Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(3): e0102722, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37289026

RESUMO

Fibrobacter succinogenes is a cellulolytic bacterium that plays an essential role in the degradation of plant fibers in the rumen ecosystem. It converts cellulose polymers into intracellular glycogen and the fermentation metabolites succinate, acetate, and formate. We developed dynamic models of F. succinogenes S85 metabolism on glucose, cellobiose, and cellulose on the basis of a network reconstruction done with the automatic reconstruction of metabolic model workspace. The reconstruction was based on genome annotation, five template-based orthology methods, gap filling, and manual curation. The metabolic network of F. succinogenes S85 comprises 1,565 reactions with 77% linked to 1,317 genes, 1,586 unique metabolites, and 931 pathways. The network was reduced using the NetRed algorithm and analyzed for the computation of elementary flux modes. A yield analysis was further performed to select a minimal set of macroscopic reactions for each substrate. The accuracy of the models was acceptable in simulating F. succinogenes carbohydrate metabolism with an average coefficient of variation of the root mean squared error of 19%. The resulting models are useful resources for investigating the metabolic capabilities of F. succinogenes S85, including the dynamics of metabolite production. Such an approach is a key step toward the integration of omics microbial information into predictive models of rumen metabolism. IMPORTANCE F. succinogenes S85 is a cellulose-degrading and succinate-producing bacterium. Such functions are central for the rumen ecosystem and are of special interest for several industrial applications. This work illustrates how information of the genome of F. succinogenes can be translated to develop predictive dynamic models of rumen fermentation processes. We expect this approach can be applied to other rumen microbes for producing a model of rumen microbiome that can be used for studying microbial manipulation strategies aimed at enhancing feed utilization and mitigating enteric emissions.


Assuntos
Fibrobacter , Genoma Bacteriano , Modelos Biológicos , Rúmen , Fibrobacter/genética , Genoma Bacteriano/genética , Metaboloma/genética , Rúmen/metabolismo , Rúmen/microbiologia , Animais , Bovinos
2.
mBio ; 12(2)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658330

RESUMO

Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens are the three predominant cellulolytic bacterial species found in the rumen. In vitro studies have shown that these species compete for adherence to, and growth upon, cellulosic biomass. Yet their molecular interactions in vivo have not heretofore been examined. Gnotobiotically raised lambs harboring a 17-h-old immature microbiota devoid of culturable cellulolytic bacteria and methanogens were inoculated first with F. succinogenes S85 and Methanobrevibacter sp. strain 87.7, and 5 months later, the lambs were inoculated with R. albus 8 and R. flavefaciens FD-1. Longitudinal samples were collected and profiled for population dynamics, gene expression, fibrolytic enzyme activity, in sacco fibrolysis, and metabolite profiling. Quantitative PCR, metagenome and metatranscriptome data show that F. succinogenes establishes at high levels initially but is gradually outcompeted following the introduction of the ruminococci. This shift resulted in an increase in carboxymethyl cellulase (CMCase) and xylanase activities but not in greater fibrolysis, suggesting that F. succinogenes and ruminococci deploy different but equally effective means to degrade plant cell walls. Expression profiles showed that F. succinogenes relied upon outer membrane vesicles and a diverse repertoire of CAZymes, while R. albus and R. flavefaciens preferred type IV pili and either CBM37-harboring or cellulosomal carbohydrate-active enzymes (CAZymes), respectively. The changes in cellulolytics also affected the rumen metabolome, including an increase in acetate and butyrate at the expense of propionate. In conclusion, this study provides the first demonstration of in vivo competition between the three predominant cellulolytic bacteria and provides insight on the influence of these ecological interactions on rumen fibrolytic function and metabolomic response.IMPORTANCE Ruminant animals, including cattle and sheep, depend on their rumen microbiota to digest plant biomass and convert it into absorbable energy. Considering that the extent of meat and milk production depends on the efficiency of the microbiota to deconstruct plant cell walls, the functionality of predominant rumen cellulolytic bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, has been extensively studied in vitro to obtain a better knowledge of how they operate to hydrolyze polysaccharides and ultimately find ways to enhance animal production. This study provides the first evidence of in vivo competitions between F. succinogenes and the two Ruminococcus species. It shows that a simple disequilibrium within the cellulolytic community has repercussions on the rumen metabolome and fermentation end products. This finding will have to be considered in the future when determining strategies aiming at directing rumen fermentations for animal production.


