Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 407
Filtrar
1.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567425

RESUMO

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Assuntos
Benzazepinas , Agonistas de Dopamina , Camundongos Endogâmicos C57BL , Núcleo Accumbens , Córtex Pré-Frontal , Inibição Pré-Pulso , Receptores de Dopamina D1 , Animais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Agonistas de Dopamina/farmacologia , Camundongos , Benzazepinas/farmacologia , Masculino , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia
2.
Psychopharmacology (Berl) ; 241(6): 1213-1225, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38427059

RESUMO

RATIONALE: Prepulse inhibition (PPI) impairment reflects sensorimotor gating problems, i.e. in schizophrenia. This study aims to enlighten the role of orexinergic regulation on PPI in a psychosis-like model. OBJECTIVES: In order to understand the impact of orexinergic innervation on PPI and how it is modulated by age and baseline PPI (bPPI), chronic orexin A (OXA) injections was carried on non-sleep-deprived and sleep-deprived rats that are grouped by their bPPI. METHODS: bPPI measurements were carried on male Wistar rats on P45 or P90 followed by grouping into low-PPI and high-PPI rats. The rats were injected with OXA twice per day for four consecutive days starting on P49 or P94, while the control groups received saline injections. 72 h REMSD was carried on via modified multiple platform technique on P94 and either OXA or saline was injected during REMSD. PPI tests were carried out 30 min. after the last injection. RESULTS: Our previous study with acute OXA injection after REMSD without bPPI grouping revealed that low OXA doses might improve REMSD-induced PPI impairment. Our current results present three important conclusions: (1) The effect of OXA on PPI is bPPI-dependent and age-dependent. (2) The effect of REMSD is bPPI-dependent. (3) The effect of OXA on PPI after REMSD also depends on bPPI. CONCLUSION: Orexinergic regulation of PPI response with and without REMSD can be predicted by bPPI levels. Our findings provide potential insights into the regulation of sensorimotor gating by sleep/wakefulness systems and present potential therapeutic targets for the disorders, where PPI is disturbed.


Assuntos
Orexinas , Inibição Pré-Pulso , Ratos Wistar , Privação do Sono , Animais , Orexinas/farmacologia , Orexinas/administração & dosagem , Orexinas/metabolismo , Masculino , Privação do Sono/fisiopatologia , Ratos , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , Sono REM/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Fatores Etários , Modelos Animais de Doenças
3.
Exp Neurol ; 350: 113963, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968423

RESUMO

Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic/analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) and impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.


Assuntos
Anestésicos Dissociativos/farmacologia , Comportamento Animal/efeitos dos fármacos , Traumatismos por Explosões/psicologia , Lesões Encefálicas Traumáticas/psicologia , Ketamina/farmacologia , Anestésicos Dissociativos/efeitos adversos , Animais , Ataxia/etiologia , Ataxia/psicologia , Concussão Encefálica , Ketamina/efeitos adversos , Coxeadura Animal/induzido quimicamente , Coxeadura Animal/psicologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Pré-Pulso , Desempenho Psicomotor/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
4.
Neurotoxicology ; 88: 155-167, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801587

RESUMO

Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 µL/g at P7, 0.75 µL/g at P14, 0.5 µL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.


Assuntos
Síndromes Neurotóxicas/etiologia , Procaína/análogos & derivados , Animais , Caspase 3/metabolismo , Cauda Equina/anatomia & histologia , Cauda Equina/efeitos dos fármacos , Feminino , Injeções Espinhais , Masculino , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Procaína/administração & dosagem , Procaína/toxicidade , Ratos , Ratos Sprague-Dawley , Filtro Sensorial/efeitos dos fármacos
5.
J Psychopharmacol ; 35(11): 1356-1364, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34694190

