Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 950
Filtrar
1.
J Innate Immun ; 16(1): 159-172, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354709

RESUMO

INTRODUCTION: Interleukin-4 (IL-4) is a central regulator of type 2 immunity, crucial for the defense against multicellular parasites like helminths. This study focuses on its roles and cellular sources during Litomosoides sigmodontis infection, a model for human filarial infections. METHODS: Utilizing an IL-4 secretion assay, investigation into the sources of IL-4 during the progression of L. sigmodontis infection was conducted. The impact of eosinophils on the Th2 response was investigated through experiments involving dblGATA mice, which lack eosinophils and, consequently, eosinophil-derived IL-4. RESULTS: The absence of eosinophils notably influenced Th2 polarization, leading to impaired production of type 2 cytokines. Interestingly, despite this eosinophil deficiency, macrophage polarization, proliferation, and antibody production remained unaffected. CONCLUSION: Our research uncovers eosinophils as a major source of IL-4, especially during the early phase of filarial infection. Consequently, these findings shed new light on IL-4 dynamics and eosinophil effector functions in filarial infections.


Assuntos
Eosinófilos , Filariose , Filarioidea , Interleucina-4 , Células Th2 , Animais , Feminino , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Eosinófilos/imunologia , Filariose/imunologia , Filarioidea/imunologia , Interleucina-4/metabolismo , Interleucina-4/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Células Th2/imunologia
2.
PLoS Negl Trop Dis ; 16(5): e0010407, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35604906

RESUMO

BACKGROUND: Lymphatic filariasis (LF) is a neglected tropical disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi and Brugia timori. The Global Program to Eliminate LF uses mass drug administration (MDA) of anti-filarial drugs that clear microfilariae (Mf) from blood to interrupt transmission by mosquitos. New diagnostic tools are needed to assess the impact of MDA on bancroftian filariasis, because available serologic tests can remain positive after successful treatment. METHODOLOGY/PRINCIPAL FINDINGS: We identified Wb-bhp-1, which encodes a W. bancrofti homologue of BmR1, the B. malayi protein used in the Brugia Rapid antibody test for brugian filariasis. Wb-bhp-1 has a single exon that encodes a 16.3 kD protein (Wb-Bhp-1) with 45% amino acid identity to BmR1. Immunohistology shows that anti-Wb-Bhp-1 antibodies primarily bind to Mf. Plasma from 124 of 224 (55%) microfilaremic individuals had IgG4 antibodies to Wb-Bhp-1 by ELISA. Serologic reactivity to Wb-Bhp-1 varied widely with samples from different regions (sensitivity range 32-92%), with 77% sensitivity for 116 samples collected from microfilaremic individuals outside of sub-Saharan Africa. This variable sensitivity highlights the importance of validating new diagnostic tests for parasitic diseases with samples from different geographical regions. Individuals with higher Mf counts were more likely to have anti-Wb-Bhp-1 antibodies. Cross-reactivity was observed with a minority of plasma samples from people with onchocerciasis (17%) or loiasis (10%). We also identified, cloned and characterized BmR1 homologues from O. volvulus and L. loa that have 41% and 38% identity to BmR1, respectively. However, antibody assays with these antigens were not sensitive for onchocerciasis or loiasis. CONCLUSIONS: Wb-Bhp-1 is a novel antigen that is useful for serologic diagnosis of bancroftian filariasis. Additional studies are needed to assess the value of this antigen for monitoring the success of filariasis elimination programs.


Assuntos
Anticorpos Anti-Helmínticos , Filariose , Wuchereria bancrofti , Animais , Anticorpos Anti-Helmínticos/análise , Anticorpos Anti-Helmínticos/genética , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/análise , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Brugia Malayi , Reações Cruzadas , Filariose Linfática/diagnóstico , Filariose Linfática/genética , Filariose Linfática/imunologia , Filariose Linfática/parasitologia , Filariose/diagnóstico , Filariose/genética , Filariose/imunologia , Filariose/parasitologia , Humanos , Loíase/diagnóstico , Loíase/imunologia , Microfilárias/imunologia , Oncocercose/diagnóstico , Oncocercose/imunologia , Testes Sorológicos , Wuchereria bancrofti/genética , Wuchereria bancrofti/imunologia , Wuchereria bancrofti/isolamento & purificação
3.
Front Immunol ; 12: 777860, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868049

