Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721924

RESUMO

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Cafeicos , Diálise Peritoneal , Fibrose Peritoneal , Álcool Feniletílico , Ratos Sprague-Dawley , Sirtuína 1 , Animais , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Sirtuína 1/metabolismo , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Ratos , Masculino , Proteínas Quinases Ativadas por AMP/metabolismo , Diálise Peritoneal/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Peritônio/patologia , Peritônio/efeitos dos fármacos , Peritônio/metabolismo , Homeostase/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Soluções para Diálise
2.
Sci China Life Sci ; 67(2): 360-378, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37815699

RESUMO

Peritoneal fibrosis together with increased capillaries is the primary cause of peritoneal dialysis failure. Mesothelial cell loss is an initiating event for peritoneal fibrosis. We find that the elevated glucose concentrations in peritoneal dialysate drive mesothelial cell pyroptosis in a manner dependent on caspase-3 and Gasdermin E, driving downstream inflammatory responses, including the activation of macrophages. Moreover, pyroptosis is associated with elevated vascular endothelial growth factor A and C, two key factors in vascular angiogenesis and lymphatic vessel formation. GSDME deficiency mice are protected from high glucose induced peritoneal fibrosis and ultrafiltration failure. Application of melatonin abrogates mesothelial cell pyroptosis through a MT1R-mediated action, and successfully reduces peritoneal fibrosis and angiogenesis in an animal model while preserving dialysis efficacy. Mechanistically, melatonin treatment maintains mitochondrial integrity in mesothelial cells, meanwhile activating mTOR signaling through an increase in the glycolysis product dihydroxyacetone phosphate. These effects together with quenching free radicals by melatonin help mesothelial cells maintain a relatively stable internal environment in the face of high-glucose stress. Thus, Melatonin treatment holds some promise in preserving mesothelium integrity and in decreasing angiogenesis to protect peritoneum function in patients undergoing peritoneal dialysis.


Assuntos
Melatonina , Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Piroptose , Ultrafiltração , Células Epiteliais , Glucose/farmacologia , Fibrose
3.
Int Urol Nephrol ; 56(6): 1987-1999, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38097887

RESUMO

BACKGROUND: Peritoneal fibrosis (PF), a common complication of long-term peritoneal dialysis, accounts for peritoneal ultrafiltration failure to develop into increased mortality. Nintedanib has previously been shown to protect against multi-organ fibrosis, including PF. Unfortunately, the precise molecular mechanism underlying nintedanib in the pathogenesis of PF remains elusive. METHODS: The mouse model of PF was generated by chlorhexidine gluconate (CG) injection with or without nintedanib administration, either with the simulation for the cell model of PF by constructing high-glucose (HG)-treated human peritoneal mesothelial cells (HPMCs). HE and Masson staining were applied to assess the histopathological changes of peritoneum and collagen deposition. FISH, RT-qPCR, western blot and immunofluorescence were employed to examine distribution or expression of targeted genes. Cell viability was detected using CCK-8 assay. Cell morphology was observed under a microscope. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays were applied to validate the H19-EZH2-KLF2 regulatory axis. RESULTS: Aberrantly overexpressed H19 was observed in both the mouse and cell model of PF, of which knockdown significantly blocked HG-induced mesothelial-to-mesenchymal transition (MMT) of HPMCs. Moreover, loss of H19 further strengthened nintedanib-mediated suppressive effects against MMT process in a mouse model of PF. Mechanistically, H19 could epigenetically repressed KLF2 via recruiting EZH2. Furthermore, TGF-ß/Smad pathway was inactivated by nintedanib through mediating H19/KLF2 axis. CONCLUSION: In summary, nintedanib disrupts MMT process through regulating H19/EZH2/KLF2 axis and TGF-ß/Smad pathway, which laid the experimental foundation for nintedanib in the treatment of PF.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Transição Epitelial-Mesenquimal , Indóis , Fatores de Transcrição Kruppel-Like , Fibrose Peritoneal , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/etiologia , Animais , Camundongos , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Indóis/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Cultivadas , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos , Masculino
4.
Sci Rep ; 13(1): 16340, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770630

RESUMO

Peritoneal calcification is a prominent feature of the later stage of encapsulating peritoneal sclerosis (EPS) in patients undergoing long-term peritoneal dialysis (PD). However, the pathogenesis and preventive strategy for peritoneal calcification remain unclear. Peritoneum samples from EPS patients were examined histologically. Peritoneal calcification was induced in mice by feeding with an adenine-containing diet combined with intraperitoneal administration of lipopolysaccharide and a calcifying solution containing high calcium and phosphate. Excised mouse peritoneum, human mesothelial cells (MeT5A), and mouse embryonic fibroblasts (MEFs) were cultured in calcifying medium. Immunohistochemistry confirmed the appearance of osteoblastic differentiation-marker-positive cells in the visceral peritoneum from EPS patients. Intraperitoneal administration of magnesium suppressed peritoneal fibrosis and calcification in mice. Calcifying medium increased the calcification of cultured mouse peritoneum, which was prevented by magnesium. Calcification of the extracellular matrix was accelerated in Met5A cells and MEFs treated with calcification medium. Calcifying medium also upregulated osteoblastic differentiation markers in MeT5A cells and induced apoptosis in MEFs. Conversely, magnesium supplementation mitigated extracellular matrix calcification and phenotypic transdifferentiation and apoptosis caused by calcifying conditions in cultured MeT5A cells and MEFs. Phosphate loading contributes to the progression of EPS through peritoneal calcification and fibrosis, which can be prevented by magnesium supplementation.


Assuntos
Calcinose , Diálise Peritoneal , Fibrose Peritoneal , Humanos , Animais , Camundongos , Peritônio/patologia , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/patologia , Magnésio/farmacologia , Fibroblastos/patologia , Diálise Peritoneal/efeitos adversos , Calcinose/patologia
5.
Theranostics ; 13(13): 4482-4496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649600

RESUMO

Background: Peritoneal dialysis (PD) is limited by gradual fibrotic remodeling in the peritoneum, a process involving profibrotic response of mesothelial cells. However, the role of fatty acid oxidation (FAO) and carnitine palmitoyltransferase 1A (CPT1A) in this process remains unexplored. Methods: FAO and CPT1A expression were characterized in mesothelial cells from patients on long-term PD and from a mouse model of PD using multiple experimental methods, including single-cell sequencing, seahorse assay, real-time quantitative PCR, Western blot, and immunofluorescence staining. Overexpression of CPT1A was achieved in a human mesothelial cell line and in primary mouse mesothelial cells. Finally, genetic and pharmacological manipulations of CPT1A were performed in a mouse model of PD. Results: Herein, FAO and CPT1A expression were reduced in mesothelial cells from patients on long-term PD, which negatively correlated with expression of fibrogenic markers in these cells. This was corroborated in PD mice, as well as in mouse and human mesothelial cells incubated with transforming growth factor (TGF) ß1. CPT1A overexpression in mesothelial cells, which prevented TGFß1-induced suppression of mitochondrial respiration, restored cellular ATP levels and downregulated the expression of fibrogenic markers. Furthermore, restoration of FAO by overexpressing CPT1A in PD mice reversed profibrotic phenotype in mesothelial cells and reduced fibrotic lesions in the peritoneum. Treatment with the CPT1A activator C75 induced similar therapeutic benefit in PD mice. In contrast, inhibition of FAO with a CPT1 inhibitor caused more severe fibrosis in PD mice. Conclusions: A defective FAO is responsible for the profibrotic response of mesothelial cells and thus the peritoneal fibrogenesis. This aberrant metabolic state could be improved by modulating CPT1A in mesothelial cells, suggesting FAO enhancement in mesothelial cells is a potential treatment of peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/prevenção & controle , Carnitina O-Palmitoiltransferase/genética , Metabolismo dos Lipídeos , Bioensaio , Modelos Animais de Doenças , Ácidos Graxos
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2379-2391, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37052642

RESUMO

Peritoneal dialysis (PD) is the mainstay of treatment for renal failure replacement therapy. Although PD has greatly improved the quality of life of end-stage renal disease (ESRD) patients, long-term PD can lead to ultrafiltration failure, which in turn causes peritoneal fibrosis (PF). Silymarin (SM) is a polyphenolic flavonoid isolated from the milk thistle (Silybum marianum) species that has a variety of pharmacological actions, including antioxidant, anti-inflammatory, antiviral, and anti-fibrotic pharmacological activities. However, the effect of SM on PF and its potential mechanisms have not been clarified. The aim of this study was to investigate the preventive effect of SM on PF in vitro and in vivo as well as elucidate the underlying mechanisms. We established PF mouse models and human pleural mesothelial cell fibrosis in vitro by intraperitoneal injection of high-glucose peritoneal dialysis solution (PDS) or transforming growth factor-ß1 (TGF-ß1), and evaluated the effect of SM on peritoneal fibrosis in vivo and in vitro. We found that SM alleviated peritoneal dysfunction. Meanwhile, SM inhibited the expression of fibrotic markers (TGF-ß1, collagen I, fibronectin) and restored the expression of E-cadherin, BMP-7 in PF mice and TGF-ß1-treated Met-5A cells. Furthermore, SM markedly down-regulated the expression of TGF-ß1, p-Smad2, and p-Smad3 and up-regulated the expression of smad7. In conclusion, these findings suggested that SM may be an efficient and novel therapy for the prevention of PF through inhibition of TGF-ß/Smad signaling.


Assuntos
Fibrose Peritoneal , Silimarina , Humanos , Camundongos , Animais , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/etiologia , Fator de Crescimento Transformador beta1/metabolismo , Silimarina/farmacologia , Silimarina/uso terapêutico , Qualidade de Vida , Transdução de Sinais , Fibrose , Proteínas Smad/metabolismo
7.
Lab Invest ; 103(4): 100050, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870292

RESUMO

Long-term peritoneal dialysis (PD) is often associated with peritoneal dysfunction leading to withdrawal from PD. The characteristic pathologic features of peritoneal dysfunction are widely attributed to peritoneal fibrosis and angiogenesis. The detailed mechanisms remain unclear, and treatment targets in clinical settings have yet to be identified. We investigated transglutaminase 2 (TG2) as a possible novel therapeutic target for peritoneal injury. TG2 and fibrosis, inflammation, and angiogenesis were investigated in a chlorhexidine gluconate (CG)-induced model of peritoneal inflammation and fibrosis, representing a noninfectious model of PD-related peritonitis. Transforming growth factor (TGF)-ß type I receptor (TGFßR-I) inhibitor and TG2-knockout mice were used for TGF-ß and TG2 inhibition studies, respectively. Double immunostaining was performed to identify cells expressing TG2 and endothelial-mesenchymal transition (EndMT). In the rat CG model of peritoneal fibrosis, in situ TG2 activity and protein expression increased during the development of peritoneal fibrosis, as well as increases in peritoneal thickness and numbers of blood vessels and macrophages. TGFßR-I inhibitor suppressed TG2 activity and protein expression, as well as peritoneal fibrosis and angiogenesis. TGF-ß1 expression, peritoneal fibrosis, and angiogenesis were suppressed in TG2-knockout mice. TG2 activity was detected by α-smooth muscle actin-positive myofibroblasts, CD31-positive endothelial cells, and ED-1-positive macrophages. CD31-positive endothelial cells in the CG model were α-smooth muscle actin-positive, vimentin-positive, and vascular endothelial-cadherin-negative, suggesting EndMT. In the CG model, EndMT was suppressed in TG2-knockout mice. TG2 was involved in the interactive regulation of TGF-ß. As inhibition of TG2 reduced peritoneal fibrosis, angiogenesis, and inflammation associated with TGF-ß and vascular endothelial growth factor-A suppression, TG2 may provide a new therapeutic target for ameliorating peritoneal injuries in PD.


Assuntos
Fibrose Peritoneal , Camundongos , Ratos , Animais , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Actinas/metabolismo , Clorexidina/efeitos adversos , Clorexidina/metabolismo , Células Endoteliais/metabolismo , Peritônio/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fibrose , Inflamação/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Camundongos Knockout
8.
Ren Fail ; 45(1): 2149411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36724065

RESUMO

BACKGROUND: Peritoneal fibrosis caused by long-term peritoneal dialysis (PD) is the main reason why patients withdraw from PD treatment. Lipid accumulation in the peritoneum was shown to participate in fibrosis, and klotho is a molecule involved in lipid metabolism. GSK343 (enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitor) has been verified to inhibit epithelial mesenchymal transdifferentiation (EMT) and peritoneal fibrosis, but its related mechanism remains unclear. This study aimed to investigate whether lipid accumulation was involved in the effect of GSK343 and its related mechanism. MATERIALS AND METHODS: First, the expression of EZH2, klotho and EMT indices in human peritoneal mesothelial cells (HMrSV5) incubated with high glucose (HG) levels was detected. After EZH2 was inhibited by GSK343, Western blot (WB), wound healing and Transwell assays were used to explore the effect of GSK343. EZH2 and klotho expression was also detected. Oil red O and Nile red staining and triglyceride (TG) detection kits were used to detect lipid accumulation. A rescue experiment with small interfering RNA specific for klotho (si-klotho) on the basis of GSK343 was also conducted to verify that GSK343 exerted its effect via klotho. In in vivo experiments, rats were administered GSK343, and the related index was assessed. RESULTS: In our study, we revealed that the expression of EZH2 was significantly upregulated and klotho was significantly downregulated in HMrSV5 cells induced by high glucose. With the aid of GSK343, we found that lipid deposition caused by HG was significantly decreased. In addition, EMT and fibrosis were also significantly alleviated. Moreover, GSK343 could also restore the downregulation of klotho. To further verify whether klotho mediated the effect of EZH2, a rescue experiment with si-klotho was also conducted. The results showed that si-klotho could counteract the protective effect of GSK343 on high glucose-induced lipid accumulation and fibrosis. In vivo experiments also revealed that GSK343 could relieve peritoneal fibrosis, lipid deposition and EMT by mitigating EZH2 and restoring klotho expression. CONCLUSIONS: Combining these findings, we found that EZH2 regulated lipid deposition, peritoneal fibrosis, and EMT mediated by klotho. To our knowledge, this is the first study to demonstrate the effect of the EZH2-klotho interaction on peritoneal fibrosis. Hence, EZH2 and klotho could act as potential targets for the treatment of peritoneal fibrosis.


Assuntos
Diálise Peritoneal , Fibrose Peritoneal , Animais , Humanos , Ratos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/farmacologia , Transição Epitelial-Mesenquimal , Glucose/farmacologia , Glucose/metabolismo , Lipídeos , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/etiologia , Fibrose Peritoneal/prevenção & controle , Fibrose Peritoneal/metabolismo , Peritônio/metabolismo , Proteínas Klotho/metabolismo
9.
J Thromb Haemost ; 21(1): 133-144, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36695376

RESUMO

BACKGROUND: In addition to its anticoagulant function in downregulating thrombin generation, activated protein C (APC) evokes pleiotropic cytoprotective signaling activities when it binds to endothelial protein C receptor (EPCR) to activate protease-activated receptor 1 (PAR1) in endothelial cells. OBJECTIVES: To investigate the protective effect of APC in a chlorhexidine gluconate (CG)-induced peritoneal fibrosis model. METHODS: Peritoneal fibrosis was induced in wild-type as well as EPCR- and PAR1-deficient mice via daily injection of CG (0.2 mL of 0.1% CG in 15% ethanol and 85% saline) for 21 days with or without concomitant injection of recombinant human APC derivatives (50 µg/kg of bodyweight). The expression of proinflammatory cytokines and profibrotic markers as well as collagen deposition were analyzed using established methods. RESULTS: CG significantly upregulated the expression of transforming growth factor-ß1 in peritoneal tissues, which culminated in the deposition of excessive extracellular matrix proteins, thickening of the peritoneal membrane, and mesothelial-to-mesenchymal transition in damaged tissues. APC potently inhibited CG-induced peritoneal fibrosis and downregulated the expression of proinflammatory cytokines, collagen deposition, Smad3 phosphorylation, and markers of mesothelial-to-mesenchymal transition (α-smooth muscle actin, vimentin, and N-cadherin). APC also inhibited transforming growth factor-ß1-mediated upregulation of α-smooth muscle actin, Smad3, and fibronectin in human primary mesothelial cells. Employing signaling-selective and anticoagulant-selective variants of APC and mutant mice deficient for either EPCR or PAR1, we demonstrated that the EPCR-dependent signaling function of APC through PAR1 activation was primarily responsible for its antifibrotic activity in the CG-induced peritoneal fibrosis model. CONCLUSION: APC and signaling-selective variants of APC may have therapeutic potential for preventing or treating pathologies associated with peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Humanos , Animais , Camundongos , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/genética , Fibrose Peritoneal/prevenção & controle , Fator de Crescimento Transformador beta1 , Receptor de Proteína C Endotelial/metabolismo , Células Endoteliais/metabolismo , Proteína C/metabolismo , Actinas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Citocinas/metabolismo , Anticoagulantes/efeitos adversos
10.
FASEB J ; 37(1): e22632, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468785

RESUMO

Peritoneal fibrosis (PF) is an irreversible complication of peritoneal dialysis (PD) that leads to loss of peritoneal membrane function. We investigated PD effluent and serum levels and the tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with PD. Additionally, we investigated their association with PF in a mouse model. Eighty-two end-stage renal disease (ESRD) patients with PD were examined. CCL8 levels were measured via enzyme-linked immunosorbent assays in PD effluents and serum and analyzed with peritoneal transport parameters. Human peritoneal mesothelial cells (hPMCs) were obtained from the PD effluents of 20 patients. Primary cultured hPMCs were treated with recombinant (r) transforming growth factor (TGF)-ß, and CCL8 expression was assessed via western blotting. As the duration of PD increased, the concentration of CCL8 in PD effluents significantly increased. Correlations between peritoneal transport parameters and dialysate CCL8 levels were observed. Western blotting analysis showed that CCL8 was upregulated via rTGF-ß treatment, accompanied by increases in markers of inflammation, fibrosis, senescence, and apoptosis in hPMCs after induction of fibrosis with rTGF-ß. Anti-CCL8 monoclonal antibody (mAb) treatment suppressed the rTGF-ß-induced increase in all analyzed markers. Immunohistochemical analysis revealed that CCL8 along with fibrosis- and inflammation-related markers were significantly increased in the PF mouse model. Functional blockade of CCL8 using a CCR8 inhibitor (R243) abrogated peritoneal inflammation and fibrosis in vivo. In conclusion, high CCL8 levels in PD effluents may be associated with an increased risk of PD failure, and the CCL8 pathway is associated with PF. CCL8 blockade can ameliorate peritoneal inflammation and fibrosis.


Assuntos
Fibrose Peritoneal , Peritonite , Animais , Camundongos , Humanos , Fibrose Peritoneal/prevenção & controle , Quimiocina CCL8 , Peritônio , Quimiocinas , Ligantes , Inflamação , Modelos Animais de Doenças
11.
Front Immunol ; 13: 899140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784347

RESUMO

Peritoneal fibrosis contributes to ultrafiltration failure in peritoneal dialysis (PD) patients and thus restricts the wide application of PD in clinic. Recently we have demonstrated that histone deacetylase 6 (HDAC6) is critically implicated in high glucose peritoneal dialysis fluid (HG-PDF) induced peritoneal fibrosis, however, the precise mechanisms of HDAC6 in peritoneal fibrosis have not been elucidated. Here, we focused on the role and mechanisms of HDAC6 in chlorhexidine gluconate (CG) induced peritoneal fibrosis and discussed the mechanisms involved. We found Tubastatin A (TA), a selective inhibitor of HDAC6, significantly prevented the progression of peritoneal fibrosis, as characterized by reduction of epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition. Inhibition of HDAC6 remarkably suppressed the expression of matrix metalloproteinases-2 (MMP2) and MMP-9. Administration of TA also increased the expression of acetylation Histone H3 and acetylation α-tubulin. Moreover, our results revealed that blockade of HDAC6 inhibited alternatively M2 macrophages polarization by suppressing the activation of TGF-ß/Smad3, PI3K/AKT, and STAT3, STAT6 pathways. To give a better understanding of the mechanisms, we further established two cell injured models in Raw264.7 cells by using IL-4 and HG-PDF. Our in vitro experiments illustrated that both IL-4 and HG-PDF could induce M2 macrophage polarization, as demonstrated by upregulation of CD163 and Arginase-1. Inhibition of HDAC6 by TA significantly abrogated M2 macrophage polarization dose-dependently by suppressing TGF-ß/Smad, IL4/STAT6, and PI3K/AKT signaling pathways. Collectively, our study revealed that blockade of HDAC6 by TA could suppress the progression of CG-induced peritoneal fibrosis by blockade of M2 macrophage polarization. Thus, HDAC6 may be a promising target in peritoneal fibrosis treatment.


Assuntos
Fibrose Peritoneal , Clorexidina/análogos & derivados , Soluções para Diálise , Desacetilase 6 de Histona , Humanos , Interleucina-4 , Macrófagos/metabolismo , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Fator de Crescimento Transformador beta/metabolismo
12.
PLoS One ; 17(5): e0268197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35522621

RESUMO

BACKGROUND: Progressive fibrous thickening of peritoneal membrane (PM) is a major complication of long-term peritoneal dialysis. TGF-ß/SMAD pathway activation, inflammation and neoangiogenesis have an important role in PM changes induced by peritoneal dialysis. Here, we investigated the effects of paclitaxel (PTX) carried in lipid core nanoparticles (LDE) on the development of peritoneal fibrosis (PF) in rats. METHODS: To induce PF, 21 male Wistar rats (300-350g) were injected with chlorhexidine gluconate for 15 consecutive days and randomly assigned to three groups: 1)PF, n = 5: no treatment; 2)LDE, n = 8: treated with LDE only, 3/3 days during 15 days; 3)LDE-PTX, n = 8: treated with PTX (4mg/kg) associated with LDE, 3/3 days during 15 days. A Control group without PF induction (n = 5) was designed, received saline solution, 3/3 days. Peritoneum function tests were performed, and anterior abdominal wall samples of the PM were collected for analyses of peritoneal thickness, immunohistochemitry, and gene expression. RESULTS: LDE-PTX treatment preserved the membrane function, maintaining the ultrafiltration rate and mass transfer of glucose at normal levels. LDE-PTX also prevented PM thickening induced by chlorhexidine gluconate injections. LDE-PTX treatment reduced the number of myofibroblasts infiltrating PM and inhibited the cell proliferation. Gene expression of fibronectin, FSP-1, VEGF, TGF-ß, and SMAD3 were reduced by LDE-PTX. CONCLUSIONS: LDE-PTX was effective to prevent development of PF and preserve the PM filtration capacity in this rat model, with clear-cut actions on pro-fibrotic mechanisms. Thus, LDE-PTX can be candidate for future clinical trials as adjuvant to peritoneal dialysis to prevent PF development, since this preparation is devoid of toxicity as shown previously.


Assuntos
Nanopartículas , Fibrose Peritoneal , Animais , Modelos Animais de Doenças , Feminino , Lipossomos , Masculino , Paclitaxel , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/prevenção & controle , Peritônio/patologia , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta/metabolismo
13.
Am J Chin Med ; 50(1): 261-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34983328

RESUMO

Peritoneal fibrosis (PF) is a disease caused by prolonged exposure of the peritoneum to high levels of dialysis fluid. Astragalus total saponins (ATS) is a phytochemical naturally occurring in Radix Astragali that has anti-inflammatory and anti-oxidant properties. In this study, we constructed an in vivo model of PF using 4.25% glucose-containing administered intraperitoneally to rats and incubated peritoneal mesothelial cells (PMCs) with 4.25% glucose-containing peritoneal dialysis fluid to construct an in vitro model of PF. Furthermore, siRNA of PGC-1[Formula: see text] was used to inhibit the expression of PGC-1[Formula: see text] to further investigate the mechanism of the protective effect of ATS on PF. In both in vivo and in vitro models, ATS treatment showed a protective effect against PF, with ATS reducing the thickness of peritoneal tissues in PF rats, increasing the viability of PMCs, increasing the mitochondrial membrane potential and reducing apoptosis ratio. ATS treatment also reduced the expressions of peritoneal fibrosis markers (Smad2, p-Smad2 and [Formula: see text]-SMA) and apoptosis markers (Caspase3, cleaved-Caspase3 and Bax) and restored the expressions of mitochondrial synthesis proteins (PGC-1[Formula: see text], NRF1 and TFAM) in ATS-treated peritoneal tissues or PMCs. Furthermore, in the presence of PGC-1[Formula: see text] inhibition, the protective effect of ATS on PF was blocked. In conclusion, ATS treatment may be an effective therapeutic agent to inhibit high glucose-induced in peritoneal fibrosis through PGC-1[Formula: see text]-mediated apoptosis.


Assuntos
Fibrose Peritoneal , Saponinas , Animais , Apoptose , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/prevenção & controle , Peritônio/metabolismo , Peritônio/patologia , Ratos , Saponinas/metabolismo , Saponinas/farmacologia , Transdução de Sinais
14.
Med Mol Morphol ; 55(1): 27-40, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34622315

RESUMO

Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis, attributable to inflammation and mitochondrial dysfunction. Mitochonic acid-5 (MA-5), an indole-3-acetic acid derivative, improves mitochondrial dysfunction and has therapeutic potential against various diseases including kidney diseases. However, whether MA-5 is effective against peritoneal fibrosis remains unclear. Therefore, we investigated the effect of MA-5 using a peritoneal fibrosis mouse model. Peritoneal fibrosis was induced in C57BL/6 mice via intraperitoneal injection of chlorhexidine gluconate (CG) every other day for 3 weeks. MA-5 was administered daily by oral gavage. The mice were divided into control, MA-5, CG, and CG + MA-5 groups. Following treatment, immunohistochemical analyses were performed. Fibrotic thickening of the parietal peritoneum induced by CG was substantially attenuated by MA-5. The number of α-smooth muscle actin-positive myofibroblasts, transforming growth factor ß-positive cells, F4/80-positive macrophages, monocyte chemotactic protein 1-positive cells, and 4-hydroxy-2-nonenal-positive cells was considerably decreased. In addition, reduced ATP5a1-positive and uncoupling protein 2-positive cells in the CG group were notably increased by MA-5. MA-5 may ameliorate peritoneal fibrosis by suppressing macrophage infiltration and oxidative stress, thus restoring mitochondrial function. Overall, MA-5 has therapeutic potential against peritoneal fibrosis.


Assuntos
Fibrose Peritoneal , Animais , Clorexidina/análogos & derivados , Modelos Animais de Doenças , Ácidos Indolacéticos , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/tratamento farmacológico , Fibrose Peritoneal/prevenção & controle , Peritônio/metabolismo , Peritônio/patologia , Fenilbutiratos/química
15.
Pak J Pharm Sci ; 35(6(Special)): 1767-1772, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36861241

RESUMO

The current study set out to elucidate the function of epigallocatechin gallate (EGCG) against peritoneal fibrosis in peritoneal dialysis (PD) patients. Firstly, human peritoneal mesothelial cells (HPMCs) were pretreated with 0, 12.5, 25, 50 or 100µmol/L EGCG. Epithelial-mesenchymal transition (EMT) models were induced by advanced glycation end products (AGEs). Untreated-cells were regarded as the blank control group. Changes in proliferation and migration were analyzed by MTT assay and scratch test and levels of HPMC epithelial and interstitial molecular marker proteins were measured by Western blot assay and immunofluorescence, while trans-endothelial resistance was assessed using an epithelial trans membrane cell resistance meter. Inhibition rates of HPMCs, migration numbers and the levels of Snail, E-cadherin, CK and ZO-1 were all decreased, while the levels of α-SMA and FSP1 and trans cellular resistance values were increased in treatment groups (P<0.05). With the increase of EGCG concentrations, HPMCs growth inhibition rates and migration numbers, the levels of α-SMA and FSP1 and TER values were decreased and the levels of Snail, E-cadherin, CK and ZO-1 were enhanced (P<0.05). Overall, the current study highlights that EGCG effectively inhibits the proliferation and migration of HPMCs, increases permeability, suppresses EMT and ultimately delays peritoneal fibrosis.


Assuntos
Catequina , Fibrose Peritoneal , Humanos , Transição Epitelial-Mesenquimal , Fibrose Peritoneal/prevenção & controle , Catequina/farmacologia , Caderinas
16.
Ren Fail ; 43(1): 869-877, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33993842

RESUMO

OBJECTIVE: Peritoneal fibrosis (PF) ultimately causes ultrafiltration failure and peritoneal dialysis (PD) termination, but there are few effective therapies for it. Core fucosylation, which is catalyzed by α1,6-fucosyltransferase (Fut8) in mammals, may play a crucial role in PF development. This study aims to assess the effects of inhibiting core fucosylation of epidermal growth factor (EGF) receptor on PF rats. METHODS: PF rats (established by 4.25% glucose dialysate) were treated with either an adenovirus-Fut8 short hairpin RNA (Fut8shRNA) or adenovirus-control. Masson's staining and net ultrafiltration were performed at week six. Fut8 level and core fucosylation of EGF receptor and collagen I in the peritoneal membrane were assessed, and EGF signaling was detected, including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa B (NF-κB) and their phosphorylation. Monocyte chemoattractant protein-1 (MCP-1) in peritoneal effluent was examined. RESULTS: Fut8 was upregulated in PF rats but decreased after Fut8shRNA treatment. EGF and EGF receptor expression was upregulated in PF rats, while core fucosylation of EGF receptor decreased after Fut8shRNA treatment. Masson's staining results showed an increase in peritoneal thickness in PF rats but a decrease after Fut8shRNA treatment. Fut8shRNA treatment increased net ultrafiltration, reduced the expression of collagen I and MCP-1 compared to PF rats. Fut8shRNA treatment suppressed phosphorylation of STAT3 and NF-κB in the peritoneal membrane of PF rats. CONCLUSIONS: Fut8shRNA treatment ameliorated the fibrotic changes in PF rats. A potential mechanism may be that Fut8shRNA treatment inactivated EGF signaling pathway by suppressing the phosphorylation of STAT3 and NF-κB.


Assuntos
Receptores ErbB/metabolismo , Fucosiltransferases/farmacologia , Glicosilação/efeitos dos fármacos , Diálise Peritoneal/métodos , Fibrose Peritoneal/prevenção & controle , Peritônio/metabolismo , Animais , Quimiocina CCL2/metabolismo , Soluções para Diálise , Modelos Animais de Doenças , Receptores ErbB/efeitos dos fármacos , Fucosiltransferases/genética , Masculino , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Peritônio/efeitos dos fármacos , Peritônio/patologia , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
17.
Perit Dial Int ; 41(4): 394-403, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33522431

RESUMO

BACK GROUND: Krüppel-like transcription factor 5 (KLF5) is a transcription factor regulating cell proliferation, angiogenesis and differentiation. It has been recently reported that Am80, a synthetic retinoic acid receptor α-specific agonist, inhibits the expression of KLF5. In the present study, we have examined the expression of KLF5 in fibrotic peritoneum induced by chlorhexidine gluconate (CG) in mouse and evaluated that Am80, as an inhibitor of KLF5, can reduce peritoneal fibrosis. METHODS: Peritoneal fibrosis was induced by intraperitoneal injection of CG into peritoneal cavity of ICR mice. Am80 was administered orally for every day from the start of CG injection. Control mice received only a vehicle (0.5% carboxymethylcellulose solution). After 3 weeks of treatment, peritoneal equilibration test (PET) was performed and peritoneal tissues were examined by immunohistochemistry. RESULTS: The expression of KLF5 was less found in the peritoneal tissue of control mice, while KLF5 was expressed in the thickened submesothelial area of CG-injected mice receiving the vehicle. Am80 treatment reduced KLF5 expression and remarkably attenuated peritoneal thickening, accompanied with the reduction of type III collagen expression. The numbers of transforming growth factor ß-positive cells, α-smooth muscle actin-positive cells and infiltrating macrophages were significantly decreased in Am80-treated group. PET revealed the increased peritoneal permeability in CG mice, whereas Am80 administration significantly improved the peritoneal high permeability state. CONCLUSIONS: These results indicate the involvement of KLF5 in the progression of experimental peritoneal fibrosis and suggest that Am80 may be potentially useful for the prevention of peritoneal fibrosis through inhibition of KLF5 expression.


Assuntos
Fatores de Transcrição Kruppel-Like , Diálise Peritoneal , Fibrose Peritoneal , Animais , Fibrose , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Endogâmicos ICR , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/prevenção & controle , Peritônio/patologia
18.
Commun Biol ; 4(1): 144, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514826

RESUMO

Peritoneal dialysis (PD) possesses multiple advantages for end stage renal disease. However, long-term PD triggers peritoneal fibrosis (PF). From the nationwide analysis of diabetic PD patients (n = 19,828), we identified the incidence of PD failure was significantly lower in diabetic patients treated with dipeptidyl peptidase 4 (DPP4) inhibitors. Experimental study further showed high concentration of glucose remarkably enhanced DPP4 to promote epithelial-mesenchymal transition (EMT) in the mesothelial cells. In chlorhexidine gluconate (CG)-induced PF model of rats, DPP4 expression was enriched at thickening peritoneum. Moreover, as to CG-induced PF model, DPP4 deficiency (F344/DuCrlCrlj strain), sitagliptin and exendin-4 treatments significantly inhibited DPP4 to reverse the EMT process, angiogenesis, oxidative stress, and inflammation, resulting in the protection from PF, preservation of peritoneum and the corresponding functional integrity. Furthermore, DPP4 activity was significantly correlated with peritoneal dysfunction. Taken together, DPP4 caused peritoneal dysfunction/PF, whereas inhibition of DPP4 protected the PD patients against PD failure.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Falência Renal Crônica/terapia , Diálise Peritoneal , Fibrose Peritoneal/prevenção & controle , Peritônio/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/enzimologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Diálise Peritoneal/efeitos adversos , Fibrose Peritoneal/enzimologia , Fibrose Peritoneal/patologia , Peritônio/enzimologia , Peritônio/patologia , Ratos Endogâmicos F344 , Ratos Transgênicos , Estudos Retrospectivos , Taiwan , Resultado do Tratamento , Adulto Jovem
19.
Sci Rep ; 10(1): 17565, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067481

RESUMO

The ability to visualize intraluminal surface of peritoneal dialysis (PD) catheter and peritoneal cavity could allow elucidation of the cases of outflow problems, and provide information on changes to the peritoneal membrane leading to encapsulating peritoneal sclerosis. A non-invasive examination that allows those monitoring in need is desirable. We have developed a disposable ultra-fine endoscope that can be inserted into the lumen of the existing PD catheter, allowing observation of the luminal side of the catheter and peritoneal cavity from the tip of the PD catheter, with minimum invasion in practice. In a pre-clinical study in pigs and a clinical study in 10 PD patients, the device provided detailed images, enabling safe, easy observation of the intraluminal side of the entire catheter, and of the morphology and status of the peritoneal surface in the abdominal cavity under dwelling PD solution. Since this device can be used repeatedly during PD therapy, clinical application of this device could contribute to improved management of clinical issues in current PD therapy, positioning PD as a safer, more reliable treatment modality for end-stage renal disease.


Assuntos
Catéteres , Endoscópios , Endoscopia/instrumentação , Falência Renal Crônica/terapia , Diálise Peritoneal/instrumentação , Diálise Peritoneal/métodos , Adulto , Idoso , Animais , Soluções para Diálise , Equipamentos Descartáveis , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nefrologia , Cavidade Peritoneal , Fibrose Peritoneal/prevenção & controle , Peritônio , Suínos
20.
Biomed Pharmacother ; 129: 110431, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585450

RESUMO

The biological activity of vitamin D, which mediated by the vitamin D receptor, is widespread throughout the body. The present study aimed to define whether 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3) can protect against the progression of peritoneum fibrosis (PF) through its impact on the expression of connective tissue growth factor (CTGF) and heat shock protein 47 (HSP47) in vivo and in vitro. The male Sprague-Dawley (SD) rats of PF were induced by daily intraperitoneally injection of chlorhexidine gluconate (CG) for 4 wks. PF Rats were also treated with calcitriol (i.p. 6 ng/100g*d) from initiation of the CG. In calcitriol rats, the ultrafiltration and the ratio of dialysate urea nitrogen to blood urea nitrogen were improved (P < 0.05), pathological changes and peritoneal thickness were milder than that of the PF group. Calcitriol ameliorated high glucose-induced HSP47 expression in peritoneal mesothelial cells via CTGF down-regulation both at the mRNA level and protein level. Furthermore, calcitriol prevented angiogenic mediators of fibrosis by reduced the expression of CD34 and vascular endothelial growth factor (VEGF). The present study demonstrated that 1,25-(OH)2D3 intervention had a partially protective effect on peritoneum fibrosis, which might inhibit CTGF/HSP47 and CD34/VEGF in the peritoneum tissues.


Assuntos
Calcitriol/farmacologia , Clorexidina/análogos & derivados , Neovascularização Patológica , Fibrose Peritoneal/prevenção & controle , Peritônio/irrigação sanguínea , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fibrose , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Masculino , Fibrose Peritoneal/induzido quimicamente , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/patologia , Ratos Sprague-Dawley , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...