Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
PLoS Pathog ; 20(9): e1011864, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39226335

RESUMO

Although several filoviruses are dangerous human pathogens, there is conflicting evidence regarding their origins and interactions with animal hosts. Here we attempt to improve this understanding using the paleoviral record over a geological time scale, protein structure predictions, tests for evolutionary maintenance, and phylogenetic methods that alleviate sources of bias and error. We found evidence for long branch attraction bias in the L gene tree for filoviruses, and that using codon-specific models and protein structural comparisons of paleoviruses ameliorated conflict and bias. We found evidence for four ancient filoviral groups, each with extant viruses and paleoviruses with open reading frames. Furthermore, we found evidence of repeated transfers of filovirus-like elements to mouse-like rodents. A filovirus-like nucleoprotein ortholog with an open reading frame was detected in three subfamilies of spalacid rodents (present since the Miocene). We provide evidence that purifying selection is acting to maintain amino acids, protein structure and open reading frames in these elements. Our finding of extant viruses nested within phylogenetic clades of paleoviruses informs virus discovery methods and reveals the existence of Lazarus taxa among RNA viruses. Our results resolve a deep conflict in the evolutionary framework for filoviruses and reveal that genomic transfers to vertebrate hosts with potentially functional co-options have been more widespread than previously appreciated.


Assuntos
Evolução Molecular , Filoviridae , Filogenia , Vertebrados , Animais , Filoviridae/genética , Vertebrados/virologia , Vertebrados/genética , Genoma Viral , Humanos , Fases de Leitura Aberta , Genômica/métodos
2.
Viruses ; 16(8)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39205153

RESUMO

Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Menglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Menglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.


Assuntos
Surtos de Doenças , Infecções por Filoviridae , Filoviridae , Saúde Global , Humanos , Animais , Filoviridae/patogenicidade , Infecções por Filoviridae/epidemiologia , Infecções por Filoviridae/virologia , Ebolavirus/fisiologia , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/transmissão , Zoonoses/epidemiologia , Zoonoses/virologia
3.
J Med Chem ; 67(16): 13737-13764, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39169825

RESUMO

Since the largest and most fatal Ebola virus epidemic during 2014-2016, there have been several consecutive filoviral outbreaks in recent years, including those in 2021, 2022, and 2023. Ongoing outbreak prevalence and limited FDA-approved filoviral therapeutics emphasize the need for novel small molecule treatments. Here, we showcase the structure-activity relationship development of N-substituted pyrrole-based heterocycles and their potent, submicromolar entry inhibition against diverse filoviruses in a target-based pseudovirus assay. Inhibitor antiviral activity was validated using replication-competent Ebola, Sudan, and Marburg viruses. Mutational analysis was used to map the targeted region within the Ebola virus glycoprotein. Antiviral counter-screen and phospholipidosis assays were performed to demonstrate the reduced off-target activity of these filoviral entry inhibitors. Favorable antiviral potency, selectivity, and drug-like properties of the N-substituted pyrrole-based heterocycles support their potential as broad-spectrum antifiloviral treatments.


Assuntos
Antivirais , Ebolavirus , Pirróis , Internalização do Vírus , Pirróis/farmacologia , Pirróis/química , Pirróis/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Relação Estrutura-Atividade , Ebolavirus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/síntese química , Filoviridae/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos
4.
Syst Rev ; 13(1): 218, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148086