RESUMO

Despite long-term mass drug administration programmes, approximately 220 million people are still infected with filariae in endemic regions. Several research studies have characterized host immune responses but a major obstacle for research on human filariae has been the inability to obtain adult worms which in turn has hindered analysis on infection kinetics and immune signalling. Although the Litomosoides sigmodontis filarial mouse model is well-established, the complex immunological mechanisms associated with filarial control and disease progression remain unclear and translation to human infections is difficult, especially since human filarial infections in rodents are limited. To overcome these obstacles, we performed adoptive immune cell transfer experiments into RAG2IL-2Rγ-deficient C57BL/6 mice. These mice lack T, B and natural killer cells and are susceptible to infection with the human filaria Loa loa. In this study, we revealed a long-term release of L. sigmodontis offspring (microfilariae) in RAG2IL-2Rγ-deficient C57BL/6 mice, which contrasts to C57BL/6 mice which normally eliminate the parasites before patency. We further showed that CD4+ T cells isolated from acute L. sigmodontis-infected C57BL/6 donor mice or mice that already cleared the infection were able to eliminate the parasite and prevent inflammation at the site of infection. In addition, the clearance of the parasites was associated with Th17 polarization of the CD4+ T cells. Consequently, adoptive transfer of immune cell subsets into RAG2IL-2Rγ-deficient C57BL/6 mice will provide an optimal platform to decipher characteristics of distinct immune cells that are crucial for the immunity against rodent and human filarial infections and moreover, might be useful for preclinical research, especially about the efficacy of macrofilaricidal drugs.


Assuntos
Transferência Adotiva , Filariose/imunologia , Filariose/terapia , Filarioidea/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva/métodos , Animais , Citocinas/biossíntese , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Filariose/parasitologia , Interações Hospedeiro-Patógeno/imunologia , Subunidade gama Comum de Receptores de Interleucina/deficiência , Camundongos , Camundongos Knockout , Carga Parasitária , Subpopulações de Linfócitos T/metabolismo
4.
PLoS Negl Trop Dis ; 15(6): e0009448, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34106920

RESUMO

BACKGROUND: In Mali, cutaneous leishmaniasis (CL) and filariasis are co-endemic. Previous studies in animal models of infection have shown that sand fly saliva enhance infectivity of Leishmania parasites in naïve hosts while saliva-specific adaptive immune responses may protect against cutaneous and visceral leishmaniasis. In contrast, the human immune response to Phlebotomus duboscqi (Pd) saliva, the principal sand fly vector in Mali, was found to be dichotomously polarized with some individuals having a Th1-dominated response and others having a Th2-biased response. We hypothesized that co-infection with filarial parasites may be an underlying factor that modulates the immune response to Pd saliva in endemic regions. METHODOLOGY/PRINCIPAL FINDINGS: To understand which cell types may be responsible for polarizing human responses to sand fly saliva, we investigated the effect of salivary glands (SG) of Pd on human monocytes. To this end, elutriated monocytes were cultured in vitro, alone, or with SG, microfilariae antigen (MF ag) of Brugia malayi, or LPS, a positive control. The mRNA expression of genes involved in inflammatory or regulatory responses was then measured as were cytokines and chemokines associated with these responses. Monocytes of individuals who were not exposed to sand fly bites (mainly North American controls) significantly upregulated the production of IL-6 and CCL4; cytokines that enhance leishmania parasite establishment, in response to SG from Pd or other vector species. This selective inflammatory response was lost in individuals that were exposed to sand fly bites which was not changed by co-infection with filarial parasites. Furthermore, infection with filarial parasites resulted in upregulation of CCL22, a type-2 associated chemokine, both at the mRNA levels and by its observed effect on the frequency of recruited monocytes. CONCLUSIONS/SIGNIFICANCE: Together, our data suggest that SG or recombinant salivary proteins from Pd alter human monocyte function by upregulating selective inflammatory cytokines.


Assuntos
Brugia Malayi/imunologia , Proteínas de Insetos/imunologia , Monócitos/parasitologia , Phlebotomus/imunologia , Saliva/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Coinfecção , Doenças Endêmicas , Filariose/complicações , Filariose/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Imunidade Celular , Leishmaniose Cutânea/complicações , Leishmaniose Cutânea/imunologia , Lipopolissacarídeos/toxicidade , Mali , Monócitos/fisiologia , RNA Mensageiro , Proteínas Recombinantes , Glândulas Salivares , Linfócitos T Auxiliares-Indutores
5.
PLoS Negl Trop Dis ; 15(1): e0008884, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411714