RESUMO

BACKGROUND: Delta-9 tetrahydrocannabinol (THC) is a major exogenous psychoactive agent, which acts as a partial agonist on cannabinoid (CB1) receptors. THC is known to inhibit presynaptic neurotransmission and has been repeatedly linked to acute decrements in cognitive function across multiple domains. Previous electrophysiological studies of sensory gating have shown specific deficits in inhibitory processing in cannabis-users, but to date these findings have been limited to the auditory cortices, and the degree to which these aberrations extend to other brain regions remains largely unknown. METHODS: We used magnetoencephalography (MEG) and a paired-pulse somatosensory stimulation paradigm to probe inhibitory processing in 29 cannabis-users (i.e. at least four times per month) and 41 demographically matched non-user controls. MEG responses to each stimulation were imaged in both the oscillatory and time domain, and voxel time-series data were extracted to quantify the dynamics of sensory gating, oscillatory gamma activity, evoked responses, and spontaneous neural activity. RESULTS: We observed robust somatosensory responses following both stimulations, which were used to compute sensory gating ratios. Cannabis-users exhibited significantly impaired gating relative to non-users in somatosensory cortices, as well as decreased spontaneous neural activity. In contrast, oscillatory gamma activity did not appear to be affected by cannabis use. CONCLUSIONS: We observed impaired gating of redundant somatosensory information and altered spontaneous activity in the same cortical tissue in cannabis-users compared to non-users. These data suggest that cannabis use is associated with a decline in the brain's ability to properly filter repetitive information and impairments in cortical inhibitory processing.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Ritmo Gama/efeitos dos fármacos , Uso da Maconha/efeitos adversos , Inibição Neural/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Córtex Somatossensorial/efeitos dos fármacos , Adulto , Feminino , Humanos , Magnetoencefalografia , Masculino , Adulto Jovem
6.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622797

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Receptores da Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Destreza Motora/efeitos dos fármacos , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/fisiopatologia , Fenótipo , Filtro Sensorial/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Transcitose
7.
Pharmacol Biochem Behav ; 211: 173292, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710401

RESUMO

This study analyzed whether the positive allosteric modulator of metabotropic glutamate receptor type 5 (mGlu5) 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) would alleviate deficits in prepulse inhibition (PPI) and affect dopamine (DA) D2 signaling in the dorsal striatum and prefrontal cortex (PFC) in the neonatal quinpirole (NQ) model of schizophrenia (SZ). Male and female Sprague-Dawley rats were neonatally treated with either saline (NS) or quinpirole HCL (1 mg/kg; NQ), a DAD2 receptor agonist, from postnatal days (P) 1-21. Rats were raised to P44 and behaviorally tested on PPI from P44-P48. Before each trial, rats were subcutaneous (sc) administered saline or CDPPB (10 mg/kg or 30 mg/kg). On P50, rats were given a spontaneous locomotor activity test after CDPPB or saline administration. On P51, the dorsal striatum and PFC were evaluated for both arrestin-2 (ßA-2) and phospho-AKT protein levels. NQ-treated rats demonstrated a significant deficit in PPI, which was alleviated to control levels by the 30 mg/kg dose of CDPPB. There were no significant effects of CDPPB on locomotor activity. NQ treatment increased ßA-2 and decreased phospho-AKT in both the dorsal striatum and PFC, consistent with an increase DAD2 signaling. The 30 mg/kg dose of CDPPB significantly reversed changes in ßA-2 in the dorsal striatum and PFC and phospho-AKT in the PFC equivalent to controls. Both doses of CDPPB produced a decrease of phospho-AKT in the PFC compared to controls. This study revealed that a mGlu5 positive allosteric modulator was effective to alleviate PPI deficits and striatal DAD2 signaling in the NQ model of SZ.


Assuntos
Benzamidas/farmacologia , Pirazóis/farmacologia , Quimpirol/farmacologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Dopamina D2/metabolismo , Esquizofrenia/tratamento farmacológico , Filtro Sensorial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Locomoção/efeitos dos fármacos , Masculino , Córtex Pré-Frontal/metabolismo , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Esquizofrenia/metabolismo
8.
PLoS One ; 16(9): e0257986, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34587208

RESUMO

The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.


