Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.439
Filtrar
1.
J Cell Biochem ; 125(5): e30565, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591469

RESUMO

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
2.
J Dev Orig Health Dis ; 15: e4, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500346

RESUMO

The aim of this study was to analyse the expression of genes related to the regulation of energy metabolism in skeletal muscle tissue by comparing male offspring in two age groups [at 110 and 245 postnatal days (pnd)] from a mother with obesity induced by a high-fat diet and (-)-epicatechin (Epi) administration. Four groups of six male offspring from different litters were randomly selected for the control groups [C and offspring of mothers with maternal obesity (MO)] or Epi intervention groups. We evaluated the effect of Epi on gastrocnemius tissue by analysing the mRNA and protein expression levels of Fndc5/irisin, Pgc-1α, Ucp3, and Sln. Epi significantly increased the Pgc-1α protein in the MO group of offspring at 110 pnd (p < 0.036, MO vs. MO+Epi), while at 245 pnd, Epi increased Fndc5/irisin mRNA expression in the MO+Epi group versus the MO group (p = 0.006).No differences were detected in Fndc5/irisin, Ucp3 or Sln mRNA or protein levels (including Pgc-1α mRNA) in the offspring at 110 pnd or in Pgc-1α, Ucp3, or Sln mRNA or protein levels (including Fndc5/irisin protein) at 245 pnd among the experimental groups. In conclusion, (-)-epicatechin treatment increased Fndc5/irisin mRNA expression and Pgc-α protein levels in the gastrocnemius muscle of offspring at postnatal days 110 and 245. Furthermore, it is suggested that the flavonoid effect in a model of obesity and its impact on thermogenesis in skeletal muscle are regulated by a different pathway than Fndc5/irisin.


Assuntos
Catequina , Obesidade Materna , Humanos , Gravidez , Ratos , Masculino , Feminino , Animais , Catequina/farmacologia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Músculo Esquelético/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade Materna/metabolismo , RNA Mensageiro/genética
3.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500202

RESUMO

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Medula Óssea , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Luciferases/metabolismo , Luciferases/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo
4.
PLoS One ; 19(3): e0300888, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512830

RESUMO

Neuronal death could be responsible for the cognitive impairments found in astronauts exposed to spaceflight, highlighting the need to identify potential countermeasures to ensure neuronal health in microgravity conditions. Therefore, differentiated HT22 cells were exposed to simulated microgravity by random positioning machine (RPM) for 48 h, treating them with a single administration of Trolox, recombinant irisin (r-Irisin) or both. Particularly, we investigated cell viability by MTS assay, Trypan Blue staining and western blotting analysis for Akt and B-cell lymphoma 2 (Bcl-2), the intracellular increase of reactive oxygen species (ROS) by fluorescent probe and NADPH oxidase 4 (NOX4) expression, as well as the expression of brain-derived neurotrophic factor (BDNF), a major neurotrophin responsible for neurogenesis and synaptic plasticity. Although both Trolox and r-Irisin manifested a protective effect on neuronal health, the combined treatment produced the best results, with significant improvement in all parameters examined. In conclusion, further studies are needed to evaluate the potential of such combination treatment in counteracting weightlessness-induced neuronal death, as well as to identify other potential strategies to safeguard the health of astronauts exposed to spaceflight.


Assuntos
Cromanos , Fibronectinas , Ausência de Peso , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular
5.
Ann Surg Oncol ; 31(6): 3718-3736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38502294

RESUMO

BACKGROUND: High skeletal muscle mass might be a prognostic factor for patients with pancreatic ductal adenocarcinoma (PDAC); however, the underlying reason is unclear. We hypothesized that myokines, which are cytokines secreted by the skeletal muscle, function as suppressors of PDAC. We specifically examined irisin, a myokine, which plays a critical role in the modulation of metabolism, to clarify the anticancer mechanisms. METHODS: First, the effect of the conditioned medium (CM) from skeletal muscle cells and from irisin-knockdown skeletal muscle cells on PDAC cell lines was evaluated. We then investigated the effects and anticancer mechanism of irisin in PDAC cells, and evaluated the anticancer effect of recombinant irisin in a PDAC xenograft mouse model. Finally, patients undergoing pancreatic resection for PDAC were divided into two groups based on their serum irisin level, and the long-term outcomes were evaluated. RESULTS: The CM enhanced gemcitabine sensitivity by inducing apoptosis and decreasing cell migration by inhibiting epithelial-mesenchymal transition (EMT) in PDAC cell lines. The CM derived from irisin-knockdown skeletal muscle cells did not affect the PDAC cell lines. The addition of recombinant irisin to PDAC cell lines facilitated sensitivity to gemcitabine by inhibiting the mitogen-activated protein kinase (MAPK) pathway, and decreased migration by inhibiting EMT via the transforming growth factor-ß/SMAD pathway. Xenografts injected with gemcitabine and recombinant irisin grew slower than the xenografts injected with gemcitabine alone. The overall survival was prolonged in the high-irisin group compared with that in the low-irisin group. CONCLUSIONS: Skeletal muscle-derived irisin may affect PDAC by enhancing its sensitivity to gemcitabine and suppressing EMT.