RESUMO

We have previously shown that the microfilarial (mf) stage of Brugia malayi can inhibit the mammalian target of rapamycin (mTOR; a conserved serine/threonine kinase critical for immune regulation and cellular growth) in human dendritic cells (DC) and we have proposed that this mTOR inhibition is associated with the DC dysfunction seen in filarial infections. Extracellular vesicles (EVs) contain many proteins and nucleic acids including microRNAs (miRNAs) that might affect a variety of intracellular pathways. Thus, EVs secreted from mf may elucidate the mechanism by which the parasite is able to modulate the host immune response during infection. EVs, purified from mf of Brugia malayi and confirmed by size through nanoparticle tracking analysis, were assessed by miRNA microarrays (accession number GSE157226) and shown to be enriched (>2-fold, p-value<0.05, FDR = 0.05) for miR100, miR71, miR34, and miR7. The microarray analysis compared mf-derived EVs and mf supernatant. After confirming their presence in EVs using qPCR for these miRNA targets, web-based target predictions (using MIRPathv3, TarBAse and MicroT-CD) predicted that miR100 targeted mTOR and its downstream regulatory protein 4E-BP1. Our previous data with live parasites demonstrated that mf downregulate the phosphorylation of mTOR and its downstream effectors. Additionally, our proteomic analysis of the mf-derived EVs revealed the presence of proteins commonly found in these vesicles (data are available via ProteomeXchange with identifier PXD021844). We confirmed internalization of mf-derived EVs by human DCs and monocytes using confocal microscopy and flow cytometry, and further demonstrated through flow cytometry, that mf-derived EVs downregulate the phosphorylation of mTOR in human monocytes (THP-1 cells) to the same degree that rapamycin (a known mTOR inhibitor) does. Our data collectively suggest that mf release EVs that interact with host cells, such as DC, to modulate host responses.


Assuntos
Brugia Malayi/metabolismo , Regulação para Baixo , Vesículas Extracelulares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Brugia Malayi/imunologia , Proteínas de Ciclo Celular/metabolismo , Células Dendríticas/imunologia , Filariose/imunologia , Humanos , MicroRNAs/metabolismo , Microfilárias/imunologia , Monócitos/metabolismo , Fosforilação , Proteômica , Células THP-1 , Serina-Treonina Quinases TOR/genética
6.
Front Immunol ; 12: 819560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140712

RESUMO

Filarial helminths infect approximately 120 million people worldwide initiating a type 2 immune response in the host. Influenza A viruses stimulate a virulent type 1 pro-inflammatory immune response that in some individuals can cause uncontrolled immunopathology and fatality. Although coinfection with filariasis and influenza is a common occurrence, the impact of filarial infection on respiratory viral infection is unknown. The aim of this study was to determine the impact of pre-existing filarial infection on concurrent infection with influenza A virus. A murine model of co-infection was established using the filarial helminth Litomosoides sigmodontis and the H1N1 (A/WSN/33) influenza A virus (IAV). Co-infection was performed at 3 different stages of L. sigmodontis infection (larval, juvenile adult, and patency), and the impact of co-infection was determined by IAV induced weight loss and clinical signs, quantification of viral titres, and helminth counts. Significant alterations of IAV pathogenesis, dependent upon stage of infection, was observed on co-infection with L. sigmodontis. Larval stage L. sigmodontis infection alleviated clinical signs of IAV co-infection, whilst more established juvenile adult infection also significantly delayed weight loss. Viral titres remained unaltered at either infection stage. In contrast, patent L. sigmdodontis infection led to a reversal of age-related resistance to IAV infection, significantly increasing weight loss and clinical signs of infection as well as increasing IAV titre. These data demonstrate that the progression of influenza infection can be ameliorated or worsened by pre-existing filarial infection, with the outcome dependent upon the stage of filarial infection.


Assuntos
Coinfecção , Filariose/imunologia , Filariose/parasitologia , Filarioidea , Vírus da Influenza A , Interações Microbianas , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Camundongos , Interações Microbianas/imunologia
7.
Front Immunol ; 12: 784141, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992602