RESUMO

BACKGROUND: Recent outbreaks of Ebola virus disease (EVD) and Marburg virus disease (MVD) in sub-Saharan Africa illustrate the need to better understand animal reservoirs, burden of disease, and human transmission of filoviruses. This protocol outlines a systematic literature review to assess the prevalence of filoviruses that infect humans in sub-Saharan Africa. A secondary aim is to qualitatively describe and evaluate the assays used to assess prevalence. METHODS: The data sources for this systematic review include PubMed, Embase, and Web of Science. Titles, abstracts, and full texts will be reviewed for inclusion by a primary reviewer and then by a team of secondary reviewers, and data will be extracted using a pre-specified and piloted data extraction form. The review will include human cross-sectional studies, cohort studies, and randomized controlled trials conducted in sub-Saharan Africa up until March 13, 2024 that have been published in peer-reviewed scientific journals, with no language restrictions. Prevalence will be stratified by pathogen, population, assay, and sampling methodology and presented in forest plots with estimated prevalence and 95% confidence intervals. If there are enough studies within a stratum, I2 statistics will be calculated (using R statistical software), and data will be pooled if heterogeneity is low. In addition, assays used to detect infection will be evaluated. All studies included in the review will be assessed for quality and risk of bias using the JBI Prevalence Critical Appraisal Tool and for certainty using the GRADE certainty ratings. DISCUSSION: Accurately measuring the rate of exposure to filoviruses infecting humans in sub-Saharan Africa using prevalence provides an essential understanding of natural history, transmission, and the role of subclinical infection. This systematic review will identify research gaps and provide directions for future research seeking to improve our understanding of filovirus infections. Understanding the natural history, transmission, and the role of subclinical infection is critical for predicting the impact of an intervention on disease burden. SYSTEMATIC REVIEW REGISTRATION: In accordance with the guidelines outlined in the PRISMA-P methodology, this protocol was registered with PROSPERO on April 7, 2023 (ID: CRD42023415358).


Assuntos
Infecções por Filoviridae , Revisões Sistemáticas como Assunto , Humanos , África Subsaariana/epidemiologia , Prevalência , Infecções por Filoviridae/epidemiologia , Metanálise como Assunto , Doença pelo Vírus Ebola/epidemiologia , Animais , Filoviridae
5.
Viruses ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39066227

RESUMO

Although next-generation sequencing (NGS) has been instrumental in determining the genomic sequences of emerging RNA viruses, de novo sequence determination often lacks sufficient coverage of the 5' and 3' ends of the viral genomes. Since the genome ends of RNA viruses contain the transcription and genome replication promoters that are essential for viral propagation, a lack of terminal sequence information hinders the efforts to study the replication and transcription mechanisms of emerging and re-emerging viruses. To circumvent this, we have developed a novel method termed ViBE-Seq (Viral Bona Fide End Sequencing) for the high-resolution sequencing of filoviral genome ends using a simple yet robust protocol with high fidelity. This technique allows for sequence determination of the 5' end of viral RNA genomes and mRNAs with as little as 50 ng of total RNA. Using the Ebola virus and Marburg virus as prototypes for highly pathogenic, re-emerging viruses, we show that ViBE-Seq is a reliable technique for rapid and accurate 5' end sequencing of filovirus RNA sourced from virions, infected cells, and tissue obtained from infected animals. We also show that ViBE-Seq can be used to determine whether distinct reverse transcriptases have terminal deoxynucleotidyl transferase activity. Overall, ViBE-Seq will facilitate the access to complete sequences of emerging viruses.


Assuntos
Ebolavirus , Filoviridae , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , RNA Viral , Análise de Sequência de RNA , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ebolavirus/genética , Análise de Sequência de RNA/métodos , Filoviridae/genética , Marburgvirus/genética , Humanos , Animais
6.
Microbiol Spectr ; 12(9): e0101024, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39046245

RESUMO

Filoviruses are some of the most lethal viruses in the modern world, and increasing numbers of filovirus species and genera have been discovered in recent years. Despite the potential severity of filovirus outbreaks in the human population, comparably few sensitive pan-filovirus RT-PCR assays have been described that might facilitate early detection and prevention. Here, we present a new pan-filovirus RT-PCR assay targeting the L polymerase gene for detection of all known mammalian filoviruses. We demonstrate the detection of 10 synthetic filovirus RNA templates with analytical sensitivity ranging from 178 to 3,354 copies/mL, without cross-reactivity on 10 non-filoviral human viral species. We verified assay performance on 10 inactivated filovirus isolates, yielding initial sensitivities of 0.012-44.17 TCID50/mL. We coupled this broadly reactive RT-PCR with a deep sequencing workflow that is amenable to high-throughput pooling to maximize detection and discovery potential. In summary, this pan-filovirus RT-PCR assay targets the most conserved filovirus gene, offers the widest breadth of coverage to date, and may help in the detection and discovery of novel filoviruses.IMPORTANCEFiloviruses remain some of the most mysterious viruses known to the world, with extremely high lethality rates and significant pandemic potential. Yet comparably few filovirus species and genera have been discovered to date and questions surround the definitive host species for zoonotic infections. Here, we describe a novel broadly reactive RT-PCR assay targeting the conserved L polymerase gene for high-throughput screening for filoviruses in a variety of clinical and environmental specimens. We demonstrate the assay can detect all known mammalian filoviruses and determine the sensitivity and specificity of the assay on synthetic RNA sequences, inactivated filovirus isolates, and non-filoviral species.