Assuntos
Fibrobacter/genética , Perfilação da Expressão Gênica , Metagenoma , Interações Microbianas/genética , Rúmen/microbiologia , Ruminococcus/genética , Fatores Etários , Animais , Feminino , Fibrobacter/fisiologia , Vida Livre de Germes , Masculino , Metagenômica , RNA Ribossômico 16S/genética , Ruminococcus/fisiologia , Ovinos/microbiologia
3.
PLoS One ; 15(10): e0239987, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33031424

RESUMO

The microbial communities colonize the mucosal immune inductive sites could be captured by hosts, which could initiate the mucosal immune responses. The aggregated lymphoid nodule area (ALNA) and the ileal Payer's patches (PPs) in Bactrian camels are both the mucosal immune inductive sites of the gastrointestinal tract. Here, the bacteria community associated with the ALNA and ileal PPs were analyzed using of 16S rDNA-Illumina Miseq sequencing. The mutual dominant bacterial phyla at the two sites were the Bacteroidetes, Firmicutes, Verrucomicrobia and Proteobacteria, and the mutual dominant genus in both sits was Prevotella. The abundances of the Fibrobacter, Campylobacter and RFP12 were all higher in ALNA than in ileal PPs. While, the abundances of the 5-7N15, Clostridium, and Escherichia were all higher in ileal PPs than in ALNA. The results suggested that the host's intestinal microenvironment is selective for the symbiotic bacteria colonizing the corresponding sites, on the contrary, the symbiotic bacteria could impact on the physiological functions of this local site. In ALNA and ileal PPs of Bactrian camel, the bacteria which colonized different immune inductive sites have the potential to stimulate different immune responses, which is the result of the mutual selection and adaptation between microbial communities and their host.


Assuntos
Trato Gastrointestinal/microbiologia , Imunidade nas Mucosas , Tecido Linfoide/microbiologia , Microbiota , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Camelus , Fibrobacter/genética , Fibrobacter/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Tecido Linfoide/imunologia , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Simbiose
4.
mSphere ; 3(6)2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30541780

RESUMO

Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed among Fibrobacter phylotypes. F. succinogenes genomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those of F. intestinalis strains. Moreover, genomes of F. succinogenes phylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes of F. succinogenes phylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of the Fibrobacter genomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology of Fibrobacter spp. in the herbivore gut.IMPORTANCE The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria.


Assuntos
Fibrobacter/classificação , Fibrobacter/isolamento & purificação , Trato Gastrointestinal/microbiologia , Herbivoria , Lignina/metabolismo , Redes e Vias Metabólicas/genética , Filogenia , Fibrobacter/genética , Fibrobacter/metabolismo , Sequenciamento Completo do Genoma
5.
Curr Microbiol ; 75(8): 1025-1032, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594405

RESUMO

We tested the hypothesis that supplementation with three protein levels improves fermentation parameters without changing the rumen microbial population of grazing beef cattle in the rainy season. Four rumen-cannulated Nellore bulls (432 ± 21 kg of body weight) were used in a 4 × 4 Latin square design with four supplements and four experimental periods of 21 days each. The treatments were mineral supplement (ad libitum) and supplements with low, medium (MPS), and high protein supplement (HPS), supplying 106, 408, and 601 g/day of CP, respectively. The abundance of each target taxon was calculated as a fraction of the total 16S rRNA gene copies in the samples, using taxon-specific and domain bacteria primers. Supplemented animals showed lower (P < 0.05) proportions of Ruminococcus flavefaciens and greater (P < 0.05) proportions of Ruminococcus albus and Butyrivibrio fibrisolvens than animals that received only the mineral supplement. The HPS supplement resulted in higher (P < 0.05) proportions of Fibrobacter succinogenes, R. flavefaciens, and B. fibrisolvens and lower (P < 0.05) proportions of R. albus than the MPS supplement. Based on our results, high protein supplementation improves the ruminal conditions and facilitates the growth of cellulolytic bacteria in the rumen of bulls on pastures during the rainy season.