RESUMO

Helminths still infect a quarter of the human population. They manage to establish chronic infections by downmodulating the immune system of their hosts. Consequently, the immune response of helminth-infected individuals to vaccinations may be impaired as well. Here we study the impact of helminth-induced immunomodulation on vaccination efficacy in the mouse system. We have previously shown that an underlying Litomosoides sigmodontis infection reduced the antibody (Ab) response to anti-influenza vaccination in the context of a systemic expansion of type 1 regulatory T cells (Tr1). Most important, vaccine-induced protection from a challenge infection with the 2009 pandemic H1N1 influenza A virus (2009 pH1N1) was impaired in vaccinated, L. sigmodontis-infected mice. Here, we aim at the restoration of vaccination efficacy by drug-induced deworming. Treatment of mice with Flubendazole (FBZ) resulted in elimination of viable L. sigmodontis parasites in the thoracic cavity after two weeks. Simultaneous FBZ-treatment and vaccination did not restore Ab responses or protection in L. sigmodontis-infected mice. Likewise, FBZ-treatment two weeks prior to vaccination did not significantly elevate the influenza-specific Ig response and did not protect mice from a challenge infection with 2009 pH1N1. Analysis of the regulatory T cell compartment revealed that L. sigmodontis-infected and FBZ-treated mice still displayed expanded Tr1 cell populations that may contribute to the sustained suppression of vaccination responses in successfully dewormed mice. To outcompete this sustained immunomodulation in formerly helminth-infected mice, we finally combined the drug-induced deworming with an improved vaccination regimen. Two injections with the non-adjuvanted anti-influenza vaccine Begripal conferred 60% protection while MF59-adjuvanted Fluad conferred 100% protection from a 2009 pH1N1 infection in FBZ-treated, formerly L. sigmodontis-infected mice. Of note, applying this improved prime-boost regimen did not restore protection in untreated L. sigmodontis-infected mice. In summary our findings highlight the risk of failed vaccinations due to helminth infection.


Assuntos
Antinematódeos/administração & dosagem , Coinfecção/terapia , Filariose/terapia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/terapia , Animais , Coinfecção/imunologia , Coinfecção/parasitologia , Coinfecção/virologia , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Filariose/parasitologia , Filariose/virologia , Filarioidea/imunologia , Humanos , Imunização Secundária , Imunomodulação , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/parasitologia , Influenza Humana/virologia , Mebendazol/administração & dosagem , Mebendazol/análogos & derivados , Camundongos , Ácaros/parasitologia , Sigmodontinae/parasitologia , Vacinação/métodos
8.
Parasit Vectors ; 13(1): 551, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160409

RESUMO

BACKGROUND: Pulmonary manifestations are regularly reported in both human and animal filariasis. In human filariasis, the main known lung manifestations are the tropical pulmonary eosinophilia syndrome. Its duration and severity are correlated with the presence of microfilariae. Litomosoides sigmodontis is a filarial parasite residing in the pleural cavity of rodents. This model is widely used to understand the immune mechanisms that are established during infection and for the screening of therapeutic molecules. Some pulmonary manifestations during the patent phase of infection with L. sigmodontis have been described in different rodent hosts more or less permissive to infection. METHODS: Here, the permissive Mongolian gerbil (Meriones unguiculatus) was infected with L. sigmodontis. Prevalence and density of microfilariae and adult parasites were evaluated. Lungs were analyzed for pathological signatures using immunohistochemistry and 3D imaging techniques (two-photon and light sheet microscopy). RESULTS: Microfilaremia in gerbils was correlated with parasite load, as amicrofilaremic individuals had fewer parasites in their pleural cavities. Fibrotic polypoid structures were observed on both pleurae of infected gerbils. Polyps were of variable size and developed from the visceral mesothelium over the entire pleura. The larger polyps were vascularized and strongly infiltrated by immune cells such as eosinophils, macrophages or lymphocytes. The formation of these structures was induced by the presence of adult filariae since small and rare polyps were observed before patency, but they were exacerbated by the presence of gravid females and microfilariae. CONCLUSIONS: Altogether, these data emphasize the role of host-specific factors in the pathogenesis of filarial infections.


Assuntos
Eosinófilos/imunologia , Filariose/patologia , Gerbillinae/parasitologia , Microfilárias/patogenicidade , Cavidade Pleural/parasitologia , Pólipos/imunologia , Animais , Feminino , Fibrose , Filariose/imunologia , Filariose/parasitologia , Filarioidea/patogenicidade , Pulmão/parasitologia , Pulmão/patologia , Masculino , Microfilárias/imunologia , Carga Parasitária , Cavidade Pleural/imunologia , Cavidade Pleural/patologia , Pólipos/parasitologia , Pólipos/patologia
9.
Mol Biochem Parasitol ; 240: 111317, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961208