Assuntos
Comportamento Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Nicotina/farmacologia , Reconhecimento Psicológico/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Filtro Sensorial/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Nicotina/uso terapêutico , Fenciclidina , Esquizofrenia/induzido quimicamente
9.
J Med Chem ; 64(16): 12379-12396, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34374537

RESUMO

Enhancing neuronal α7 nicotinic acetylcholine receptor (α7 nAChR) function can alleviate cognitive deficits. Here, we report the design, synthesis, and evaluation of N-(4-(trifluoromethoxy)phenyl)-1,3,5-triazin-2-amine derivatives 8-10 as a series of novel α7 nAChR positive allosteric modulators (PAMs). The representative compound 10e functions as a type I PAM with an EC50 of 3.0 µM and approximately 38-fold enhancement of α7 current in the presence of agonist acetylcholine (100 µM). It specifically enhances α7 current with high selectivity. Compound 10e shows good pharmacokinetic property in mice. Intraperitoneal injection of 10e (3 mg/kg) exhibits sufficient blood-brain barrier penetration in mice. Furthermore, 10e can also rescue the auditory gating deficit in mice with schizophrenia-like behavior. Molecular docking of 10e with homopentameric α7 nAChR reveals a new mode of action. These results support the potential of 10e for treatment for schizophrenia and Alzheimer's disease.


Assuntos
Agonistas Nicotínicos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Triazinas/uso terapêutico , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Maleato de Dizocilpina , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Agonistas Nicotínicos/síntese química , Agonistas Nicotínicos/metabolismo , Agonistas Nicotínicos/farmacocinética , Esquizofrenia/induzido quimicamente , Filtro Sensorial/efeitos dos fármacos , Triazinas/síntese química , Triazinas/metabolismo , Triazinas/farmacocinética , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
10.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34338765

RESUMO

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Assuntos
Canabinoides/farmacologia , Infecções por HIV/fisiopatologia , Filtro Sensorial/efeitos dos fármacos , Estimulação Acústica , Animais , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Feminino , Alucinógenos/farmacologia , Masculino , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Transgênicos , Reflexo de Sobressalto/efeitos dos fármacos
11.
J Psychopharmacol ; 35(10): 1188-1203, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34291671

RESUMO

BACKGROUND/AIMS: Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 (DAD2) receptor sensitivity in adult animals. We investigated if increased DAD2 sensitivity would be passed to the next (F1) generation, and if these animals demonstrated sensorimotor gating deficits and enhanced behavioral responses to nicotine. METHODS: Male and female rats were intraperitoneal (IP) administered quinpirole (1 mg/kg) or saline (NS) from postnatal day (P)1-21. Animals were either behaviorally tested (F0) or raised to P60 and mated, creating F1 offspring. RESULTS: Experiment 1 revealed that F1 generation animals that were the offspring of at least one NQ-treated founder increased yawning behavior, a DAD2-mediated behavioral event, in response to acute quinpirole (0.1 mg/kg). F1 generation rats also demonstrated increased striatal ß arrestin-2 and decreased phospho-AKT signaling, consistent with increased G-protein independent DAD2 signaling, which was equal to F0 NQ-treated founders, although this was not observed in all groups. RNA-Seq analysis revealed significant gene expression changes in the F1 generation that were offspring of both NQ-treated founders compared to F0 NQ founders and controls, with enrichment in sensitivity to stress hormones and cell signaling pathways. In Experiment 2, all F1 generation offspring demonstrated sensorimotor gating deficits compared to controls, which were equivalent to F0 NQ-treated founders. In Experiment 3, all F1 generation animals demonstrated enhanced nicotine behavioral sensitization and nucleus accumbens (NAcc) brain-derived neurotrophic factor (BDNF) protein. Further, F1 generation rats demonstrated enhanced adolescent nicotine conditioned place preference equivalent to NQ-treated founders conditioned with nicotine. CONCLUSIONS: This represents the first demonstration of transgenerational effects of increased DAD2 sensitivity in a rodent model.