Assuntos
Ração Animal/análise , Butyrivibrio fibrisolvens/isolamento & purificação , Proteínas Alimentares/administração & dosagem , Suplementos Nutricionais/análise , Fibrobacter/isolamento & purificação , Rúmen/microbiologia , Ruminococcus/isolamento & purificação , Fenômenos Fisiológicos da Nutrição Animal , Animais , Butyrivibrio fibrisolvens/genética , Bovinos , Fibrobacter/classificação , Fibrobacter/genética , Masculino , RNA Ribossômico 16S/genética , Chuva , Ruminococcus/classificação , Ruminococcus/genética , Estações do Ano , Clima Tropical
6.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28859317

RESUMO

Fibrobacter succinogenes rapidly colonizes the preruminant calf rumen and becomes a dominant cellulolytic bacterium in the rumen after weaning. Although F. succinogenes actively degrades cellulose in the rumen, it seems that there is no or little of its substrate, cellulose, in the rumen of preweaned calves. We thus evaluated the ability of F. succinogenes to utilize lactose, a main sugar of milk, with or without the presence of cellobiose. We grew F. succinogenes S85 on media containing 2.5% lactose combined with 0%-0.2% cellobiose or a medium with 0.2% cellobiose but without lactose. The generation times on the 0.2% cellobiose medium and the 2.5% lactose medium were 1.9 and 16.2 h, respectively. The bacterium showed rapid growth on cellobiose and diauxic growth on the lactose media containing 0.05%-0.2% cellobiose. Moreover, the production of ß-galactosidase was low in the presence of 0.1%-0.2% cellobiose. Since the ß-galactosidase contained a signal peptide and a Por secretion system C-terminal sorting domain, we speculate that the ß-galactosidase would be secreted from the bacterial cells by the Por secretion system. Our data indicate the possibility that F. succinogenes could colonize preruminant calf rumen, consuming the lactose present in cow milk.


Assuntos
Celobiose/metabolismo , Fibrobacter/crescimento & desenvolvimento , Fibrobacter/metabolismo , Lactose/metabolismo , Animais , Sistemas de Secreção Bacterianos/genética , Bovinos , Meios de Cultura/química , Fibrobacter/efeitos dos fármacos , Fibrobacter/genética , Rúmen/microbiologia , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
7.
Environ Microbiol ; 19(9): 3768-3783, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28752955

RESUMO

The genus Fibrobacter contains cellulolytic bacteria originally isolated from the rumen. Culture-independent investigations have since identified Fibrobacter populations in the gastrointestinal tracts of numerous hindgut-fermenting herbivores, but their physiology is poorly characterized due to few representative axenic cultures. To test the hypothesis that novel Fibrobacter diversity exists in hindgut fermenters, we performed culturing and 16S rRNA gene amplicon sequencing on samples collected from phylogenetically diverse herbivorous hosts. Using a unique approach for recovering axenic Fibrobacter cultures, we isolated 45 novel strains from 11 different hosts. Full-length 16S rRNA gene sequencing of these isolates identified nine discrete phylotypes (cutoff = 0.03%) among them, including several that were only isolated from hindgut-fermenting hosts, and four previously unrepresented by axenic cultures. Our phylogenetic analysis indicated that six of the phylotypes are more closely related to previously described subspecies of Fibrobacter succinogenes, while the remaining three were more closely related to F. intestinalis. Culture-independent bacterial community profiling confirmed that most isolates were representative of numerically dominant phylotypes in their respective samples and strengthened the association of certain phylotypes with either ruminants or hindgut-fermenters. Despite considerable phylogenetic diversity observed among the Fibrobacter strains isolated here, phenotypic characterization suggests a conserved specialization for growth on cellulose.


Assuntos
Celulose/metabolismo , Fibrobacter/classificação , Fibrobacter/isolamento & purificação , Trato Gastrointestinal/microbiologia , Rúmen/microbiologia , Animais , Reatores Biológicos , Fermentação , Fibrobacter/genética , Herbivoria , Filogenia , RNA Ribossômico 16S/genética
8.
Sci Rep ; 7(1): 2277, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536480

RESUMO

Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60-5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pH 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.