Assuntos
Infecções por Filoviridae , Filoviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Filoviridae/genética , Filoviridae/isolamento & purificação , Filoviridae/classificação , Humanos , Animais , Infecções por Filoviridae/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , RNA Viral/genética , Sensibilidade e Especificidade , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mamíferos/virologia , Ensaios de Triagem em Larga Escala/métodos , Proteínas Virais/genética
7.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782261

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Assuntos
Ebolavirus , Genoma Viral , Marburgvirus , Animais , Genoma Viral/genética , Ebolavirus/genética , Humanos , Marburgvirus/genética , Mengovirus/genética , Replicação Viral , RNA Viral/genética , Alanina/análogos & derivados , Alanina/farmacologia , Quirópteros/virologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Filoviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Microbiol Spectr ; 12(5): e0041724, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606982

RESUMO

Paramyxo- and filovirus genomes are equipped with bipartite promoters at their 3' ends to initiate RNA synthesis. The two elements, the primary promoter element 1 (PE1) and the secondary promoter element 2 (PE2), are separated by a spacer region that must be precisely a multiple of 6 nucleotides (nts), indicating these viruses adhere to the "rule of six." However, our knowledge of PE2 has been limited to a narrow spectrum of virus species. In this study, a comparative analysis of 1,647 paramyxoviral genomes from a public database revealed that the paramyxovirus PE2 can be clearly categorized into two distinct subcategories: one marked by C repeats at every six bases (exclusive to the subfamily Orthoparamyxovirinae) and another characterized by CG repeats every 6 nts (observed in the subfamilies Avulavirinae and Rubulavirinae). This unique pattern collectively mirrors the evolutionary lineage of these subfamilies. Furthermore, we showed that PE2 of the Rubulavirinae, with the exception of mumps virus, serves as part of the gene-coding region. This may be due to the fact that the Rubulavirinae are the only paramyxoviruses that cannot propagate without RNA editing. Filoviruses have three to eight consecutive uracil repeats every six bases (UN5) in PE2, which is located in the 3' end region of the genome. We obtained PE2 sequences from 2,195 filoviruses in a public database and analyzed the sequence conservation among virus species. Our results indicate that the continuity of UN5 hexamers is consistently maintained with a high degree of conservation across virus species. IMPORTANCE: The genomic intricacies of paramyxo- and filoviruses are highlighted by the bipartite promoters-promoter element 1 (PE1) and promoter element 2 (PE2)-at their 3' termini. The spacer region between these elements follows the "rule of six," crucial for genome replication. By a comprehensive analysis of paramyxoviral genome sequences, we identified distinct subcategories of PE2 based on C and CG repeats that were specific to Orthoparamyxovirinae and Avulavirinae/Rubulavirinae, respectively, mirroring their evolutionary lineages. Notably, the PE2 of Rubulavirinae is integrated into the gene-coding region, a unique trait potentially linked to its strict dependence on RNA editing for virus growth. This study also focused on the PE2 sequences in filovirus genomes. The strict conservation of the continuity of UN5 among virus species emphasizes its crucial role in viral genome replication.


Assuntos
Filoviridae , Genoma Viral , Filogenia , Regiões Promotoras Genéticas , Regiões Promotoras Genéticas/genética , Genoma Viral/genética , Filoviridae/genética , Filoviridae/classificação , Paramyxoviridae/genética , Paramyxoviridae/classificação , Humanos , RNA Viral/genética , Evolução Molecular , Animais
10.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
11.
Nat Commun ; 15(1): 1826, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418477