Assuntos
Antimetabólitos Antineoplásicos , Apoptose , Carcinoma Ductal Pancreático , Movimento Celular , Proliferação de Células , Desoxicitidina , Transição Epitelial-Mesenquimal , Fibronectinas , Gencitabina , Músculo Esquelético , Neoplasias Pancreáticas , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Feminino , Humanos , Masculino , Camundongos , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Camundongos Nus , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Idoso
6.
Int Immunopharmacol ; 130: 111714, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38412677

RESUMO

This study aimed to explore the cardioprotective mechanism of irisin in the context of cardiac injury. Utilizing a myocardial infarction (MI) mouse model, we investigated the therapeutic potential of recombinant human irisin (rhIrisin) administered for 28 days post-infarction. The efficacy of irisin treatment was evaluated through echocardiographic assessment of cardiac function and serum analysis of myocardial injury markers. Our research provided novel insights into the impacts of irisin on the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation and pyroptosis, assessed both in vivo in MI mice and in vitro in hypoxia/reoxygenation-treated H9C2 cells. Remarkably, irisin treatment significantly reduced levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and troponin I, indicating reduced myocardial injury. Echocardiography highlighted substantial improvements in left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), and dimensions (LVIDd and LVIDs) in irisin-treated mice, underscoring enhanced cardiac function. Moreover, irisin was shown to significantly suppress the mRNA and protein expressions of key components involved in NLRP3 inflammasome pathway (NLRP3, ASC, caspase-1 (p20), and interleukin-18 (IL-18)) both in MI-induced mice and hypoxia/reoxygenation-treated cells. This study firstly reveals that the cardioprotective effect of irisin is mediated through the attenuation of NLRP3 inflammasome activation and pyroptosis, positioning irisin as a promising therapeutic agent for cardiac injury.


Assuntos
Traumatismos Cardíacos , Infarto do Miocárdio , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Volume Sistólico , Fibronectinas/farmacologia , Função Ventricular Esquerda , Infarto do Miocárdio/tratamento farmacológico , Hipóxia
7.
Diabetes Metab J ; 48(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38173367

RESUMO

BACKGRUOUND: Renal fibrosis is characterized by the accumulation of extracellular matrix proteins and interstitial fibrosis. Alantolactone is known to exert anticancer, anti-inflammatory, antimicrobial and antifungal effects; however, its effects on renal fibrosis remains unknown. Here, we investigated whether alantolactone attenuates renal fibrosis in mice unilateral ureteral obstruction (UUO) and evaluated the effect of alantolactone on transforming growth factor (TGF) signaling pathway in renal cells. METHODS: To evaluate the therapeutic effect of alantolactone, cell counting kit-8 (CCK-8) assay, histological staining, Western blot analysis, and real-time quantitative polymerase chain reaction were performed in UUO kidneys in vivo and in TGF-ß-treated renal cells in vitro. RESULTS: Alantolactone (0.25 to 4 µM) did not affect the viability of renal cells. Mice orally administered 5 mg/kg of alantolactone daily for 15 days did not show mortality or liver toxicity. Alantolactone decreased UUO-induced blood urea nitrogen and serum creatinine levels. In addition, it significantly alleviated renal tubulointerstitial damage and fibrosis and decreased collagen type I, fibronectin, and α-smooth muscle actin (α-SMA) expression in UUO kidneys. In NRK-49F cells, alantolactone inhibited TGF-ßstimulated expression of fibronectin, collagen type I, plasminogen activator inhibitor-1 (PAI-1), and α-SMA. In HK-2 cells, alantolactone inhibited TGF-ß-stimulated expression of collagen type I and PAI-1. Alantolactone inhibited UUO-induced phosphorylation of Smad3 in UUO kidneys. In addition, it not only decreased TGF-ß secretion but also Smad3 phosphorylation and translocation to nucleus in both kidney cell lines. CONCLUSION: Alantolactone improves renal fibrosis by inhibiting the TGF-ß/Smad3 signaling pathway in obstructive nephropathy. Thus, alantolactone is a potential therapeutic agent for chronic kidney disease.