Assuntos
Ácidos/química , Adaptação Fisiológica/genética , Fibrobacter/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Escherichia coli/genética , Genes Bacterianos/genética , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/genética , Mutação , Polimorfismo de Nucleotídeo Único
9.
Folia Microbiol (Praha) ; 62(3): 175-181, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27866354

RESUMO

This study aimed to isolate and characterize a novel cellulolytic enzyme from black goat rumen by using a culture-independent approach. A metagenomic fosmid library was constructed from black goat rumen contents and screened for a novel cellulase. The KG37 gene encoding a protein of 858 amino acid residues (92.7 kDa) was isolated. The deduced protein contained a glycosyl hydrolase family 74 (GH74) domain and showed 77% sequence identity to two endo-1,4-ß-glucanases from Fibrobacter succinogenes. The novel GH74 cellulase gene was overexpressed in Escherichia coli, and its protein product was functionally characterized. The recombinant GH74 cellulase showed a broad substrate spectrum. The enzyme exhibited its optimum activity at pH 5.0 and temperature range of 20-50 °C. The enzyme was thermally stable at pH 5.0 and at a temperature of 20-40 °C. The novel GH74 cellulase can be practically exploited to convert lignocellulosic biomass to value-added products in various industrial applications in future.


Assuntos
Celulase/genética , Celulase/isolamento & purificação , Cabras/microbiologia , Metagenoma , Rúmen/microbiologia , Animais , Celulase/química , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fibrobacter/enzimologia , Fibrobacter/genética , Expressão Gênica , Biblioteca Gênica , Testes Genéticos , Concentração de Íons de Hidrogênio , Metagenômica , Peso Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência , Especificidade por Substrato , Temperatura
10.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26542074

RESUMO

This study investigated successional colonization of fresh perennial ryegrass (PRG) by the rumen microbiota over time. Fresh PRG was incubated in sacco in the rumens of three Holstein × Friesian cows over a period of 8 h, with samples recovered at various times. The diversity of attached bacteria was assessed using 454 pyrosequencing of 16S rRNA (cDNA). Results showed that plant epiphytic communities either decreased to low relative abundances or disappeared following rumen incubation, and that temporal colonization of the PRG by the rumen bacteria was biphasic with primary (1 and 2 h) and secondary (4-8 h) events evident with the transition period being with 2-4 h. A decrease in sequence reads pertaining to Succinivibrio spp. and increases in Pseudobutyrivibrio, Roseburia and Ruminococcus spp. (the latter all order Clostridiales) were evident during secondary colonization. Irrespective of temporal changes, the continually high abundances of Butyrivibrio, Fibrobacter, Olsenella and Prevotella suggest that they play a major role in the degradation of the plant. It is clear that a temporal understanding of the functional roles of these microbiota within the rumen is now required to unravel the role of these bacteria in the ruminal degradation of fresh PRG.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal/genética , Lolium/microbiologia , Rúmen/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Butyrivibrio/genética , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Feminino , Fibrobacter/genética , Fibrobacter/isolamento & purificação , Fibrobacter/metabolismo , Microbioma Gastrointestinal/fisiologia , Prevotella/genética , Prevotella/isolamento & purificação , Prevotella/metabolismo , RNA Ribossômico 16S/genética , Ruminococcus/genética , Ruminococcus/isolamento & purificação , Ruminococcus/metabolismo , Succinivibrionaceae/genética , Succinivibrionaceae/isolamento & purificação , Succinivibrionaceae/metabolismo
11.
PLoS One ; 10(12): e0143809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26629814

RESUMO

Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by ß-glucanases and other cellulases.


Assuntos
Celulose/metabolismo , Fibrobacter/metabolismo , Modelos Biológicos , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibrobacter/citologia , Fibrobacter/genética , Fibrobacter/fisiologia , Proteínas de Fímbrias/metabolismo , Periplasma/metabolismo , Proteômica , Transcriptoma
12.
Arch Microbiol ; 197(2): 269-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25354721

RESUMO

Fibrobacter succinogenes is one of the most pivotal fibrolytic bacterial species in the rumen. In a previous study, we confirmed enhancement of fiber digestion in a co-culture of F. succinogenes S85 with non-fibrolytic ruminal strains R-25 and/or Selenomonas ruminantium S137. In the present study, mRNA expression level of selected functional genes in the genome of F. succinogenes S85 was monitored by real-time RT-PCR. Growth profile of F. succinogenes S85 was similar in both the monoculture and co-cultures with non-fibrolytics. However, expression of 16S rRNA gene of F. succinogenes S85 in the co-culture was higher (P < 0.01) than that of the monoculture. This finding suggests that metabolic activity of F. succinogenes S85 was enhanced by coexistence with strains R-25 and/or S. ruminantium S137. The mRNA expression of fumarate reductase and glycoside hydrolase genes was up-regulated (P < 0.01) when F. succinogenes S85 was co-cultured with non-fibrolytics. These results indicate the enhancement of succinate production and fiber hydrolysis by F. succinogenes S85 in co-cultures of S. ruminantium and R-25 strains.