Assuntos
Nicotina/farmacologia , Quimpirol/farmacologia , Receptores de Dopamina D2/metabolismo , Filtro Sensorial/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Agonistas de Dopamina/farmacologia , Feminino , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
12.
Artigo em Inglês | MEDLINE | ID: mdl-34015384

RESUMO

Cannabidiol (CBD), a major non-psychotomimetic component of the Cannabis sativa plant, shows therapeutic potential in several psychiatric disorders, including schizophrenia. The molecular mechanisms underlying the antipsychotic-like effects of CBD are not fully understood. Schizophrenia and antipsychotic treatment can modulate DNA methylation in the blood and brain, resulting in altered expression of diverse genes associated with this complex disorder. However, to date, the possible involvement of DNA methylation in the antipsychotic-like effects of CBD has not been investigated. Therefore, this study aimed at evaluating in mice submitted to the prepulse inhibition (PPI) model: i) the effects of a single injection of CBD or clozapine followed by AMPH or MK-801 on PPI and global DNA methylation changes in the ventral striatum and prefrontal cortex (PFC); and ii). if the acute antipsychotic-like effects of CBD would last for 24-h. AMPH (5 mg/kg) and MK-801 (0.5 mg/kg) impaired PPI. CBD (30 and 60 mg/kg), similar to clozapine (5 mg/kg), attenuated AMPH- and MK801-induced PPI disruption. AMPH, but not MK-801, increased global DNA methylation in the ventral striatum, an effect prevented by CBD. CBD and clozapine increased, by themselves, DNA methylation in the prefrontal cortex. The acute effects of CBD (30 or 60 mg/kg) on the PPI impairment induced by AMPH or MK-801 was also detectable 24 h later. Altogether, the results show that CBD induces acute antipsychotic-like effects that last for 24-h. It also modulates DNA methylation in the ventral striatum, suggesting a new potential mechanism for its antipsychotic-like effects.


Assuntos
Canabidiol/farmacologia , Clozapina/farmacologia , Maleato de Dizocilpina/farmacologia , Epigênese Genética/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Estriado Ventral/efeitos dos fármacos , Anfetamina/farmacologia , Animais , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Metilação de DNA , Maleato de Dizocilpina/administração & dosagem , Alucinógenos/farmacologia , Masculino , Camundongos , Fármacos Neuroprotetores/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia , Fatores de Tempo
13.
Mol Brain ; 14(1): 68, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845872

RESUMO

22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by the segmental deletion of human chromosome 22. This chromosomal deletion is known as high genetic risk factors for various psychiatric disorders. The different deletion types are identified in 22q11.2DS patients, including the most common 3.0-Mb deletion, and the less-frequent 1.5-Mb and 1.4-Mb deletions. In previous animal studies of psychiatric disorders associated with 22q11.2DS mainly focused on the 1.5-Mb deletion and model mice mimicking the human 1.5-Mb deletion have been established with diverse genetic backgrounds, which resulted in the contradictory phenotypes. On the other hand, the contribution of the genes in 1.4-Mb region to psychiatric disorders is poorly understood. In this study, we generated two mouse lines that reproduced the 1.4-Mb and 1.5-Mb deletions of 22q11.2DS [Del(1.4 Mb)/+ and Del(1.5 Mb)/+] on the pure C57BL/6N genetic background. These mutant mice were analyzed comprehensively by behavioral tests, such as measurement of locomotor activity, sociability, prepulse inhibition and fear-conditioning memory. Del(1.4 Mb)/+ mice displayed decreased locomotor activity, but no abnormalities were observed in all other behavioral tests. Del(1.5 Mb)/+ mice showed reduction of prepulse inhibition and impairment of contextual- and cued-dependent fear memory, which is consistent with previous reports. Furthermore, apparently intact social recognition in Del(1.4 Mb)/+ and Del(1.5 Mb)/+ mice suggests that the impaired social recognition observed in Del(3.0 Mb)/+ mice mimicking the human 3.0-Mb deletion requires mutations both in 1.4-Mb and 1.5 Mb regions. Our previous study has shown that Del(3.0 Mb)/+ mice presented disturbance of behavioral circadian rhythm. Therefore, we further evaluated sleep/wakefulness cycles in Del(3.0 Mb)/+ mice by electroencephalogram (EEG) and electromyogram (EMG) recording. EEG/EMG analysis revealed the disturbed wakefulness and non-rapid eye moving sleep (NREMS) cycles in Del(3.0 Mb)/+ mice, suggesting that Del(3.0 Mb)/+ mice may be unable to maintain their wakefulness. Together, our mouse models deepen our understanding of genetic contributions to schizophrenic phenotypes related to 22q11.2DS.