RESUMO

The Global Program to Eliminate Lymphatic Filariasis (GPELF) relies heavily on a rapid diagnostic test (RDT) to a Wuchereria bancrofti circulating filarial antigen (Wb-CFA) to identify endemic areas and for determining when mass drug administration can stop. The antigen contains a carbohydrate epitope that is recognized by monoclonal antibody AD12. Og4C3, a monoclonal antibody that is used in a commercial ELISA for Wb-CFA recognizes the same moiety. Despite its diagnostic importance, little is known about the structure and function of this "AD12 epitope". It is also present on other W. bancrofti glycoproteins and on glycoproteins of other filarial worms, but such antigens are not detected in the sera of individuals with most other filarial infections. We report here functional and biochemical analyses that shed light on the interaction between filarial glycoproteins and AD12 and/or Og4C3. Binding of these monoclonal antibodies to a mammalian glycan array suggests the reactive moiety has structural similarity to terminal ß-d-glucuronic acid in a 1-3 linkage to other hexoses. However, sera collected from individuals with patent W. bancrofti infection had very low or undetectable serum antibodies to the GlcA-containing array glycans. Unlike other filarial glycoproteins, the Wb-CFA is relatively resistant to protease digestion by pronase and trypsin and completely resistant to the mucinase O-sialoglycoprotein endopeptidase (OSGE). The protease resistance of the Wb-CFA may contribute to its consistent detection in Wb-infected sera.


Assuntos
Anticorpos Anti-Helmínticos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Helmintos/imunologia , Filariose/diagnóstico , Filariose/imunologia , Polissacarídeos/imunologia , Wuchereria bancrofti/imunologia , Animais , Antígenos de Helmintos/sangue , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Proteínas de Helminto/imunologia , Humanos , Imunoglobulina G/imunologia , Ligação Proteica/imunologia
10.
PLoS Negl Trop Dis ; 14(7): e0008534, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735561

RESUMO

Mast cells are innate effector cells that due to their localization in the tissue form the first line of defense against parasites. We have previously shown that specifically mucosal mast cells were essential for the termination of the intestinal Strongyloides ratti infection. Here, we analyze the impact of mast cells on the immune response and defense against the tissue-dwelling filarial nematode Litomosoides sigmodontis using mast cell-deficient Cpa3cre mice. Despite an increase and an activation of mast cells at the site of infection in wildtype BALB/c mice the outcome of L. sigmodontis infection was not changed in mast cell-deficient BALB/c Cpa3cre mice. In Cpa3cre mice neither vascular permeability induced by blood-sucking mites nor the migration of L3 was altered compared to Cpa3 wildtype littermates. Worm burden in the thoracic cavity was alike in the presence and absence of mast cells during the entire course of infection. Although microfilaremiae in the peripheral blood increased in mast cell-deficient mice at some time points, the infection was cleared with comparable kinetics in the presence and absence of mast cells. Moreover, mast cell deficiency had no impact on the cytokine and antibody response to L. sigmodontis. In summary, our findings suggest that mast cells are not mandatory for the initiation of an appropriate immune response and host defense during L. sigmodontis infection in mice.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Mastócitos/fisiologia , Animais , Permeabilidade Capilar , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Filariose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Ácaros , Mutação
11.
J Immunol ; 205(3): 731-740, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32571840

RESUMO

Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R-dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Rα-deficient (IL-4Rα-/-) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Rα-/- mice. By treating IL-4Rα-/- mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Rα-/- mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13-dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Rα signaling and defined that IL-4Rα-/-/IL-5-/- double-knockout mice displayed significant eosinophil deficiency compared with IL-4Rα-/- mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R-dependent or IL-4R-independent/CCR3/IL-5-dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R-independent/IL-5- and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.


Assuntos
Brugia Malayi/imunologia , Eosinófilos/imunologia , Filariose/imunologia , Receptores de Superfície Celular/imunologia , Células Th2/imunologia , Animais , Eosinófilos/patologia , Filariose/genética , Filariose/patologia , Gerbillinae , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores CCR3/genética , Receptores CCR3/imunologia , Receptores de Superfície Celular/genética , Células Th2/patologia
12.
Front Immunol ; 11: 706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373129

RESUMO

Filarial infections are known to modulate cytokine responses in pulmonary tuberculosis by their propensity to induce Type 2 and regulatory cytokines. However, very little is known about the effect of filarial infections on extra-pulmonary forms of tuberculosis. Thus, we have examined the effect of filarial infections on the plasma levels of various families of (IL-1, IL-12, γC, and regulatory) cytokines and (CC and CXC) chemokines in tuberculous lymphadenitis coinfection. We also measured lymph node culture grades in order to assess the burden of Mycobacterium tuberculosis in the two study groups [Fil+ (n = 67) and Fil- (n = 109)]. Our data reveal that bacterial burden was significantly higher in Fil+ compared to Fil- individuals. Plasma levels of IL-1 family (IL-1α, IL-ß, IL-18) cytokines were significantly lower with the exception of IL-33 in Fil+ compared to Fil- individuals. Similarly, plasma levels of IL-12 family cytokines -IL-12 and IL-23 were significantly reduced, while IL-35 was significantly elevated in Fil+ compared to Fil- individuals. Filarial infection was also associated with diminished levels of IL-2, IL-9 and enhanced levels of IL-4, IL-10, and IL-1Ra. Similarly, the Fil+ individuals were linked to elevated levels of different CC (CCL-1, CCL-2, CCL-3, CCL-11) and CXC (CXCL-2, CXCL-8, CXCL-9, CXCL-11) chemokines. Therefore, we conclude that filarial infections exert powerful bystander effects on tuberculous lymphadenitis, effects including modulation of protective cytokines and chemokines with a direct impact on bacterial burdens.