Assuntos
Fibrobacter/genética , Regulação Bacteriana da Expressão Gênica , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Técnicas de Cocultura , Fibras na Dieta/metabolismo , Fibrobacter/crescimento & desenvolvimento , Fibrobacter/metabolismo , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/genética , Hidrólise , RNA Ribossômico 16S/genética , Rúmen/microbiologia , Succinato Desidrogenase/genética
13.
Anaerobe ; 29: 100-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24225531

RESUMO

Eremophila glabra Juss. (Scrophulariaceae), a native Australian shrub, has been demonstrated to have low methanogenic potential in a batch in vitro fermentation system. The present study aimed to test longer-term effects of E. glabra on rumen fermentation characteristics, particularly methane production and the methanogen population, when included as a component of a fermentation substrate in an in vitro continuous culture system (Rusitec). E. glabra was included at 150, 250, 400 g/kg DM (EG15, EG25, and EG40) with an oaten chaff and lupin-based substrate (control). Overall, the experiment lasted 33 days, with 12 days of acclimatization, followed by two periods during which fermentation characteristics (total gas, methane and VFA productions, dry matter disappearance, pH) were measured. The number of copies of genes specifically associated with total bacteria and cellulolytic bacteria (16S rRNA gene) and total ruminal methanogenic archaeal organisms (the methyl coenzyme M reductase A gene (mcrA)) was also measured during this time using quantitative real-time PCR. Total gas production, methane and volatile fatty acid concentrations were significantly reduced with addition of E. glabra. At the end of the experiment, the overall methane reduction was 32% and 45% for EG15 and EG25 respectively, compared to the control, and the reduction was in a dose-dependent manner. Total bacterial numbers did not change, but the total methanogen population decreased by up to 42.1% (EG40) when compared to the control substrate. The Fibrobacter succinogenes population was reduced at all levels of E. glabra, while Ruminococcus albus was reduced only by EG40. Our results indicate that replacing a portion of a fibrous substrate with E. glabra maintained a significant reduction in methane production and methanogen populations over three weeks in vitro, with some minor inhibition on overall fermentation at the lower inclusion levels.


Assuntos
Eremophila (Planta)/metabolismo , Metano/biossíntese , Consórcios Microbianos/genética , Oxirredutases/genética , RNA Ribossômico 16S/genética , Animais , Avena/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biomarcadores/metabolismo , Reatores Biológicos , Euryarchaeota/genética , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/metabolismo , Fermentação , Fibrobacter/genética , Fibrobacter/crescimento & desenvolvimento , Fibrobacter/metabolismo , Concentração de Íons de Hidrogênio , Pressão , Reação em Cadeia da Polimerase em Tempo Real , Rúmen/microbiologia , Ruminantes , Ruminococcus/genética , Ruminococcus/crescimento & desenvolvimento , Ruminococcus/metabolismo , Temperatura
14.
Anim Sci J ; 83(12): 767-76, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23216542

RESUMO

Although buffaloes and cattle are ruminants, their digestive capabilities and rumen microbial compositions are considered to be different. The purpose of this study was to compare the rumen microbial ecology of crossbred water buffaloes and cattle that were fed the same diet. Cattle exhibited a higher fermentation rate than buffaloes. Methane production and methanogen density were lower in buffaloes. Phylogenetic analysis of Fibrobacter succinogenes-specific 16S ribosomal RNA gene clone library showed that the diversity of groups within a species was significantly different (P < 0.05) between buffalo and cattle and most of the clones were affiliated with group 2 of the species. Population densities of F.succinogenes, Ruminococcus albus and R. flavefaciens were higher until 6 h post-feeding in cattle; however, buffaloes exhibited different traits. The population of anaerobic fungi decreased at 3 h in cattle compared to buffaloes and was similar at 0 h and 6 h. The diversity profiles of bacteria and fungi were similar in the two species. The present study showed that the profiles of the fermentation process, microbial population and diversity were similar in crossbred water buffaloes and crossbred cattle.