Assuntos
Síndrome da Deleção 22q11/genética , Transtornos Mentais/genética , Deleção de Sequência , Síndrome da Deleção 22q11/fisiopatologia , Animais , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Condicionamento Clássico , Sinais (Psicologia) , Modelos Animais de Doenças , Eletroencefalografia , Eletromiografia , Medo , Dosagem de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Haloperidol/administração & dosagem , Haloperidol/farmacologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos Mentais/fisiopatologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Pré-Pulso/efeitos dos fármacos , Inibição Pré-Pulso/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Sono/efeitos dos fármacos , Sono/fisiologia , Comportamento Social , Vigília/efeitos dos fármacos , Vigília/fisiologia
14.
Psychopharmacology (Berl) ; 238(4): 1111-1120, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511450

RESUMO

RATIONALE: Elevated whole-blood serotonin (5-HT) is a robust biomarker in ~ 30% of patients with autism spectrum disorders, in which repetitive behavior is a core symptom. Furthermore, elevated whole-blood 5-HT has also been described in patients with pediatric obsessive-compulsive disorder. The 5-HT1B receptor is associated with repetitive behaviors seen in both disorders. Chronic blockade of serotonin transporter (SERT) reduces 5-HT1B receptor levels in the orbitofrontal cortex (OFC) and attenuates the sensorimotor deficits and hyperactivity seen with the 5-HT1B agonist RU24969. We hypothesized that enhanced SERT function would increase 5-HT1B receptor levels in OFC and enhance sensorimotor deficits and hyperactivity induced by RU24969. OBJECTIVES: We examined the impact of the SERT Ala56 mutation, which leads to enhanced SERT function, on 5-HT1B receptor binding and 5-HT1B-mediated sensorimotor deficits. METHODS: Specific binding to 5-HT1B receptors was measured in OFC and striatum of naïve SERT Ala56 or wild-type mice. The impact of the 5-HT1A/1B receptor agonist RU24969 on prepulse inhibition (PPI) of startle, hyperactivity, and expression of cFos was examined. RESULTS: While enhanced SERT function increased 5-HT1B receptor levels in OFC of Ala56 mice, RU24969-induced PPI deficits and hyperlocomotion were not different between genotypes. Baseline levels of cFos expression were not different between groups. RU24969 increased cFos expression in OFC of wild-types and decreased cFos in the striatum. CONCLUSIONS: While reducing 5-HT1B receptors may attenuate sensorimotor gating deficits, increased 5-HT1B levels in SERT Ala56 mice do not necessarily exacerbate these deficits, potentially due to compensations during neural circuit development in this model system.


Assuntos
Comportamento Animal/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Substituição de Aminoácidos , Animais , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genótipo , Hipercinese/genética , Hipercinese/psicologia , Indóis/farmacologia , Masculino , Camundongos , Mutação/genética , Inibição Pré-Pulso/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Filtro Sensorial/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
15.
Eur J Pharmacol ; 891: 173685, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33127363

