanofibras/ultraestrutura , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Cristalização , Fibroínas/ultraestrutura , Microscopia de Força Atômica , Nanofibras/química , Conformação Proteica em Folha beta , Domínios Proteicos , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638905

RESUMO

Silk fibroin has a high potential for use in several approaches for technological and biomedical applications. However, industrial production has been difficult to date due to the lengthy manufacturing process. Thus, this work investigates a novel procedure for the isolation of non-degraded regenerated silk fibroin that significantly reduces the processing time from 52 h for the standard methods to only 4 h. The replacement of the standard degumming protocol by repeated short-term microwave treatments enabled the generation of non-degraded degummed silk fibroin. Subsequently, a ZnCl2 solution was used to completely solubilize the degummed fibroin at only 45 °C with an incubation time of only 1 h. Desalting was performed by gel filtration. Based on these modifications, it was possible to generate a cytocompatible aqueous silk fibroin solution from degummed silk within only 4 h, thus shortening the total process time by 48 h without degrading the quality of the isolated silk fibroin solution.


Assuntos
Bombyx/química , Fibroínas/metabolismo , Pupa/química , Seda/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida/métodos , Fibroínas/farmacologia , Fibroínas/ultraestrutura , Camundongos , Microscopia Eletrônica de Varredura/métodos , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Reprodutibilidade dos Testes , Seda/farmacologia , Seda/ultraestrutura , Espectrometria por Raios X/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura , Fatores de Tempo
3.
Nat Commun ; 12(1): 3711, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140492

RESUMO

Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.


Assuntos
Bombyx/química , Bombyx/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Animais , Fibroínas/ultraestrutura , Microscopia Eletrônica de Varredura , Porosidade , Conformação Proteica em Folha beta , Análise Espectral Raman , Água/química
4.
Insect Biochem Mol Biol ; 135: 103607, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102294

RESUMO

Larvae of many lepidopteran species produce a mixture of secretory proteins, known as silk, for building protective shelters and cocoons. Silk consists of a water-insoluble silk filament core produced in the posterior silk gland (PSG) and a sticky hydrophilic coating produced by the middle silk gland (MSG). In Bombyx mori, the fiber core comprises three proteins: heavy chain fibroin (Fib-H), light chain fibroin (Fib-L) and fibrohexamerin (Fhx, previously referred to as P25). To learn more about the role of Fhx, we used transcription activator-like effector nuclease (TALEN) mutagenesis and prepared a homozygous line with a null mutation in the Fhx gene. Our characterization of cocoon morphology and silk quality showed that the mutation had very little effect. However, a detailed inspection of the secretory cells in the posterior silk gland (PSG) of mid-last-instar mutant larvae revealed temporary changes in the morphology of the endoplasmic reticulum. We also observed a morphological difference in fibroin secretory globules stored in the PSG lumen of Fhx mutants, which suggests that their fibroin complexes have a slightly lower solubility. Finally, we performed an LC-MS-based quantitative proteomic analysis comparing mutant and wild-type (wt) cocoon proteins and found a high abundance of a 16 kDa secretory protein likely involved in fibroin solubility. Overall, our study shows that whilst Fhx is dispensable for silk formation, it contributes to the stability of fibroin complexes during intracellular transport and affects the morphology of fibroin secretory globules in the PSG lumen.


Assuntos
Bombyx , Fibroínas/genética , Glândulas Salivares , Seda , Animais , Bombyx/genética , Bombyx/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Fibroínas/metabolismo , Fibroínas/ultraestrutura , Mutagênese Sítio-Dirigida/métodos , Mutação , Glândulas Salivares/citologia , Glândulas Salivares/ultraestrutura , Seda/química , Seda/genética
5.
Macromol Biosci ; 21(3): e2000361, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369081

RESUMO

Despite the progress in chronic wound treatment, antibacterial cutaneous scaffold with high efficiency in wound healing is still the hot spot in the field. In present study, a functionalized silk fibroin (SF) cutaneous scaffold incorporated with natural medicine usnic acid (UA) is investigated, in which UA is used as an antibacterial and wound-healing reagent. Via electrospinning, UA-SF mixture is fabricated into UA-SF composite scaffold (USCS), which is composed of uniform nanofibers with average diameters of around 360 ± 10 nm. The interwoven nanofibers form mesh structure providing sufficient moisture permeability for scaffold. With methanol treatment, USCS presents improved mechanical properties and stability to protease XIV. In the presence of USCS, the growth rate of both Gram-positive and Gram-negative bacteria, including Staphylococcus aureus, Streptococci pyogenes, Escherichia coli, and Pseudomonas aeruginosa, is significantly inhibited in plate culture and suspension assays. In a cutaneous excisional mouse wound model, USCS presents a significant increase of wound closure rate, compared with pure SF scaffold and commercial dressing, Tegaderm Hydrocolloid 3M . The histological assessments further prove that USCS can enhance re-epithelialization, vascularization, and collagen deposition in wound site to promote the wound-healing process, which indicates the potential application of USCS in chronic wound treatment.