Assuntos
Búfalos/microbiologia , Bovinos/microbiologia , Fermentação , Fibrobacter/genética , Rúmen/microbiologia , Ração Animal , Animais , Fibrobacter/isolamento & purificação , Fungos , Biblioteca Gênica , Variação Genética , Hibridização Genética , Metano/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Rúmen/metabolismo
15.
Protein Eng Des Sel ; 25(11): 771-80, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23081838

RESUMO

1,3-1,4-ß-D-Glucanase (lichenase) and 1,3-ß-D-glucanase (laminarinase) are fibrolytic enzymes which play an important role in the hydrolysis of polysaccharide components. Both of these glucanases have been employed in a number of industrial applications. This study aims to improve or combine the novel properties of both glucanases in an attempt to create desirable hybrid enzymes with economic benefits for industrial applications. A truncated and mutated 1,3-1,4-ß-D-glucanase gene (TFs(W203F)) from Fibrobacter succinogenes, and a 1,3-ß-D-glucanase gene (TmLam) from hyperthermophilic Thermotoga maritima were used as target enzymes. The substrate-binding domains (TmB1 and TmB2) and the catalytic domain (TmLam(CD)) of TmLam were ligated to the N- or C-terminus of TFsW203F to create four hybrid enzymes, TmB1-TFs(W203F), TFs(W203F)-TmB2, TmB1-TFs(W203F)-TmB2 and TFs(W203F)-TmLam(CD). The results obtained from kinetic studies show that increased specific activities and turnover rate for lichenan and laminarin were observed in TmB1-TFs(W203F)-TmB2 and TFs(W203F)-TmLam(CD), respectively. Furthermore, fluorescence and circular dichroism spectrometric analyses indicated that the hybrid TFs(W203F)-TmLam(CD) was structurally more stable than the parental TFs(W203F), which was attributed to an improved thermal tolerance of the hybrid enzyme. This study has been successful in creating bifunctional hybrid glucanases with dual substrate catalytic functions which warrant further evaluation of their possible use in industrial applications.


Assuntos
Celulases/metabolismo , Fibrobacter/enzimologia , Glicosídeo Hidrolases/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/metabolismo , Thermotoga maritima/enzimologia , Sítios de Ligação , Celulases/química , Celulases/genética , Dicroísmo Circular , Fibrobacter/química , Fibrobacter/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Espectrometria de Fluorescência , Temperatura , Thermotoga maritima/química , Thermotoga maritima/genética
16.
Anim Biotechnol ; 23(3): 156-73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22870871

RESUMO

The glycosyl hydrolase family 11, which is responsible for carbohydrate metabolism, was identified in the open reading frame (ORF) 6 of a xylanase positive clone from a fosmid library of rumen microbiota of Hu sheep. A BLASTP search of GenBank revealed that ORF6 encoded a 355-amino acid putative endoxylanase, having 61% similarity (e(-73)) to endo-1,4-ß-xylanase of Fibrobacter succinogenes S85 (YP_003250510.1). Predicted with the SWISS-MODEL, there were two separate ß-sandwich clusters linked with a high serine containing linker in ORF6. The N-terminal ß-sandwich is a novel endoxylanase of the glycosyl hydrolase family 11 with a specific activity of 1150.00 U/mg. The optimal pH and temperature for this enzyme were shown to be pH 5.0 and 50°C, respectively. The C-terminal helped increase the stability of the xylanase but decreased the activity to some degree. The C-terminal ß-sandwich could bind avicel, but no conserved domain could be found. It may be a novel carbohydrate-binding module.


Assuntos
Proteínas de Bactérias/genética , Endo-1,4-beta-Xilanases/genética , Rúmen/microbiologia , Ovinos/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biotecnologia , Celulose/metabolismo , Clonagem Molecular , Primers do DNA/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Estabilidade Enzimática , Fibrobacter/enzimologia , Fibrobacter/genética , Concentração de Íons de Hidrogênio , Cinética , Metagenoma , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
17.
Appl Environ Microbiol ; 78(14): 4949-58, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22562991