Assuntos
Quimiocinas/sangue , Coinfecção/imunologia , Filariose/complicações , Filariose/imunologia , Filarioidea/imunologia , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose dos Linfonodos/complicações , Tuberculose dos Linfonodos/imunologia , Adolescente , Adulto , Idoso , Animais , Antígenos de Helmintos/sangue , Carga Bacteriana , Coinfecção/microbiologia , Coinfecção/parasitologia , Estudos Transversais , Feminino , Filariose/sangue , Filariose/parasitologia , Humanos , Linfonodos/microbiologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Tuberculose dos Linfonodos/sangue , Tuberculose dos Linfonodos/microbiologia , Adulto Jovem
13.
Parasite Immunol ; 42(7): e12708, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145033

RESUMO

Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Interações Hospedeiro-Parasita/imunologia , Animais , Anti-Helmínticos/farmacologia , Modelos Animais de Doenças , Feminino , Filariose/tratamento farmacológico , Filariose/prevenção & controle , Genótipo , Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida , Camundongos , Camundongos Endogâmicos BALB C , Microfilárias/imunologia , Células Mieloides/imunologia
14.
PLoS Negl Trop Dis ; 14(2): e0008119, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32107497

RESUMO

Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Filariose/imunologia , Filarioidea/imunologia , Animais , Regulação da Expressão Gênica , Larva/imunologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/fisiologia
15.
Clin Exp Allergy ; 50(2): 213-221, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31834940

RESUMO

BACKGROUND: Immunoglobulin E (IgE)-mediated anaphylaxis is a potentially fatal condition in which allergy effector cells rapidly discharge pre-formed inflammatory mediators. Treatments that address the immune component of allergic anaphylaxis are inadequate. Helminths have been previously shown to suppress effector cell function; however, their ability to treat pre-existing allergy remains unclear. OBJECTIVE: To evaluate the ability of chronic helminth infection to protect against anaphylaxis in previously sensitized mice. METHODS: A sublethal model of anaphylaxis was used, in which BALB/c mice were sensitized by three intraperitoneal (i.p.) injections of OVA/alum. Temperature drop was then monitored after systemic OVA challenge in uninfected mice and in mice infected chronically with Litomosoides sigmodontis, a tissue-invasive filarial nematode. RESULTS: Litomosoides sigmodontis-infected mice exhibited significantly lower serum levels of mMCP-1 and were less hypothermic at 30-minute post-challenge compared to uninfected OVA-challenged controls. Characterization of anaphylaxis revealed that FcԑR1 and mast cells were required for hypothermia and elevated serum mMCP-1. OVA-IgE and OVA-IgG1 serum levels were not significantly altered by L sigmodontis infection, and experiments with IL-10-/- mice demonstrated that IL-10 was not required for protection against anaphylaxis. However, peritoneal mast cell numbers were significantly lower in infected mice, and those that were present exhibited decreased granularity by flow cytometry and marked depletion of intracytoplasmic granules by light microscopy. Mast cells from infected mice had lower expression of the activation markers CD200R and CD63 and contained significantly lower basal stores of histamine. CONCLUSIONS: Chronic L sigmodontis infection protects against anaphylaxis, likely due to reduction in mast cell numbers and depletion of pre-formed inflammatory mediators in remaining mast cells.