Assuntos
Nefropatias , Lactonas , Sesquiterpenos de Eudesmano , Obstrução Ureteral , Camundongos , Animais , Fibronectinas/farmacologia , Fibronectinas/uso terapêutico , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidor 1 de Ativador de Plasminogênio/uso terapêutico , Colágeno Tipo I/farmacologia , Colágeno Tipo I/uso terapêutico , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Fibrose
8.
J Diabetes ; 16(1): e13475, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37721125

RESUMO

PURPOSE: Though exercise generates beneficial effects on diabetes-associated cardiac damage, the underlying mechanism is largely unclear. Therefore, we prescribed a program of 8-week treadmill training for type 2 diabetes mellitus (T2DM) rats and determined the role of irisin signaling, via interacting with AMP-activated protein kinase (AMPK), in mediating the effects of exercise on myocardial injuries and mitochondrial fission. METHODS: Forty 8-week-old male Wistar rats were randomly divided into groups of control (Con), diabetes mellitus (DM), diabetes plus exercise (Ex), and diabetes plus exercise and Cyclo RGDyk (ExRg). Ex and ExRg rats received 8 weeks of treadmill running, and the rats in the ExRg group additionally were treated with a twice weekly injection of Cyclo RGDyk, an irisin receptor-αV/ß5 antagonist. At the end of the experiment, murine blood samples and heart tissues were collected and analyzed with methods of ELISA, Western blot, real-time quantitative polymerase chain reaction, as well as immunofluorescence staining. RESULTS: Exercise effectively mitigated T2DM-related hyperglycemia, hyperinsulinemia, lipid dysmetabolism, and inflammation, which could be diminished by Cyclo RGDyk treatment. Additionally, exercise alleviated T2DM-induced myocardial injury and excessive mitochondrial fission, whereas the beneficial effects were blocked by the administration of Cyclo RGDyk. T2DM significantly decreased serum irisin concentrations and fibronectin type III domain-containing protein 5 (FNDC5)/irisin gene and protein expression levels in the rat heart, whereas exercise could rescue T2DM-reduced FNDC5/irisin expression. Blocking irisin receptor signaling diminished the exercise-alleviated mitochondrial fission protein expression and elevated AMPK phosphorylation. CONCLUSION: Exercise is effective in mitigating diabetes-related insulin resistance, metabolic dysfunction, and inflammation. Irisin signaling engages in exercise-associated beneficial effects on myocardial injury and excessive mitochondrial fission in diabetes rats involving elevated AMPK phosphorylation.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/complicações , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Fosforilação , Dinâmica Mitocondrial , Diabetes Mellitus Experimental/complicações , Ratos Wistar , Inflamação
9.
J Periodontal Res ; 59(2): 336-345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38041212

RESUMO

OBJECTIVE: To investigate the effects of miR-221 and miR-222 and high glucose on human periodontal ligament (PL) cells morphology, cytoskeleton, adhesion, and migration. BACKGROUND: Chronic hyperglycemia is common in uncontrolled diabetes mellitus (DM) and plays a central role in long-term DM complications, such as impaired periodontal healing. We have previously shown that high glucose increases apoptosis of human PL cells by inhibiting miR-221 and miR-222 and consequently augmenting their target caspase-3. However, other effects of miR-221/222 downregulation on PL cells are still unknown. METHODS: Cells from young humans' premolar teeth were cultured for 7 days under 5 or 30 mM glucose. Directional and spontaneous migration on fibronectin were studied using transwell and time-lapse assays, respectively. F-actin staining was employed to study cell morphology and the actin cytoskeleton. MiR-221 and miR-222 were inhibited using antagomiRs, and their expressions were evaluated by real-time RT-PCR. RESULTS: High glucose inhibited PL cells early adhesion, spreading, and migration on fibronectin. Cells exposed to high glucose showed reduced polarization, velocity, and directionality. They formed several simultaneous unstable and short-lived protrusions, suggesting impairment of adhesion maturation. MiR-221 and miR-222 inhibition also reduced migration, decreasing cell directionality but not significantly cell velocity. After miR-221 and miR-222 downregulation cells showed morphological resemblance with cells exposed to high glucose. CONCLUSION: High glucose impairs human PL cells migration potentially through a mechanism involving reduction of microRNA-221 and microRNA-222 expression. These effects may contribute to the impairment of periodontal healing, especially after surgery and during guided regeneration therapies.