RESUMO

Bats are increasingly recognized as reservoirs of emerging zoonotic pathogens. Egyptian rousette bats (ERBs) are the known reservoir of Marburg virus (MARV), a filovirus that causes deadly Marburg virus disease (MVD) in humans. However, ERBs harbor MARV asymptomatically, likely due to a coadapted and specific host immunity-pathogen relationship. Recently, we measured transcriptional responses in MARV-infected ERB whole tissues, showing that these bats possess a disease tolerant strategy that limits pro-inflammatory gene induction, presumably averting MVD-linked immunopathology. However, the host resistant strategy by which ERBs actively limit MARV burden remains elusive, which we hypothesize requires localized inflammatory responses unresolvable at bulk-tissue scale. Here, we use dexamethasone to attenuate ERB pro-inflammatory responses and assess MARV replication, shedding and disease. We show that MARV-infected ERBs naturally mount coordinated pro-inflammatory responses at liver foci of infection, comprised of recruited mononuclear phagocytes and T cells, the latter of which proliferate with likely MARV-specificity. When pro-inflammatory responses are diminished, ERBs display heightened MARV replication, oral/rectal shedding and severe MVD-like liver pathology, demonstrating that ERBs balance immunoprotective tolerance with discreet MARV-resistant pro-inflammatory responses. These data further suggest that natural ERB immunomodulatory stressors like food scarcity and habitat disruption may potentiate viral shedding, transmission and therefore outbreak risk.


Assuntos
Quirópteros , Filoviridae , Doença do Vírus de Marburg , Marburgvirus , Animais , Humanos , Marburgvirus/genética , Imunidade
12.
Proc Natl Acad Sci U S A ; 121(7): e2313789121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38335257

RESUMO

Bats are associated with the circulation of most mammalian filoviruses (FiVs), with pathogenic ones frequently causing deadly hemorrhagic fevers in Africa. Divergent FiVs have been uncovered in Chinese bats, raising concerns about their threat to public health. Here, we describe a long-term surveillance to track bat FiVs at orchards, eventually resulting in the identification and isolation of a FiV, Dehong virus (DEHV), from Rousettus leschenaultii bats. DEHV has a typical filovirus-like morphology with a wide spectrum of cell tropism. Its entry into cells depends on the engagement of Niemann-Pick C1, and its replication is inhibited by remdesivir. DEHV has the largest genome size of filoviruses, with phylogenetic analysis placing it between the genera Dianlovirus and Orthomarburgvirus, suggesting its classification as the prototype of a new genus within the family Filoviridae. The continuous detection of viral RNA in the serological survey, together with the wide host distribution, has revealed that the region covering southern Yunnan, China, and bordering areas is a natural circulation sphere for bat FiVs. These emphasize the need for a better understanding of the pathogenicity and potential risk of FiVs in the region.


Assuntos
Quirópteros , Filoviridae , Animais , Filogenia , China , Mamíferos
13.
Cell Rep ; 43(2): 113706, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38294906

RESUMO

Viral pandemics and epidemics pose a significant global threat. While macaque models of viral disease are routinely used, it remains unclear how conserved antiviral responses are between macaques and humans. Therefore, we conducted a cross-species analysis of transcriptomic data from over 6,088 blood samples from macaques and humans infected with one of 31 viruses. Our findings demonstrate that irrespective of primate or viral species, there are conserved antiviral responses that are consistent across infection phase (acute, chronic, or latent) and viral genome type (DNA or RNA viruses). Leveraging longitudinal data from experimental challenges, we identify virus-specific response kinetics such as host responses to Coronaviridae and Orthomyxoviridae infections peaking 1-3 days earlier than responses to Filoviridae and Arenaviridae viral infections. Our results underscore macaque studies as a powerful tool for understanding viral pathogenesis and immune responses that translate to humans, with implications for viral therapeutic development and pandemic preparedness.