RESUMO

α7 nicotinic acetylcholine receptor (α7 nAChR) is an extensively validated target for several neurological and psychiatric conditions namely, dementia and schizophrenia, owing to its vital roles in cognition and sensorimotor gating. Positive allosteric modulation (PAM) of α7 nAChR represents an innovative approach to amplify endogenous cholinergic signaling in a temporally restricted manner in learning and memory centers of brain. α7 nAChR PAMs are anticipated to side-step burgeoning issues observed with several clinical-stage orthosteric α7 nAChR agonists, related to selectivity, tolerance/tachyphylaxis, thus providing a novel dimension in therapeutic strategy and pharmacology of α7 nAChR ion-channel. Here we describe a novel α7 nAChR PAM, LL-00066471, which potently amplified agonist-induced Ca2+ fluxes in neuronal IMR-32 neuroblastoma cells in a α-bungarotoxin (α-BTX) sensitive manner. LL-00066471 showed excellent oral bioavailability across species (mouse, rat and dog), low clearance and good brain penetration (B/P ratio > 1). In vivo, LL-00066471 robustly attenuated cognitive deficits in both procognitive and antiamnesic paradigms of short-term episodic and recognition memory in novel object recognition task (NORT) and social recognition task (SRT), respectively. Additionally, LL-00066471 mitigated apomorphine-induced sensorimotor gating deficits in acoustic startle reflex (ASR) and enhanced antipsychotic efficacy of olanzapine in conditioned avoidance response (CAR) task. Further, LL-00066471 corrected redox-imbalances and reduced cortico-striatal infarcts in stroke model. These finding together suggest that LL-00066471 has potential to symptomatically alleviate cognitive deficits associated with dementias, attenuate sensorimotor gating deficits in schizophrenia and correct redox-imbalances in cerebrovascular disorders. Therefore, LL-00066471 presents potential for management of cognitive impairments associated with neurological and psychiatric conditions.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Colinérgicos/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/prevenção & controle , Transtornos Neurológicos da Marcha/prevenção & controle , Filtro Sensorial/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Linhagem Celular Tumoral , Colinérgicos/farmacocinética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Modelos Animais de Doenças , Cães , Comportamento Exploratório/efeitos dos fármacos , Transtornos Neurológicos da Marcha/metabolismo , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/psicologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , AVC Isquêmico/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Teste de Campo Aberto/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Transdução de Sinais , Comportamento Social , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
16.
Psychopharmacology (Berl) ; 238(4): 1047-1057, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33349900

RESUMO

RATIONALE: Calcineurin is a protein regulating cytokine expression in T lymphocytes and calcineurin inhibitors such as cyclosporine A (CsA) are widely used for immunosuppressive therapy. It also plays a functional role in distinct neuronal processes in the central nervous system. Disturbed information processing as seen in neuropsychiatric disorders is reflected by deficient sensorimotor gating, assessed as prepulse inhibition (PPI) of the acoustic startle response (ASR). OBJECTIVE: Patients who require treatment with immunosuppressive drugs frequently display neuropsychiatric alterations during treatment with calcineurin inhibitors. Importantly, knockout of calcineurin in the forebrain of mice is associated with cognitive impairments and symptoms of schizophrenia-like psychosis as seen after treatment with stimulants. METHODS: The present study investigated in rats effects of systemic acute and subchronic administration of CsA on sensorimotor gating. Following a single injection with effective doses of CsA, adult healthy male Dark Agouti rats were tested for PPI. For subchronic treatment, rats were injected daily with the same doses of CsA for 1 week before PPI was assessed. Since calcineurin works as a modulator of the dopamine pathway, activity of the enzyme tyrosine hydroxylase was measured in the prefrontal cortex and striatum after accomplishment of the study. RESULTS: Acute and subchronic treatment with the calcineurin inhibitor CsA disrupted PPI at a dose of 20 mg/kg. Concomitantly, following acute CsA treatment, tyrosine hydroxylase activity was reduced in the prefrontal cortex, which suggests that dopamine synthesis was downregulated, potentially reflecting a stimulatory impact of CsA on this neurotransmitter system. CONCLUSIONS: The results support experimental and clinical evidence linking impaired calcineurin signaling in the central nervous system to the pathophysiology of neuropsychiatric symptoms. Moreover, these findings suggest that therapy with calcineurin inhibitors may be a risk factor for developing neurobehavioral alterations as observed after the abuse of psychomotor stimulant drugs.