Assuntos
Anafilaxia/imunologia , Degranulação Celular/imunologia , Filariose/imunologia , Filarioidea/imunologia , Mastócitos/imunologia , Anafilaxia/genética , Anafilaxia/patologia , Animais , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Doença Crônica , Filariose/genética , Filariose/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
16.
PLoS Negl Trop Dis ; 13(12): e0007908, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815932

RESUMO

T cell-intrinsic regulation, such as anergy, adaptive tolerance and exhaustion, is central to immune regulation. In contrast to Type 1 and Type 17 settings, knowledge of the intrinsic fate and function of Th2 cells in chronic Type 2 immune responses is lacking. We previously showed that Th2 cells develop a PD-1/PD-L2-dependent intrinsically hypo-responsive phenotype during infection with the filarial nematode Litomosoides sigmodontis, denoted by impaired functionality and parasite killing. This study aimed to elucidate the transcriptional changes underlying Th2 cell-intrinsic hypo-responsiveness, and whether it represents a unique and stable state of Th2 cell differentiation. We demonstrated that intrinsically hypo-responsive Th2 cells isolated from L. sigmodontis infected mice stably retained their dysfunctional Th2 phenotype upon transfer to naïve recipients, and had a divergent transcriptional profile to classical Th2 cells isolated prior to hypo-responsiveness and from mice exposed to acute Type 2 stimuli. Hypo-responsive Th2 cells displayed a distinct transcriptional profile to exhausted CD4+ T cells, but upregulated Blimp-1 and the anergy/regulatory-associated transcription factors Egr2 and c-Maf, and shared characteristics with tolerised T cells. Hypo-responsive Th2 cells increased mRNA expression of the soluble regulatory factors Fgl2, Cd38, Spp1, Areg, Metrnl, Lgals3, and Csf1, and a subset developed a T-bet+IFN-γ+ Th2/Th1 hybrid phenotype, indicating that they were not functionally inert. Contrasting with their lost ability to produce Th2 cytokines, hypo-responsive Th2 cells gained IL-21 production and IL-21R blockade enhanced resistance to L. sigmodontis. IL-21R blockade also increased the proportion of CD19+PNA+ germinal centre B cells and serum levels of parasite specific IgG1. This indicates a novel regulatory role for IL-21 during filarial infection, both in controlling protection and B cell responses. Thus, Th2 cell-intrinsic hypo-responsiveness is a distinct and stable state of Th2 cell differentiation associated with a switch from a classically active IL-4+IL-5+ Th2 phenotype, to a non-classical dysfunctional and potentially regulatory IL-21+Egr2+c-Maf+Blimp-1+IL-4loIL-5loT-bet+IFN-γ+ Th2 phenotype. This divergence towards alternate Th2 phenotypes during chronicity has broad implications for the outcomes and treatment of chronic Type 2-related infections and diseases.


Assuntos
Antígenos de Helmintos/imunologia , Filariose/patologia , Filarioidea/imunologia , Células Th2/imunologia , Animais , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Perfilação da Expressão Gênica , Camundongos Endogâmicos BALB C , Fenótipo , Células Th2/patologia
17.
PLoS Negl Trop Dis ; 13(8): e0007691, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469835

RESUMO

Lung disease is regularly reported in human filarial infections but the molecular pathogenesis of pulmonary filariasis is poorly understood. We used Litomosoides sigmodontis, a rodent filaria residing in the pleural cavity responsible for pleural inflammation, to model responses to human filarial infections and probe the mechanisms. Wild-type and Th2-deficient mice (ΔdblGata1 and Il-4receptor(r)a-/-/IL-5-/-) were infected with L. sigmodontis. Survival and growth of adult filariae and prevalence and density of microfilariae were evaluated. Cells and cytokines in the pleural cavity and bronchoalveolar space were characterized by imaging, flow cytometry and ELISA. Inflammatory pathways were evaluated by transcriptomic microarrays and lungs were isolated and analyzed for histopathological signatures. 40% of WT mice were amicrofilaremic whereas almost all mutant mice display blood microfilaremia. Microfilariae induced pleural, bronchoalveolar and lung-tissue inflammation associated with an increase in bronchoalveolar eosinophils and perivascular macrophages, production of mucus, visceral pleura alterations and fibrosis. Inflammation and pathology were decreased in Th2-deficient mice. An IL-4R-dependent increase of CD169 was observed on pleural and bronchoalveolar macrophages in microfilaremic mice. CD169+ tissue-resident macrophages were identified in the lungs with specific localizations. Strikingly, CD169+ macrophages increased significantly in the perivascular area in microfilaremic mice. These data describe lung inflammation and pathology in chronic filariasis and emphasize the role of Th2 responses according to the presence of microfilariae. It is also the first report implicating CD169+ lung macrophages in response to a Nematode infection.