Assuntos
Benzofuranos/farmacologia , Fibroínas/farmacologia , Pele/patologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Fibroínas/ultraestrutura , Queratina-10/metabolismo , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico , Resistência à Tração , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Int J Biol Macromol ; 165(Pt B): 1970-1977, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086113

RESUMO

Cellulose and silk fibroin were dissolved in 1-Butyl-3-methylimidazolium chloride [Bmim][Cl] and regenerated with ethanol to form homogenous blend of regenerated cellulose/silk fibroin. The bioactivity of regenerated cellulose/silk matrix to assist calcium phosphate mineralization was studied in the current article. Cellulose/silk fibroin/calcium phosphate biocomposite was investigated by different characterization methods such as FT-IR, XRD, TGA, SEM and EDX. The potential of the prepared composite for removal of organic dyes, such as methylene blue (MB), was calculated. The prepared biocomposite exhibited high removal efficiency for MB (172.4 mg/g) compared to regenerated cellulose/silk fibrin blend which is 120.4 mg/g. The kinetic study and the isotherm results for the examined materials followed pseudo second order and Langmuir models, respectively. The regenerated cellulose/silk/calcium phosphate biocomposite, thus providing prospects for further research and application in the remediation of water from dye pollution.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Celulose/química , Corantes/isolamento & purificação , Fibroínas/química , Adsorção , Celulose/ultraestrutura , Fibroínas/ultraestrutura , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/isolamento & purificação , Espectrometria por Raios X , Espectrofotometria Infravermelho , Temperatura , Termogravimetria , Fatores de Tempo , Difração de Raios X
7.
Int J Biol Macromol ; 163: 1947-1958, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32910960

RESUMO

Silk is spun from the liquid precursor known as liquid silk secreted from the posterior part and stored in the silk gland lumen with occurrence of many momentary events. The liquid silk in the silk gland is transformed to the spun silk fibre. In this study the elucidation of the protein components of liquid silk from the posterior part of the silk gland (PSG) of saturniid silkworm Antheraea assamensis along with its structural characterization has been reported. The 3D model of the N-terminal amorphous portion with some repeat crystalline motifs (19-255) of core protein fibroin has also been constructed. 1D and 2D electrophoresis revealed the homo-dimeric structure of the silk protein. Secondary structure analysis by Circular dichroism, FTIR spectroscopy showed α helical structural component as predominant conformation in the liquid silk. The crystalline structure investigated through X ray diffraction (XRD) analysis also revealed the presence of less ordered amorphous α helical conformation in the liquid silk. The 3D structural model proposed of the residues from 19 to 255 has revealed structural stability throughout the molecular dynamics simulation process. This study will provide the detailed structural information and in silico analysis of the core protein present in the liquid silk of PSG.


Assuntos
Fibroínas/ultraestrutura , Mariposas/química , Estrutura Secundária de Proteína , Seda/ultraestrutura , Animais , Bombyx/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Simulação por Computador , Fibroínas/química , Mariposas/ultraestrutura , Conformação Proteica em alfa-Hélice , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
8.
Nat Nanotechnol ; 15(11): 941-947, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32778805

RESUMO

Nanoscale lithography and information storage in biocompatible materials offer possibilities for applications such as bioelectronics and degradable electronics for which traditional semiconductor fabrication techniques cannot be used. Silk fibroin, a natural protein renowned for its strength and biocompatibility, has been widely studied in this context. Here, we present the use of silk film as a biofunctional medium for nanolithography and data storage. Using tip-enhanced near-field infrared nanolithography, we demonstrate versatile manipulation and characterize the topography and conformation of the silk in situ. In particular, we fabricate greyscale and dual-tone nanopatterns with full-width at half-maximum resolutions of ~35 nm, creating an erasable 'silk drive' that digital data can be written to or read from. As an optical storage medium, the silk drive can store digital and biological information with a capacity of ~64 GB inch-2 and exhibits long-term stability under various harsh conditions. As a proof-of-principle demonstration, we show that this silk drive can be biofunctionalized to exhibit chromogenic reactions, resistance to bacterial infection and heat-triggered, enzyme-assisted decomposition.