Assuntos
MicroRNAs , Humanos , MicroRNAs/metabolismo , Fibronectinas/farmacologia , Ligamento Periodontal/metabolismo , Movimento Celular , Glucose/farmacologia , Células Cultivadas
10.
Tissue Eng Part A ; 30(1-2): 94-101, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842832

RESUMO

Tissue engineering of exogenous skeletal muscle units (SMUs) through isolation of muscle satellite cells from muscle biopsies is a potential treatment method for acute volumetric muscle loss (VML). A current issue with this treatment process is the limited capacity for muscle stem cell (satellite cell) expansion in cell culture, resulting in a decreased ability to obtain enough cells to fabricate SMUs of appropriate size and structural quality and that produce native levels of contractile force. This study determined the impact of human recombinant irisin on the growth and development of three-dimensional (3D) engineered skeletal muscle. Muscle satellite cells were cultured without irisin (control) or with 50, 100, or 250 ng/mL of irisin supplementation. Light microscopy was used to analyze myotube formation with particular focus placed on the diameter and density of the monotubes during growth of the 3D SMU. Following the formation of 3D constructs, SMUs underwent measurement of maximum tetanic force to analyze contractile function, as well as immunohistochemical staining, to characterize muscle structure. The results indicate that irisin supplementation with 250 ng/mL significantly increased the average diameter of myotubes and increased the proliferation and differentiation of myoblasts in culture but did not have a consistent significant impact on force production. In conclusion, supplementation with 250 ng/mL of human recombinant irisin promotes the proliferation and differentiation of myotubes and has the potential for impacting contractile force production in scaffold-free tissue-engineered skeletal muscle.


Assuntos
Fibronectinas , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Fibronectinas/farmacologia , Músculo Esquelético , Fibras Musculares Esqueléticas , Contração Muscular , Diferenciação Celular
11.
Biotech Histochem ; 99(1): 21-32, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933453

RESUMO

Metabolic syndrome (MetS) is a prevalent public health problem. Uric acid (UA) is increased by MetS. We investigated whether administration of UA and 10% fructose (F) would accelerate MetS formation and we also determined the effects of irisin and exercise. We used seven groups of rats. Group 1 (control); group 2 (sham); group 3 (10% F); group 4 (1% UA); group 5 (2% UA); group 6 (10% F + 1% UA); and Group 7, (10% F + 2% UA). After induction of MetS (groups 3 -7), Group 3 was divided into three subgroups: 3A, no further treatment; 3B, irisin treatment; 3C, irisin treatment + exercise. Group 4, 1% UA, which was divided into three subgroups: 4A, no further treatment; 4B, irisin treatment; 4C, Irisin treatment + exercise. Group 5, 2% UA, which was divided into three subgroups: 5A, no further treatment; 5B, irisin treatment; 5C, irisin treatment + exercise. Group 6, 10% F + 1% UA, which was divided into three subgroups: 6A, no further treatment; 6B, irisin treatment; 6C, irisin treatment + exercise. Group 7, 10% F + 2% UA, which was divided into three subgroups: 7A, no further treatment; 7B, irisin treatment; 7C, irisin treatment + exercise., Irisin was administered 10 ng/kg irisin intraperitoneally on Monday, Wednesday, Friday, Sunday each week for 1 month. The exercise animals (in addition to irisin treatment) also were run on a treadmill for 45 min on Monday, Wednesday, Friday, Sunday each week for 1 month. The rats were sacrificed and samples of liver, heart, kidney, pancreas, skeletal muscles and blood were obtained. The amounts of adropin (ADR) and betatrophin in the tissue supernatant and blood were measured using an ELISA method. Immunohistochemistry was used to detect ADR and betatrophin expression in situ in tissue samples. The duration of these experiments varied from 3 and 10 weeks. The order of development of MetS was: group 7, 3 weeks; group 6, 4 weeks; group 5, 6 weeks; group 4, 7 weeks; group 3, 10 weeks. Kidney, liver, heart, pancreas and skeletal muscle tissues are sources of adropin and betatrophin. In these tissues and in the circulation, adropin was decreased significantly, while betatrophin was increased significantly due to MetS; irisin + exercise reversed this situation. We found that the best method for creating a MetS model was F + UA2 supplementation. Our method is rapid and simple. Irisin + exercise was best for preventing MetS.


Assuntos
Fibronectinas , Síndrome Metabólica , Ratos , Animais , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Síndrome Metabólica/terapia , Proteína 8 Semelhante a Angiopoietina , Coração
12.
Trends Endocrinol Metab ; 35(2): 94-96, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38101996

RESUMO

Mounting evidence suggests that physical exercise protects the brain against neurodegenerative disease. In a recent paper in Neuron, Kim et al. reported that the exercise-induced hormone irisin curbs amyloid-ß buildup by promoting secretion of astrocyte-derived neprilysin. These findings may help explain the neuroprotection by irisin and exercise in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Fibronectinas/farmacologia , Peptídeos beta-Amiloides/farmacologia , Exercício Físico
13.
Biomed Pharmacother ; 169: 115863, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37952356

RESUMO

Acquired aplastic anemia (AA) is a bone marrow failure (BMF) disease, characterized by fatty bone marrow (BM) and BM hypocellularity resulted from auto-immune dysregulated T cells-mediated destruction of BM haemopoietic stem cells (HPSC). The objective of this study was to investigate potential therapeutic effect of irisin, a molecule involved in adipose tissue transition, on AA mouse model. Our results showed that the concentration of irisin in serum was lower in AA patients than in healthy controls, suggesting a role of irisin in the pathogenesis of AA. In the AA mice, irisin administration prolonged the survival rate, prevented or attenuated peripheral pancytopenia, and preserved HPSC in the BM. Moreover, irisin also markedly reduced BM adipogenesis. In vitro results showed that irisin increased both cell proliferation and colony numbers of HPSC. Furthermore, our results demonstrated that irisin upregulated the expression of mitochondrial ATPase Inhibitory Factor 1 (IF1) in HPSC, inhibited the activation of mitochondrial fission protein (DRP1) and enhanced aerobic glycolysis. Taken together, our findings indicate novel roles of irisin in the pathogenesis of AA, and in the protection of HPSC through stimulation of proliferation and regulation of mitochondria function, which provides a proof-of-concept for the application of irisin in AA therapy.


Assuntos
Anemia Aplástica , Células-Tronco Hematopoéticas , Pancitopenia , Animais , Humanos , Camundongos , Anemia Aplástica/patologia , Medula Óssea/metabolismo , Células da Medula Óssea/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Pancitopenia/metabolismo , Pancitopenia/patologia , Células-Tronco Hematopoéticas/efeitos dos fármacos
14.
Cells ; 12(19)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37830549

RESUMO

Regeneration of periodontal tissues requires an integrated approach to the restoration of the periodontal ligament, cementum, and alveolar bone surrounding the teeth. Current strategies in endogenous regenerative dentistry widely use biomaterials, in particular the decellularized extracellular matrix (dECM), to facilitate the recruitment of populations of resident cells into damaged tissues and stimulate their proliferation and differentiation. The purpose of our study was to evaluate the effect of the exogenous components of the extracellular matrix (hyaluronic acid, laminin, fibronectin) on the differentiation of periodontal ligament stem cells (PDLSCs) cultured with dECM (combinations of decellularized tooth matrices and periodontal ligament) in a 3D collagen I hydrogel. The immunohistochemical expression of various markers in PDLSCs was assessed quantitatively and semi-quantitatively on paraffin sections. The results showed that PDLSCs cultured under these conditions for 14 days exhibited phenotypic characteristics consistent with osteoblast-like and odontoblast-like cells. This potential has been demonstrated by the expression of osteogenic differentiation markers (OC, OPN, ALP) and odontogenic markers (DSPP). This phenomenon corresponds to the in vivo state of the periodontal ligament, in which cells at the interface between bone and cementum tend to differentiate into osteoblasts or cementoblasts. The addition of fibronectin to the dECM most effectively induces the differentiation of PDLSCs into osteoblast-like and odontoblast-like cells under 3D culture conditions. Therefore, this bioengineered construct has a high potential for future use in periodontal tissue regeneration.


Assuntos
Fibronectinas , Ligamento Periodontal , Fibronectinas/farmacologia , Osteogênese , Hidrogéis/farmacologia , Células-Tronco , Diferenciação Celular , Matriz Extracelular , Colágeno/farmacologia
15.
Biochemistry (Mosc) ; 88(6): 810-822, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37748877

RESUMO

Normalization of secretory activity and differentiation status of mesenchymal cells, including fibroblasts, is an important biomedical problem. One of the possible solutions is modulation of unfolded protein response (UPR) activated during fibroblast differentiation. Here, we investigated the effect of phytohormones on the secretory activity and differentiation of cultured human skin fibroblasts. Based on the analysis of expression of genes encoding UPR markers, abscisic acid (ABA) upregulated expression of the GRP78 and ATF4 genes, while gibberellic acid (GA) upregulated expression of CHOP. Evaluation of the biosynthetic activity of fibroblasts showed that ABA promoted secretion and synthesis of procollagen I and synthesis of fibronectin, as well as the total production of collagen and non-collagen proteins of the extracellular matrix (ECM). ABA also stimulated the synthesis of smooth muscle actin α (α-SMA), which is the marker of myofibroblasts, and increased the number of myofibroblasts in the cell population. On the contrary, GA increased the level of fibronectin secretion, but reduced procollagen I synthesis and the total production of the ECM collagen proteins. GA downregulated the synthesis of α-SMA and decreased the number of myofibroblasts in the cell population. Our results suggest that phytohormones modulate the biosynthetic activity of fibroblasts and affect their differentiation status.


Assuntos
Fibronectinas , Reguladores de Crescimento de Plantas , Humanos , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Pró-Colágeno/farmacologia , Células Cultivadas , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Diferenciação Celular , Colágeno , Proteínas da Matriz Extracelular/metabolismo , Actinas/metabolismo , Resposta a Proteínas não Dobradas
16.
Exp Mol Pathol ; 134: 104869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690529

RESUMO

INTRODUCTION: Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvß5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvß5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvß5 contributes to the effects of irisin during the hemorrhagic response. METHODS: Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5  µg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvß5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin ß5 with nanoparticle delivery of integrin ß5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS: Hemorrhage induced reduction of integrin αvß5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin ß5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin ß5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvß5, or knockdown of integrin ß5. CONCLUSION: Integrin αvß5 plays an important role for irisin in modulating the protective effect during hemorrhage.


Assuntos
Fibronectinas , Integrina alfaV , Animais , Humanos , Camundongos , Fibronectinas/genética , Fibronectinas/farmacologia , Hemorragia , RNA Guia de Sistemas CRISPR-Cas
17.
Arterioscler Thromb Vasc Biol ; 43(9): 1639-1652, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409527

RESUMO

BACKGROUND: Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS: We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS: Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS: These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.


Assuntos
Lesões das Artérias Carótidas , Trombose , Ratos , Animais , Fibronectinas/farmacologia , Lesões das Artérias Carótidas/patologia , Caderinas , Artérias Carótidas/patologia , Hiperplasia/patologia , Peptídeos/farmacologia , Trombose/patologia
18.
Clin Transl Med ; 13(7): e1326, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37462619

RESUMO

BACKGROUND: Skeletal muscle-secreted myokines widely participate in lipids metabolism through autocrine, paracrine and endocrine actions. The myokines represented by FGF21 and Irisin can promote the browning of adipocytes and serve as promising targets for treating obesity. Although recombinant myokines replacement therapy and AAV (adeno-associated virus)-based myokines overexpression have shown a definite effect in ameliorating obesity, novel myokine activation strategies with higher efficacy and safety are still in pressing need. This study aimed to evaluate the therapeutic potential of a novel CRISPR-based myokines activation strategy in obesity treatments. METHODS: In this study, we used lentivirus and a single AAV vector containing dCas9-VP64 with a single-guide RNA to selectively activate Fgf21 and Fndc5 expression in skeletal muscles both in vitro and in vivo. The activation efficacy of the CRISPRa system was determined by qRT-PCR, Western blotting and ELISA. The treatment effect of CRISPR-based myokines activation was tested in 3T3-L1-derived adipocytes and diet-induced obese (DIO) mice (male C57BL/6 mice, induced at 6-week-old for 10 weeks). RESULTS: The virus upregulates myokines expression in both mRNA and protein levels of muscle cells in vitro and in vivo. Myokines secreted by muscle cells promoted browning of 3T3-L1-derived adipocytes. In vivo activation of myokines by AAVs can reduce body weight and fat mass, increase the adipocytes browning and improve glucose tolerance and insulin sensitivity in DIO mice. CONCLUSIONS: Our study provides a novel CRISPR-based myokines activation strategy that can ameliorate obesity by promoting adipocytes browning.


Assuntos
Tecido Adiposo Marrom , Fibronectinas , Camundongos , Animais , Masculino , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Camundongos Endogâmicos C57BL , Adipócitos/metabolismo , Fatores de Transcrição/metabolismo , Obesidade/genética , Obesidade/metabolismo
19.
Redox Biol ; 64: 102787, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392517

RESUMO

INTRODUCTION: Irisin is a newly discovered myokine which links exercise to inflammation and inflammation-related diseases through macrophage regulation. However, the effect of irisin on the activity of inflammation related immune cells (such as neutrophils) has not been clearly described. OBJECTIVES: The objective of our study was to explore the effect of irisin on the neutrophil extracellular traps (NETs) formation. METHODS: Phorbol-12-myristate-13-acetate (PMA) was used to construct a classic neutrophil inflammation model that was used to observe the formation of NETs in vitro. We studied the effect of irisin on NETs formation and its regulation mechanism. Subsequently, acute pancreatitis (AP) was used to verify the protective effect of irisin in vivo, which was an acute aseptic inflammatory response disease model closely related to NETs. RESULTS: Our study found that addition of irisin significantly reduced the formation of NETs via regulation of the P38/MAPK pathway through integrin αVß5, which might be the one of key pathways in NETs formation, and which could theoretically offset the immunoregulatory effect of irisin. Systemic treatment with irisin reduced the severity of tissue damage common in the disease and inhibited the formation of NETs in pancreatic necrotic tissue of two classical AP mouse models. CONCLUSION: The findings confirmed for the first time that irisin could inhibit NETs formation and protect mice from pancreatic injury, which further elucidated the protective effect of exercise on acute inflammatory injury.


Assuntos
Armadilhas Extracelulares , Pancreatite , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Pancreatite/metabolismo , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Doença Aguda , Neutrófilos/metabolismo , Inflamação/metabolismo , Acetato de Tetradecanoilforbol/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
20.
Int Ophthalmol ; 43(10): 3707-3715, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37422546

RESUMO

PURPOSE: This study aimed to explore the role of atorvastatin (ATO) in the prevention and treatment of the scarring of filtration channels after glaucoma surgery. METHODS: Human Tenon's capsule fibroblasts (HTFs) were co-cultured with various concentrations of ATO. First, Cell Counting Kit-8 assay was performed to evaluate the effects of various concentrations of ATO on the viability of HTFs. Then, after the ATO stimulated the HTFs for 24 h, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to evaluate the apoptosis of HTFs. Transwell assay was also performed to evaluate the migration of HTFs. Moreover, enzyme-linked immunosorbent assay (ELISA) was performed to detect the protein expression levels of transforming growth factor-ß1 (TGF-ß1) and TGF-ß2 in the cell culture supernatant of HTFs. Western blot was carried out to detect the protein expression levels of smooth muscle actin (SMA), p38, Smad3, fibronectin, collagen I and collagen III in different groups. RESULTS: The results revealed that ATO could inhibit the proliferation and migration of HTFs. Based on the TUNEL assay, 100 µM and 150 µM ATO could induce cell apoptosis. The ELISA results indicated that ATO could down-regulate the expression level of TGF-ß2, and western blot analysis revealed that the protein expression levels of SMA, p38, Smad3, fibronectin, collagen I and collagen III in the TGF-ß2 group were all up-regulated compared with the control group, whereas the addition of ATO could reverse this up-regulation. CONCLUSIONS: ATO could inhibit the proliferation and migration of HTFs and induce their apoptosis. It was preliminary proven that ATO could inhibit the signaling pathway induced by TGF-ß. It is suggested that ATO could be a basis for the treatment of the scarring of filtration channels after glaucoma surgery.


Assuntos
Glaucoma , Cápsula de Tenon , Humanos , Cápsula de Tenon/patologia , Fator de Crescimento Transformador beta2/farmacologia , Fator de Crescimento Transformador beta2/metabolismo , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Atorvastatina/farmacologia , Atorvastatina/metabolismo , Glaucoma/metabolismo , Cicatriz/patologia , Células Cultivadas , Fibroblastos , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/farmacologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...