Assuntos
Inibidores de Calcineurina/farmacologia , Ciclosporina/farmacologia , Imunossupressores/farmacologia , Filtro Sensorial/efeitos dos fármacos , Animais , Dopamina/biossíntese , Masculino , Neostriado/enzimologia , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Behav Brain Res ; 400: 113047, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33279633

RESUMO

Dopamine D2 receptors (D2Rs) of the ventral pallidum (VP) play important role in motivational and learning processes, however, their potential role in triggering schizophrenic symptoms has not been investigated, yet. In the present experiments the effects of locally administered D2R agonist quinpirole were investigated on behavioral parameters related to sensorimotor gating, motor activity and food-motivated labyrinth learning. Two weeks after bilateral implantation of microcannulae into the VP, the acute (30 min) and delayed (3, 21 and 24 h) effects of quinpirole microinjection (1 µg/0.4 µL at both sides) were investigated in Wistar and schizophrenia model (Wisket substrain) rats in prepulse inhibition (PPI) and the reward-based Ambitus tests. Quinpirole administration did not modify the impaired sensorimotor gating in Wisket rats, but it led to significant deficit in Wistar animals. Regarding the locomotor activity in the Ambitus test, no effects of quinpirole were detected in either groups at the investigated time points. In contrast, quinpirole resulted in decreased exploratory and food-collecting activities in Wistar rats with 21 and 24 h delay. Though, impaired food-related motivation could be observed in Wisket rats, but quinpirole treatment did not result in further deterioration. In summary, our results showed that the VP D2R activation in Wistar rats induces symptoms similar to those observed in schizophrenia model Wisket rats. These data suggest that Wisket rats might have significant alterations in the functional activity of VP, which might be due to its enhanced dopaminergic activity.


Assuntos
Prosencéfalo Basal/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Motivação/efeitos dos fármacos , Quimpirol/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Esquizofrenia , Filtro Sensorial/efeitos dos fármacos , Animais , Prosencéfalo Basal/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Masculino , Quimpirol/administração & dosagem , Ratos , Ratos Wistar , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
18.
Neurotox Res ; 38(3): 682-690, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32757167

RESUMO

Several lines of evidence suggest that chronic exposure to cannabinoids during adolescence may increase the risk of schizophrenia. Studies of the disorder have identified altered cortical dopaminergic neurotransmission. In this study, we hypothesised that heightened endocannabinoid system activation via chronic exposure to a highly potent cannabinoid receptors agonist in adolescent rats would cause long-lasting neurobiological changes that may dramatically alter expression and functions of dopamine metabolising enzymes, comethyl-o-transferase (COMT) and monoamine oxidases MAO-A and MAO-B. To test this hypothesis, adult male rats (70 PND) undergoing chronic treatment of the highly potent and non-selective CB agonist WIN55,212-2 (1.2 mg/kg) during adolescence (PND 30-50) were subjected after 20 days washout period to prepulse inhibition of acoustic startle test (PPI) to confirm cannabinoid-induced sensorimotor-gating impairments and afterwards examined for COMT, MAO-A and MAO-B expression and activity in the prefrontal cortex. Chronic WIN55,212-2 exposure during adolescence caused disruption of PPI, increased cortical dopamine level, decreased COMT mRNA expression and decreased MAO-A and MAO-B enzymatic activities. These results indicate that chronic exposure to cannabinoids during adolescence induces sensorimotor-gating alterations which likely result from changes in the prefrontal cortex dopaminergic signalling. This has important implications for developing methods of targeting dopamine metabolising enzymes and/or sequelae of its dysregulation in cannabinoid-induced schizoaffective-like behaviour.