Assuntos
Fibroínas/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Dispositivos Ópticos , Animais , Materiais Biocompatíveis/química , Bombyx/química , Desenho de Equipamento , Fibroínas/química , Armazenamento e Recuperação da Informação/métodos , Nanoestruturas/química , Nanotecnologia/métodos
9.
Commun Biol ; 3(1): 357, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641733

RESUMO

Photosynthetic microorganisms such as cyanobacteria, purple bacteria and microalgae have attracted great interest as promising platforms for economical and sustainable production of bioenergy, biochemicals, and biopolymers. Here, we demonstrate heterotrophic production of spider dragline silk proteins, major ampullate spidroins (MaSp), in a marine photosynthetic purple bacterium, Rhodovulum sulfidophilum, under both photoheterotrophic and photoautotrophic growth conditions. Spider silk is a biodegradable and biocompatible material with remarkable mechanical properties. R. sulfidophilum grow by utilizing abundant and renewable nonfood bioresources such as seawater, sunlight, and gaseous CO2 and N2, thus making this photosynthetic microbial cell factory a promising green and sustainable production platform for proteins and biopolymers, including spider silks.


Assuntos
Reatores Biológicos , Fibroínas/biossíntese , Rhodovulum/metabolismo , Animais , Reatores Biológicos/microbiologia , Fibroínas/genética , Fibroínas/isolamento & purificação , Fibroínas/ultraestrutura , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Microscopia Eletrônica de Varredura , Fotossíntese , Rhodovulum/genética , Aranhas
10.
ACS Appl Mater Interfaces ; 12(22): 25409-25418, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378401

RESUMO

Controlling the assembly modes of polymer chains and the interfacial interactions between the filler and polymer matrix is vital for improving the mechanical properties of the composites. Herein, we report an approach for significantly enhancing the toughness of unmodified silk fibroin (SF) powder from silk waste-incorporated polyurethane (PU) composite films via nonsolvent-induced phase separation (NIPS) using binary solvents. The incorporation of 50 wt % SF into the PU3 film (NIPS, binary solvents) resulted in a toughness value of 54.9 ± 0.4 MJ·m-3, exhibiting 1670.9 and 6000.0% increments compared to those of PU1-50% SF (NIPS, one solvent) and PU2-50% SF (solvent evaporation, one solvent), respectively. The toughness enhancement in the PU3-50% SF composite film benefits from the good interfacial interaction between SF and PU and the unique structure of the compacted "fishing net" with reinforced connections, which can transfer stress under loading effectively. Furthermore, the PU-SF composites with good mechanical properties may have potential applications in silklike fibers and biomimetic materials.


Assuntos
Fibroínas/química , Poliuretanos/química , Módulo de Elasticidade , Fibroínas/ultraestrutura , Resistência ao Cisalhamento , Estresse Mecânico
11.
Biointerphases ; 15(3): 031001, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366106

RESUMO

In cell-material interactions, the formation and functioning of filopodia have been demonstrated to be very sensitive to topographic cues. However, substrate-exploring functions of filopodia in a 3D microenvironment remain elusive. In this study, the silk fibroin film with a micropillar structure was prepared to reveal a filopodial-mediated cell response to 3D topographic cues. The micropillars provided a confined space for cell spreading by a simplified 3D structure, allowing initial cells to settle on the bottom of substrates rather than on the top of micropillars. Shortly after cell adhesion, the authors describe how cells transform from a filopodia-rich spherical cell state to a lamellipodia-dominated state that enables cell to climb along micropillars and spread on the top of the micropillars. The authors found that filopodia not only served as sensors for pathfinding but also provided nucleation scaffolds for the formation and orientation of minilamellipodia on the micropillar substrate. On the route of long filopodial extension following micropillars, all three functional filopodial adhesions have the ability to form veil-like minilamellipodium, simply by tethering the filopodium to the micropillars. Stable filopodia contacts consistently stimulated the local protrusion of a lamellipodium, which ultimately steered cell migration. Their results suggest the filopodia-mediated cell locomotion in the 3D microenvironment using a filopodia-to-minilamellipodium transformation mechanism.