Assuntos
Filoviridae , Infecções por Orthomyxoviridae , Animais , Humanos , Imunoinformática , Macaca , Antivirais
14.
Methods Mol Biol ; 2733: 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064023

RESUMO

Filoviruses are causative agents of severe hemorrhagic fevers with high case fatality rates in humans. For studies of virus biology and the subsequent development of countermeasures, reverse genetic systems, and especially those facilitating the generation of recombinant filoviruses, are indispensable. Here, we describe the generation of recombinant filoviruses from cDNA.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Humanos , Filoviridae/genética , Genética Reversa , DNA Complementar/genética , Ebolavirus/genética
16.
Microbiol Spectr ; 11(6): e0237323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888996

RESUMO

IMPORTANCE: Filoviruses are the causative agents of severe and often fatal hemorrhagic disease in humans. Menglà virus (MLAV) is a recently reported filovirus, isolated from fruit bats that is capable to replicate in human cells, representing a potential risk for human health. An in-depth structural and functional knowledge of MLAV proteins is an essential step for antiviral research on this virus that can also be extended to other emerging filoviruses. In this study, we determined the first crystal structures of the C-terminal domain (CTD) of the MLAV nucleoprotein (NP), showing important similarities to the equivalent domain in MARV. The structural data also show that the NP CTD has the ability to form large helical oligomers that may participate in the control of cytoplasmic inclusion body formation during viral replication.


Assuntos
Ebolavirus , Filoviridae , Humanos , Nucleoproteínas/química , Filoviridae/química , Filoviridae/metabolismo , Proteínas Virais/metabolismo
17.
J Infect Dis ; 228(Suppl 6): S446-S459, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849404

RESUMO

Viruses in the family Filoviridae, including the commonly known Ebola (EBOV) and Marburg (MARV) viruses, can cause severe hemorrhagic fever in humans and nonhuman primates. Sporadic outbreaks of filovirus disease occur in sub-Saharan Africa with reported case fatality rates ranging from 25% to 90%. The high mortality and increasing frequency and magnitude of recent outbreaks along with the increased potential for spread from rural to urban areas highlight the importance of pandemic preparedness for these viruses. Despite their designation as high-priority pathogens, numerous scientific gaps exist in critical areas. In this review, these gaps and an assessment of potential prototype pathogen candidates are presented for this important virus family.


Assuntos
Ebolavirus , Filoviridae , Doença pelo Vírus Ebola , Marburgvirus , Animais , Humanos , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Surtos de Doenças
18.
Viruses ; 15(9)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37766193

RESUMO

A new filovirus named Menglà virus was found in bats in southern China in 2015. This species has been assigned to the new genus Dianlovirus and has only been detected in China. In this article, we report the detection of filoviruses in bats captured in Vietnam. We studied 248 bats of 15 species caught in the provinces of Lai Chau and Son La in northern Vietnam and in the province of Dong Thap in the southern part of the country. Filovirus RNA was found in four Rousettus leschenaultii and one Rousettus amplexicaudatus from Lai Chau Province. Phylogenetic analysis of the polymerase gene fragment showed that three positive samples belong to Dianlovirus, and two samples form a separate clade closer to Orthomarburgvirus. An enzyme-linked immunosorbent assay showed that 9% of Rousettus, 13% of Eonycteris, and 10% of Cynopterus bats had antibodies to the glycoprotein of marburgviruses.


Assuntos
Quirópteros , Filoviridae , Marburgvirus , Animais , Vietnã/epidemiologia , Filogenia
19.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537381

RESUMO

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Assuntos
Ebolavirus , Filoviridae , Marburgvirus , Vírus
20.
J Infect Dis ; 228(Suppl 7): S474-S478, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37596837

RESUMO

Although there are now approved treatments and vaccines for Ebola virus disease, the case fatality rate remains unacceptably high even when patients are treated with the newly approved therapeutics. Furthermore, these countermeasures are not expected to be effective against disease caused by other filoviruses. A meeting of subject-matter experts was held during the 10th International Filovirus Symposium to discuss strategies to address these gaps. Several investigational therapeutics, vaccine candidates, and combination strategies were presented. The greatest challenge was identified to be the implementation of well-designed clinical trials of safety and efficacy during filovirus disease outbreaks. Preparing for this will require agreed-upon common protocols for trials intended to bridge multiple outbreaks across all at-risk countries. A multinational research consortium including at-risk countries would be an ideal mechanism to negotiate agreement on protocol design and coordinate preparation. Discussion participants recommended a follow-up meeting be held in Africa to establish such a consortium.


Assuntos
Ebolavirus , Infecções por Filoviridae , Filoviridae , Doença pelo Vírus Ebola , Humanos , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Surtos de Doenças/prevenção & controle , África
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA