Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1227268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936684

RESUMO

Introduction: The antinociceptive and pharmacological activities of C-Phycocyanin (C-PC) and Phycocyanobilin (PCB) in the context of inflammatory arthritis remain unexplored so far. In the present study, we aimed to assess the protective actions of these compounds in an experimental mice model that replicates key aspects of human rheumatoid arthritis. Methods: Antigen-induced arthritis (AIA) was established by intradermal injection of methylated bovine serum albumin in C57BL/6 mice, and one hour before the antigen challenge, either C-PC (2, 4, or 8 mg/kg) or PCB (0.1 or 1 mg/kg) were administered intraperitoneally. Proteome profiling was also conducted on glutamate-exposed SH-SY5Y neuronal cells to evaluate the PCB impact on this key signaling pathway associated with nociceptive neuronal sensitization. Results and discussion: C-PC and PCB notably ameliorated hypernociception, synovial neutrophil infiltration, myeloperoxidase activity, and the periarticular cytokine concentration of IFN-γ, TNF-α, IL-17A, and IL-4 dose-dependently in AIA mice. In addition, 1 mg/kg PCB downregulated the gene expression for T-bet, RORγ, and IFN-γ in the popliteal lymph nodes, accompanied by a significant reduction in the pathological arthritic index of AIA mice. Noteworthy, neuronal proteome analysis revealed that PCB modulated biological processes such as pain, inflammation, and glutamatergic transmission, all of which are involved in arthritic pathology. Conclusions: These findings demonstrate the remarkable efficacy of PCB in alleviating the nociception and inflammation in the AIA mice model and shed new light on mechanisms underlying the PCB modulation of the neuronal proteome. This research work opens a new avenue to explore the translational potential of PCB in developing a therapeutic strategy for inflammation and pain in rheumatoid arthritis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Neuroblastoma , Humanos , Camundongos , Animais , Ficocianina/efeitos adversos , Nociceptividade , Proteoma , Infiltração de Neutrófilos , Camundongos Endogâmicos C57BL , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Expressão Gênica , Citocinas/farmacologia , Dor
2.
Trials ; 24(1): 50, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670495

RESUMO

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common adverse effects of antineoplastic agents, ranging in prevalence from 19% to over 85%. Clinically, CIPN is a predominantly sensory neuropathy that may be accompanied by motor and autonomic changes of varying intensity and duration. The high prevalence of CIPN among cancer patients makes it a major problem for both patients and survivors, as well as for their health care providers, especially because there is currently no single effective method of preventing CIPN; moreover, the options for treating this syndrome are very limited. Phycocyanin, a biliprotein pigment and an important constituent of the blue-green algae Spirulina platensis, has been reported to possess significant antioxidant and radical-scavenging properties, offering protection against oxidative stress, which is one of the hypothetic mechanisms, between others, of CIPN occurrence. METHODS: Our hypothesis is that phycocyanin may give protection against oxaliplatin-induced neuropathy in the treatment of gastrointestinal cancers. Our trial will be a randomized double-blind placebo-controlled study with 110 randomized patients suffering from metastatic gastrointestinal adenocarcinoma including esogastric, colorectal, and pancreatic cancers. Patients are being followed up in the gastroenterology or oncology departments of seven French hospitals. DISCUSSION: Due to the neuropathy, patients need to avoid injury by paying careful attention to home safety; patients' physicians often prescribe over-the-counter pain medications. If validated, our hypothesis should help to limit neurotoxicity without the need to discontinue chemotherapy. TRIAL REGISTRATION: ClinicalTrials.gov NCT05025826. First published on August 27, 2021.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Doenças do Sistema Nervoso Periférico , Humanos , Oxaliplatina/efeitos adversos , Ficocianina/efeitos adversos , Neoplasias Gastrointestinais/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
3.
Front Immunol ; 13: 1036200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405721

RESUMO

Cytokines, demyelination and neuroaxonal degeneration in the central nervous system are pivotal elements implicated in the pathogenesis of multiple sclerosis (MS) and its nonclinical model of experimental autoimmune encephalomyelitis (EAE). Phycocyanobilin (PCB), a chromophore of the biliprotein C-Phycocyanin (C-PC) from Spirulina platensis, has antioxidant, immunoregulatory and anti-inflammatory effects in this disease, and it could complement the effect of other Disease Modifying Treatments (DMT), such as Interferon-ß (IFN-ß). Here, our main goal was to evaluate the potential PCB benefits and its mechanisms of action to counteract the chronic EAE in mice. MOG35-55-induced EAE was implemented in C57BL/6 female mice. Clinical signs, pro-inflammatory cytokines levels by ELISA, qPCR in the brain and immunohistochemistry using precursor/mature oligodendrocytes cells antibodies in the spinal cord, were assessed. PCB enhanced the neurological condition, and waned the brain concentrations of IL-17A and IL-6, pro-inflammatory cytokines, in a dose-dependent manner. A down- or up-regulating activity of PCB at 1 mg/kg was identified in the brain on three (LINGO1, NOTCH1, and TNF-α), and five genes (MAL, CXCL12, MOG, OLIG1, and NKX2-2), respectively. Interestingly, a reduction of demyelination, active microglia/macrophages density, and axonal damage was detected along with an increase in oligodendrocyte precursor cells and mature oligodendrocytes, when assessed the spinal cords of EAE mice that took up PCB. The studies in vitro in rodent encephalitogenic T cells and in vivo in the EAE mouse model with the PCB/IFN-ß combination, showed an enhanced positive effect of this combined therapy. Overall, these results demonstrate the anti-inflammatory activity and the protective properties of PCB on the myelin and support its use with IFN-ß as an improved DMT combination for MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Feminino , Animais , Camundongos , Ficocianina/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Camundongos Endogâmicos C57BL , Anti-Inflamatórios/efeitos adversos , Modelos Animais de Doenças , Citocinas/uso terapêutico , Interferon beta/uso terapêutico
4.
Pharm Biol ; 60(1): 755-763, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35373708

RESUMO

CONTEXT: C-Phycocyanin is a protein with anti-scavenger, antioxidant and anti-inflammatory actions against agents that cause cellular damage. The cardioprotective action of C-phycocyanin against acute myocardial infarction (AMI) has not been studied in animal models. OBJECTIVE: To investigate C-phycocyanin's effect on oxidative stress, inflammation and cardiac damage in a model of isoproterenol-induced AMI. MATERIALS AND METHODS: Wistar rats were divided into four groups: (1) sham + vehicle (0.9% saline solution by oral gavage, OG); (2) sham + C-phycocyanin (50 mg/kg/d, OG); (3) AMI + vehicle, and (4) AMI + C-phycocyanin. AMI was induced by administering isoproterenol (20, 10, 5 and 3 mg/kg each dose per day), and serum cardiac enzymes were quantified. After five days, the animals were euthanized; the heart was dissected to determine oxidative stress, redox environment, inflammation and cardiac damage markers. RESULTS: We observed that C-phycocyanin reduced AMI-increased cardiac enzymes (CK by about 53%, CKMB by about 60%, AST by about 16% and ALT by about 21%), lipid peroxidation (57%), reactive oxygen species (50%), nitrites (46%), oxidized glutathione (41%), IL1ß (3%), INFγ (5%), TNFα 3%), Bcl2 (37%), Bax (43%), COX2 (21%) and caspase 9 (61%). Finally, C-phycocyanin reduced AMI-induced aberrant histological changes related to myonecrosis, interstitial oedema and inflammatory infiltration in the heart muscle. CONCLUSIONS: C-Phycocyanin prevents AMI-induced oxidative stress, inflammation and heart damage. This study is the first report that employed C-phycocyanin in an animal model of AMI and supports the potential use of C-phycocyanin in the management of AMI.


Assuntos
Infarto do Miocárdio , Ficocianina , Animais , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Estresse Oxidativo , Ficocianina/efeitos adversos , Ficocianina/metabolismo , Ratos , Ratos Wistar
5.
Pharmacol Rep ; 70(1): 75-80, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29331790

RESUMO

C-Phycocyanin (C-PC) has been shown to be promising in cancer treatment; however, although several articles detailing this have been published, its main mechanisms of action and its cellular targets have not yet been defined, nor has a detailed exploration been conducted of its role in the resistance of cancer cells to chemotherapy, rendering clinical use impossible. From our extensive examination of the literature, we have determined as our main hypothesis that C-PC has no one specific target, but rather acts on the membrane, cytoplasm, and nucleus with diverse mechanisms of action. We highlight the cell targets with which C-PC interacts (the MDR1 gene, cytoskeleton proteins, and COX-2 enzyme) that make it capable of killing cells resistant to chemotherapy. We also propose future analyses of the interaction between C-PC and drug extrusion proteins, such as ABCB1 and ABCC1, using in silico and in vitro studies.


Assuntos
Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Neoplasias/tratamento farmacológico , Ficocianina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Proteínas do Citoesqueleto/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Ficocianina/efeitos adversos
6.
J Med Food ; 19(7): 645-53, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27362442

RESUMO

The goal for this study was to evaluate safety regarding anticoagulant activity and platelet activation during daily consumption of an aqueous cyanophyta extract (ACE), containing a high dose of phycocyanin. Using a randomized, double-blind, placebo-controlled study design, 24 men and women were enrolled after informed consent, and consumed either ACE (2.3 g/day) or placebo daily for 2 weeks. The ACE dose was equivalent to ∼1 g phycocyanin per day, chosen based on the highest dose Generally Recognized as Safe (GRAS) by the U.S. Food and Drug Administration. Consuming ACE did not alter markers for platelet activation (P-selectin expression) or serum P-selectin levels. No changes were seen for activated partial thromboplastin time, thrombin clotting time, or fibrinogen activity. Serum levels of aspartate transaminase (AST) showed a significant reduction after 2 weeks of ACE consumption (P < .001), in contrast to placebo where no changes were seen; the difference in AST levels between the two groups was significant at 2 weeks (P < .02). Reduced levels of alanine transaminase (ALT) were also seen in the group consuming ACE (P < .08). Previous studies showed reduction of chronic pain when consuming 1 g ACE per day. The higher dose of 2.3 g/day in this study was associated with significant reduction of chronic pain at rest and when physically active (P < .05). Consumption of ACE showed safety regarding markers pertaining to anticoagulant activity and platelet activation status, in conjunction with rapid and robust relief of chronic pain. Reduction in AST and ALT suggested improvement in liver function and metabolism.


Assuntos
Anticoagulantes/administração & dosagem , Ficocianina/administração & dosagem , Ficocianina/efeitos adversos , Ativação Plaquetária/efeitos dos fármacos , Spirulina/química , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Dor Crônica/tratamento farmacológico , Método Duplo-Cego , Feminino , Fibrinogênio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Selectina-P/sangue , Tempo de Tromboplastina Parcial , Placebos , Tempo de Trombina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...