Assuntos
Movimento Celular , Microambiente Celular , Imageamento Tridimensional , Células-Tronco Mesenquimais/citologia , Pseudópodes/fisiologia , Animais , Bombyx , Adesão Celular , Fibroínas/ultraestrutura , Masculino , Células-Tronco Mesenquimais/ultraestrutura , Pseudópodes/ultraestrutura , Ratos Sprague-Dawley
12.
Sci Rep ; 10(1): 4198, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144298

RESUMO

Herein, the preparation of gold nanoparticles-silk fibroin (SF-AuNPs) dispersion and its label-free colorimetric detection of the organophosphate pesticide, namely chlorpyrifos, at ppb level are reported. The silk fibroin solution was extracted from B. mori silk after performing degumming, dissolving and dialysis steps. This fibroin solution was used for synthesis of gold nanoparticles in-situ without using any external reducing and capping agent. X-ray Diffractometry (XRD), Field Emission Transmission Electron Microscopy (FETEM) along with Surface Plasmon Resonance based optical evaluation confirmed generation of gold nanoparticles within SF matrix. The resultant SF-AuNPs dispersion exhibited rapid and excellent colorimetric pesticide sensing response even at 10 ppb concentration. Effect of additional parameters viz. pH, ionic concentration and interference from other pesticide samples was also studied. Notably, SF-AuNPs dispersion exhibited selective colorimetric pesticide sensing response which can be calibrated. Furthermore, this method was extended to various simulated real life samples such as tap water, soil and agricultural products including plant residues to successfully detect the presence of chlorpyrifos pesticide. The proposed colorimetric sensor system is facile yet effective and can be employed by novice rural population and expert researchers alike. It can be exploited as preliminary tool for label-free colorimetric chlorpyrifos pesticide sensing in water and agricultural products.


Assuntos
Clorpirifos/química , Colorimetria/métodos , Fibroínas/química , Ouro/química , Nanopartículas Metálicas/química , Nanocompostos/química , Praguicidas/química , Fibroínas/ultraestrutura , Hidrodinâmica , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Difração de Raios X
13.
Opt Express ; 28(4): 5179-5188, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121743

RESUMO

In this paper, pure silk protein was extracted from Bombyx mori silks and fabricated into a new kind of disordered bio-microfiber structure using electrospinning technology. Coherent random lasing emission with low threshold was achieved in the silk fibroin fibers. The random lasing emission wavelength can be tuned in the range of 33 nm by controlling the pump location with different scattering strengths. Therefore, the bio-microfiber random lasers can be a wide spectral light source when the system is doped with a gain or energy transfer medium with a large fluorescence emission band. Application of the random lasers of the bio-microfibers as a low-coherence light source in speckle-free imaging had also been studied.


Assuntos
Fibroínas/química , Lasers , Luz , Animais , Bombyx , Fibroínas/ultraestrutura , Processamento de Imagem Assistida por Computador , Dispositivos Ópticos
14.
Macromol Rapid Commun ; 41(6): e1900583, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32009279

RESUMO

A unique cuboid spider silk from the outer egg sac of Nephila pilipes, with an unusual square cross-section, is disclosed. The structure-function relationships within this silk are first studied through structural characterization, mechanical measurement, protein conformation, and polypeptide signature of silk proteins. This silk maintains the higher stiffness property of egg sac silks, and also shows a species difference. Environmental response of the mechanical properties within this silk are observed. Synchrotron FTIR microspectroscopy is used to monitor the silk protein conformation in a single natural silk. The ß-sheet structure aligns parallel to the fiber axis with a content of 22% ± 2.6%. The de novo resulting polypeptide from the solid silk fibers are novel, and an abundant polar amino acid insertion is observed. Short polyalanine (An , n ≤ 3), alternating serine and alanine (S/A)X, and alternating glycine and alanine (G/A)X, GGX, and SSX dominates in the resulting de novo polypeptide. This accords with the composition pattern of other egg sac silk proteins, besides the rarely observed GGX. This study broadens the library of egg sac spider silks and provides a new perspective to uncover structure-function relationships in spider silk.


Assuntos
Aminoácidos/química , Fibroínas/química , Peptídeos/química , Seda/química , Alanina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fibroínas/ultraestrutura , Glicina/química , Teste de Materiais , Conformação Proteica em Folha beta , Serina/química , Seda/ultraestrutura , Aranhas/química , Relação Estrutura-Atividade
15.
Int J Biol Macromol ; 145: 437-444, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31843611

RESUMO

Orb-weaving spiders produce a diversity of silk fibers throughout their entire lifecycle, and each silk type is given a specific purpose. As a dry fiber material with wet glue, pyriform silks are different from other silk fibers and make the attachment discs which are used for bonding fibers together and attaching dragline silk to other substrates. To date, only two full-length pyriform spidroin 1 (PySp1) gene sequences were identified. Here we present a novel full-length pyriform spidroin 2 (PySp2) from orb-weaving spider, Araneus ventricosus. Although the A. ventricosus PySp2 lack the long linker regions, the central repetitive region of PySp2 is more complex than PySp1 and can be classified into four types of repetitive regions including three novel repetitive sequences and one type of repetitive region that is similar to PySp1 repeats. Prediction of hydrophobicity of A. ventricosus PySp2 reveals the two new repetitive regions display strong hydrophilicity. Analysis of CD spectrum and secondary structure prediction for A. ventricosus PySp2 repeat unit reveal α-helix conformation dominates the repetitive region. Furthermore, recombinant protein-based artificial fibers show the single repeat unit is sufficient for self-assembling into silk fiber.


Assuntos
Fibroínas/química , Conformação Proteica em alfa-Hélice , Seda/química , Sequência de Aminoácidos/genética , Animais , Fibroínas/genética , Fibroínas/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Filogenia , Seda/genética , Seda/ultraestrutura , Aranhas/química
16.
Int J Biol Macromol ; 146: 1030-1039, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730951

RESUMO

Nanofibrillated proteins possess diverse techno-functional properties are considered as matrices for stabilizing bioactive agents. In this study, the morphology and interaction of silk fibroin nanofibrils (SNFs) with black rice anthocyanins (ACN) were investigated through multiple microscopy and spectroscopic techniques. The impact of SNFs on the thermal stability of ACN was analyzed. Nanofibrils with diameter less than 20 nm were self-assembled from silk fibroin (SF) lyophilized powder solution at pH 6.0. A static model occurred in the interactions of cyanidin-3-O-glucoside (C3G, the major anthocyanin in black rice) with SF and SNFs. C3G binding altered the secondary structures of SF and SNFs. Moreover, the thermal retention rates of ACN combined with SF and SNFs were significantly (P < 0.05) higher than that of ACN alone followed the order of SNFs-ACN (60.87%) > SF-ACN (57.47%) > ACN alone (40.33%) after heating 120 min at 80 °C and SNFs-ACN (50.42%) > SF-ACN (32.81%) > ACN alone (23.64%) after heating 120 min at 90 °C. The half-life (t1/2) of thermal degradation of ACN was elongated in SNFs-ACN complex compared with that in SF-ACN complex. These results showed that SNFs effectively binding with C3G and exhibit better protective effects on the thermal stability of ACN than SF.


Assuntos
Antocianinas/química , Fibroínas/química , Nanofibras/química , Oryza/química , Análise Espectral , Temperatura , Dicroísmo Circular , Fibroínas/ultraestrutura , Nanofibras/ultraestrutura , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
17.
ACS Synth Biol ; 8(12): 2651-2658, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31742389

RESUMO

Microbially produced protein-based materials (PBMs) are appealing due to use of renewable feedstock, low energy requirements, tunable side-chain chemistry, and biodegradability. However, high-strength PBMs typically have high molecular weights (HMW) and repetitive sequences that are difficult to microbially produce due to genetic instability and metabolic burden. We report the development of a biosynthetic strategy termed seeded chain-growth polymerization (SCP) for synthesis of HMW PBMs in living bacterial cells. SCP uses split intein (SI) chemistry to cotranslationally polymerize relatively small, genetically stable material protein subunits, effectively preventing intramolecular cyclization. We apply SCP to bioproduction of spider silk in Escherichia coli, generating HMW spider silk proteins (spidroins) up to 300 kDa, resulting in spidroin fibers of high strength, modulus, and toughness. SCP provides a modular strategy to synthesize HMW, repetitive material proteins, and may facilitate bioproduction of a variety of high-performance PBMs for broad applications.