RESUMO

Feed-efficient animals have lower production costs and reduced environmental impact. Given that rumen microbial fermentation plays a pivotal role in host nutrition, the premise that rumen microbiota may contribute to host feed efficiency is gaining momentum. Since diet is a major factor in determining rumen community structure and fermentation patterns, we investigated the effect of divergence in phenotypic residual feed intake (RFI) on ruminal community structure of beef cattle across two contrasting diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were performed to profile the rumen bacterial population and to quantify the ruminal populations of Entodinium spp., protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens, Ruminococcus albus, Prevotella brevis, the genus Prevotella, and fungi in 14 low (efficient)- and 14 high (inefficient)-RFI animals offered a low-energy, high-forage diet, followed by a high-energy, low-forage diet. Canonical correspondence and Spearman correlation analyses were used to investigate associations between physiological variables and rumen microbial structure and specific microbial populations, respectively. The effect of RFI on bacterial profiles was influenced by diet, with the association between RFI group and PCR-DGGE profiles stronger for the higher forage diet. qPCR showed that Prevotella abundance was higher (P < 0.0001) in inefficient animals. A higher (P < 0.0001) abundance of Entodinium and Prevotella spp. and a lower (P < 0.0001) abundance of Fibrobacter succinogenes were observed when animals were offered the low-forage diet. Thus, differences in the ruminal microflora may contribute to host feed efficiency, although this effect may also be modulated by the diet offered.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Bactérias/genética , Bovinos , Cilióforos/genética , Dieta , Rúmen/microbiologia , Rúmen/parasitologia , Silagem , Animais , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Fibrobacter/genética , Reação em Cadeia da Polimerase/métodos , Prevotella/genética , Rúmen/metabolismo
18.
Environ Microbiol ; 14(4): 1077-87, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22225785

RESUMO

Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ.


Assuntos
Celulose/metabolismo , Fibrobacter/fisiologia , Eliminação de Resíduos , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Biodegradação Ambiental , Celulose/análise , Clostridium/genética , Clostridium/metabolismo , Primers do DNA/genética , Primers do DNA/metabolismo , Ecologia , Fibrobacter/genética , Fibrobacter/metabolismo , Fungos/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Resíduos/estatística & dados numéricos
19.
Microb Ecol ; 63(2): 267-81, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22213055

RESUMO

The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a "third" way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.


Assuntos
DNA Bacteriano/genética , Microbiologia Ambiental , Fibrobacter/fisiologia , Fibrobacteres/classificação , Trato Gastrointestinal/microbiologia , Animais , Fibrobacter/classificação , Fibrobacter/genética , Fibrobacter/isolamento & purificação , Fibrobacteres/genética , Fibrobacteres/isolamento & purificação , Trato Gastrointestinal/metabolismo , Isópteros/metabolismo , Isópteros/microbiologia , Lagos , Mamíferos/metabolismo , Mamíferos/microbiologia , Filogenia , Eliminação de Resíduos
20.
Appl Microbiol Biotechnol ; 94(1): 111-21, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21959377

RESUMO

1,3-1,4-ß-D-Glucanase has been widely used as a feed additive to help non-ruminant animals digest plant fibers, with potential in increasing nutrition turnover rate and reducing sanitary problems. Engineering of enzymes for better thermostability is of great importance because it not only can broaden their industrial applications, but also facilitate exploring the mechanism of enzyme stability from structural point of view. To obtain enzyme with higher thermostability and specific activity, structure-based rational design was carried out in this study. Eleven mutants of Fibrobacter succinogenes 1,3-1,4-ß-D-glucanase were constructed in attempt to improve the enzyme properties. In particular, the crude proteins expressed in Pichia pastoris were examined firstly to ensure that the protein productions meet the need for industrial fermentation. The crude protein of V18Y mutant showed a 2 °C increment of Tm and W203Y showed ∼30% increment of the specific activity. To further investigate the structure-function relationship, some mutants were expressed and purified from P. pastoris and Escherichia coli. Notably, the specific activity of purified W203Y which was expressed in E. coli was 63% higher than the wild-type protein. The double mutant V18Y/W203Y showed the same increments of Tm and specific activity as the single mutants did. When expressed and purified from E. coli, V18Y/W203Y showed similar pattern of thermostability increment and 75% higher specific activity. Furthermore, the apo-form and substrate complex structures of V18Y/W203Y were solved by X-ray crystallography. Analyzing protein structure of V18Y/W203Y helps elucidate how the mutations could enhance the protein stability and enzyme activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endo-1,3(4)-beta-Glucanase/química , Endo-1,3(4)-beta-Glucanase/metabolismo , Fibrobacter/enzimologia , Engenharia de Proteínas , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Endo-1,3(4)-beta-Glucanase/genética , Estabilidade Enzimática , Fibrobacter/química , Fibrobacter/genética , Temperatura Alta , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Pichia/genética , Pichia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...