Assuntos
Benzoxazinas/farmacologia , Dopamina/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Masculino , Córtex Pré-Frontal/metabolismo , Ratos Wistar , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/metabolismo
19.
Psychopharmacology (Berl) ; 237(12): 3519-3527, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772144

RESUMO

RATIONALE AND OBJECTIVE: The adenosine A(2A) receptor forms a mutually inhibitory heteromer with the dopamine D2 receptor, and A(2A) agonists decrease D2 signaling. This study analyzed whether an adenosine A(2A) agonist would alleviate deficits in sensorimotor gating and increases in cyclic-AMP response element binding protein (CREB) in the nucleus accumbens (NAc) in the neonatal quinpirole model of schizophrenia (SZ). METHODS: Male and female Sprague-Dawley rats were neonatally treated with saline (NS) or quinpirole HCl (NQ; 1 mg/kg) from postnatal days (P) 1-21. Animals were raised to P44 and behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI) from P44 to P48. Approximately 15 min before each session, animals were given an ip administration of saline or the adenosine A(2A) agonist CGS 21680 (0.03 or 0.09 mg/kg). One day after PPI was complete on P49, animals were administered a locomotor activity test in the open field after saline or CGS 21680 treatment, respectively. On P50, the nucleus accumbens (NAc) was evaluated for CREB protein. RESULTS: NQ-treated rats demonstrated a deficit in PPI that was alleviated to control levels by either dose of CGS 21680. The 0.03 mg/kg dose of CGS 21680 increased startle amplitude in males. The 0.09 mg/kg dose of CGS 21680 resulted in an overall decrease in locomotor activity. NQ treatment significantly increased NAc CREB that was attenuated to control levels by either dose of CGS 21680. CONCLUSIONS: This study revealed that an adenosine A(2A) receptor agonist was effective to alleviate PPI deficits in the NQ model of SZ in both male and female rats.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Adenosina/análogos & derivados , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Fenetilaminas/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Receptor A2A de Adenosina/metabolismo , Filtro Sensorial/efeitos dos fármacos , Adenosina/farmacologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Quimpirol/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia
20.
Psychopharmacology (Berl) ; 237(10): 2993-3006, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32594186

RESUMO

RATIONALE: There are controversial reports on the effects of gabapentin in respect to psychotic symptoms. Prepulse inhibition of the acoustic startle response is an operational measure of sensorimotor gating. In laboratory rodents, deficits in sensorimotor gating are used to model behavioral endophenotypes of schizophrenia. Sleep deprivation disrupts prepulse inhibition and can be used as a psychosis model to evaluate effects of gabapentin. OBJECTIVES: This study aimed to investigate behavioral effects of gabapentin in both naïve and sleep-deprived rats. METHODS: Sleep deprivation was induced in male Wistar rats by using the modified multiple platform technique in a water tank for 72 h. The effect of water tank itself was studied in a sham group. The effects of oral acute and subchronic (4.5 days) gabapentin doses (25, 100, or 200 mg/kg/day) on sensorimotor gating and locomotor activity was evaluated by prepulse inhibition test and locomotor activity test, respectively. Plasma gabapentin levels of some groups and body weights of all groups were also assessed. RESULTS: Sleep deprivation disrupted prepulse inhibition, increased locomotor activity, reduced gabapentin plasma levels, and body weights. Some gabapentin doses disrupted sensorimotor gating irrespective of sleep condition. Some gabapentin doses increased locomotor activity in non-sleep-deprived rats and decreased locomotor activity in sleep-deprived rats. On the contrary, gabapentin did not normalize sleep deprivation-induced disruption in sensorimotor gating. CONCLUSIONS: Sleep deprivation via modified multiple platform technique could be used as an animal model for psychosis. Gabapentin may have dose- and duration-dependent effects on sensorimotor gating and locomotor activity.


Assuntos
Estimulação Acústica/efeitos adversos , Ansiolíticos/uso terapêutico , Gabapentina/uso terapêutico , Inibição Pré-Pulso/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Privação do Sono/tratamento farmacológico , Animais , Ansiolíticos/farmacologia , Relação Dose-Resposta a Droga , Gabapentina/farmacologia , Masculino , Inibição Pré-Pulso/fisiologia , Ratos , Ratos Wistar , Reflexo de Sobressalto/fisiologia , Filtro Sensorial/efeitos dos fármacos , Filtro Sensorial/fisiologia , Privação do Sono/fisiopatologia , Privação do Sono/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...