Assuntos
Escherichia coli/metabolismo , Fibroínas/biossíntese , Viabilidade Microbiana , Polimerização , Biopolímeros/biossíntese , Fibroínas/química , Fibroínas/ultraestrutura , Inteínas/genética , Peso Molecular , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
18.
Molecules ; 24(20)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31627317

RESUMO

Formation of the α-helical conformation in the poly-l-alanine (PA) sequence regions, subsequent structural transition to ß-sheet during natural spinning, and presence of residual α-helices in Samia cynthia ricini (S. c. ricini) native silk fiber have been experimentally proven. However, the aggregation state of the residual α-helices, and their influence on the mechanical deformation behavior in native fiber remain unclear. Here we show that the α-helices form an ordered aggregation state with a hexagonal packing in the aqueous solution, some of which remain during natural spinning. X-ray scattering and differential scanning calorimetry (DSC) analyses revealed occurrence of a structural transition of the residual α-helices to the ß-sheet structure, accompanied by disappearance of the plateau region in the force-strain curve, due to heat-treatment at ~220 °C. On the basis of X-ray scattering before and after tensile stretching of S. c. ricini native silk, a direct connection between the plateau region and the α-helix to ß-sheet structural transition was confirmed. Our findings demonstrate the importance of the PA sequence regions in fiber structure formation and their influence on the tensile deformation behavior of S. c. ricini silk, features believed to be essentially similar in other saturniid silks. We strongly believe the residual ordered α-helices to be strategically and systematically designed by S. c. ricini silkworms to impart flexibility in native silk fiber. We anticipate that these knowledge forms a basis for fruitful strategies in the design and development of amino acid sequences for artificial silks with desired mechanical properties.


Assuntos
Bombyx/química , Fibroínas/ultraestrutura , Peptídeos/química , Agregados Proteicos , Animais , Bombyx/fisiologia , Fibroínas/isolamento & purificação , Temperatura Alta , Larva/química , Larva/fisiologia , Teste de Materiais , Peptídeos/isolamento & purificação , Maleabilidade , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Resistência à Tração
19.
Sci Rep ; 9(1): 2398, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787337

RESUMO

The conditions required for the emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers are assessed through an experimental approach that combines the spinning of regenerated fibers with controlled properties and their characterization by 13C solid-state nuclear magnetic resonance (NMR). Both supercontracting and non-supercontracting regenerated fibers are produced using the straining flow spinning (SFS) technique from 13C labeled cocoons. The short-range microstructure of the fibers is assessed through 13C CP/MAS in air and 13C DD/MAS in water, and the main microstructural features are identified and quantified. The mechanical properties of the regenerated fibers and their microstructures are compared with those of natural silkworm silk. The combined analysis highlights two possible key elements as responsible for the emergence of supercontraction: (1) the existence of an upper and a lower limit of the amorphous phase compatible with supercontraction, and (2) the existence of two ordered phases, ß-sheet A and B, which correspond to different packing arrangements of the protein chains.


Assuntos
Bombyx/química , Fibroínas/química , Regeneração/fisiologia , Seda/química , Animais , Bombyx/ultraestrutura , Fibroínas/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Regeneração/genética , Seda/ultraestrutura , Resistência à Tração , Água/química
20.
Neurochem Res ; 44(10): 2261-2272, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30519983

RESUMO

Traumatic brain injury is one of the leading causes of disability among the working-age population worldwide. Despite attempts to develop neuroprotective therapeutic approaches, including pharmacological or cellular technologies, significant advances in brain regeneration have not yet been achieved. Development of silk fibroin-based biomaterials represents a new frontier in neuroregenerative therapies after brain injury. In this study, we estimated the short and long-term effects of silk fibroin scaffold transplantation on traumatic brain injury and biocompatibility of this biomaterial within rat neuro-vascular cells. Silk fibroin microparticles were injected into a brain damage area 1 day after the injury. Silk fibroin affords neuroprotection as judged by diminished brain damage and recovery of long-term neurological functions. We did not detect considerable toxicity to neuro-vascular cells cultured on fibroin/fibroin-gelatin microparticles in vitro. Cultivation of primary cell cultures of neurons and astrocytes on silk fibroin matrices demonstrated their higher viability under oxygen-glucose deprivation compared to 2D conditions on plastic plates. Thus, we conclude that scaffolds based on silk fibroin can become the basis for the creation of constructs aimed to treat brain regeneration after injury.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fibroínas/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Animais , Materiais Biocompatíveis/análise , Células Cultivadas , Modelos Animais de Doenças , Fibroínas/ultraestrutura , Ratos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...