Assuntos
Filariose/patologia , Filarioidea/imunologia , Inflamação/patologia , Pulmão/imunologia , Macrófagos/imunologia , Receptores de Interleucina-4/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/análise , Animais , Modelos Animais de Doenças , Feminino , Filariose/imunologia , Inflamação/imunologia , Pulmão/patologia , Macrófagos/química , Camundongos Endogâmicos BALB C , Células Th2/imunologia
18.
Parasit Vectors ; 12(1): 248, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109364

RESUMO

BACKGROUND: Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. METHODS: Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5-/- mice, IL-4R-/- mice and IL-4R-/-/IL-5-/- mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R-/-/IL-5-/- mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. RESULTS: Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R-/-/IL-5-/- mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. CONCLUSIONS: These data indicate that mice deficient for IL-4R-/-/IL-5-/- have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival.


Assuntos
Suscetibilidade a Doenças/imunologia , Eosinófilos/imunologia , Filariose/imunologia , Interleucina-5/genética , Receptores de Superfície Celular/genética , Animais , Modelos Animais de Doenças , Filariose/sangue , Filarioidea/fisiologia , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microfilárias/imunologia , Ácaros/parasitologia , Transdução de Sinais , Baço/imunologia
19.
Exp Parasitol ; 200: 92-98, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30991039

RESUMO

Adult Brugia malayi proteins with high potential as epidemiological markers, diagnostic and therapeutic targets, and/or vaccine candidates were revealed by using microfilaremic human sera and an immunoproteomic approach. They were HSP70, cytoplasmic intermediate filament protein, independent phosphoglycerate mutase, and enolase. Brugia malayi microfilaria-specific proteins that formed circulating immune complexes (ICs) were investigated. The IC-forming proteins were orthologues of hypothetical protein Bm1_12480, Pao retrotransposon peptidase family protein, uncoordinated protein 44, NAD-binding domain containing protein of the UDP-glucose/GDP-mannose dehydrogenase family which contained ankyrin repeat region, ZU5 domain with C-terminal death domain, C2 domain containing protein, and FLJ90013 protein of the eukaryotic membrane protein family. Antibodies to these proteins were not free in the microfilaremic sera, raising the possible role of the IC-forming proteins in an immune evasion mechanism of the circulating microfilariae to avoid antibody-mediated-host immunity. Moreover, detection of these ICs should be able to replace the inconvenient night blood sampling for microfilaria in an evaluation of efficacy of anti-microfilarial agents.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Antígenos de Helmintos/imunologia , Brugia Malayi/imunologia , Filariose/imunologia , Proteínas de Helminto/imunologia , Soros Imunes/imunologia , Animais , Biologia Computacional , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Filariose/sangue , Proteínas de Choque Térmico HSP70/imunologia , Humanos , Immunoblotting , Proteínas de Filamentos Intermediários/imunologia , Microfilárias/imunologia , Fosfoglicerato Mutase/imunologia , Fosfopiruvato Hidratase/imunologia , Proteômica/métodos
20.
Parasitol Res ; 118(2): 539-549, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30643971

RESUMO

Worldwide approximately 68 million people are infected with lymphatic filariasis (Lf), provoked by Wuchereria bancrofti, Brugia malayi and Brugia timori. This disease can lead to massive swelling of the limbs (elephantiasis) and disfigurement of the male genitalia (hydrocele). Filarial induced immune regulation is characterised by dominant type 2 helper T cell and regulatory immune responses. In vitro studies have provided evidence that signalling via Toll-like receptor-mediated pathways is triggered by filarial associated factors. Nevertheless, until now, less is known about the role of the adapter molecule TRIF during in vivo infections. Here, we used the rodent-specific nematode Litomosoides sigmodontis to investigate the role of TLR signalling and the corresponding downstream adapter and regulatory molecules TRIF, MyD88, IRF1 and IRF3 during an ongoing infection in semi-susceptible C57BL/6 mice. Interestingly, lack of the central adapter molecule TRIF led to higher worm burden and reduced overall absolute cell numbers in the thoracic cavity (the site of infection) 30 days post-infection. In addition, frequencies of macrophages and lymphocytes in the TC were increased in infected TRIF-/- C57BL/6 mice, whereas frequencies of eosinophils, CD4+ and CD8+ T cells were reduced. Nevertheless, cytokine levels and regulatory T cell populations remained comparable between TRIF-deficient and wildtype C57BL/6 mice upon 30 days of L. sigmodontis infection. In summary, this study revealed a crucial role of the adapter molecule TRIF on worm recovery and immune cell recruitment into the site of infection 30 days upon L. sigmodontis infection in C57BL/6 mice.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Filariose/imunologia , Filariose/parasitologia , Filarioidea/crescimento & desenvolvimento , Filarioidea/imunologia , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Citocinas/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/imunologia , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...