Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Hazard Mater ; 472: 134459, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691999

RESUMO

Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.


Assuntos
Ar Condicionado , Microbiologia do Ar , Automóveis , Bactérias , Cidades , Fungos , China , Europa (Continente) , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Fungos/patogenicidade , Fungos/genética , Filtros de Ar/microbiologia , Poluentes Atmosféricos/análise , Microbiota , Monitoramento Ambiental
2.
HERD ; 16(4): 56-68, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37365804

RESUMO

AIM: Establish the influence of the terminal or nonterminal position of High Efficiency Particulate Air (HEPA) filters in the Heating, Ventilation, and Air Conditioning (HVAC) system on the presence of airborne fungi in controlled environment rooms. BACKGROUND: Fungal infections are an important cause of morbidity and mortality in hospitalized patients. METHODS: This study was realized from 2010 to 2017, in rooms with terminal and nonterminal HEPA filters, in eight Spanish hospitals. In rooms with terminal HEPA filters, 2,053 and 2,049 samples were recollected, and in rooms with nonterminal HEPA filters, 430 and 428 samples were recollected in the air discharge outlet (Point 1) and in the center of the room (Point 2), respectively. Temperature, relative humidity, air changes per hour, and differential pressure were recollected. RESULTS: Multivariable analysis showed higher odds ratio (OR) of airborne fungi presence when HEPA filters were in nonterminal position (OR: 6.78; 95% CI [3.77, 12.20]) in Point 1 and (OR: 4.43; 95% CI [2.65, 7.40]) in Point 2. Other parameters influenced airborne fungi presence, such as temperature (OR: 1.23; 95% CI [1.06, 1.41]) in Point 2 differential pressure (OR: 0.86; 95% CI [0.84, 0.90]) and (OR: 0.88; 95% CI [0.86, 0.91]) in Points 1 and 2, respectively. CONCLUSIONS: HEPA filter in terminal position of the HVAC system reduces the presence of airborne fungi. To decrease the presence of airborne fungi, adequate maintenance of the environmental and design parameters is necessary in addition to the terminal position of the HEPA filter.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , Humanos , Filtros de Ar/microbiologia , Ar Condicionado , Calefação , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Ventilação , Poeira/análise , Fungos
3.
Sci Rep ; 12(1): 2803, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264599

RESUMO

The COVID-19 pandemic has demonstrated the real need for mechanisms to control the spread of airborne respiratory pathogens. Thus, preventing the spread of disease from pathogens has come to the forefront of the public consciousness. This has brought an increasing demand for novel technologies to prioritise clean air. In this study we report on the efficacy of novel biocide treated filters and their antimicrobial activity against bacteria, fungi and viruses. The antimicrobial filters reported here are shown to kill pathogens, such as Candida albicans, Escherichia coli and MRSA in under 15 min and to destroy SARS-CoV-2 viral particles in under 30 s following contact with the filter. Through air flow rate testing, light microscopy and SEM, the filters are shown to maintain their structure and filtration function. Further to this, the filters are shown to be extremely durable and to maintain antimicrobial activity throughout the operational lifetime of the product. Lastly, the filters have been tested in field trials onboard the UK rail network, showing excellent efficacy in reducing the burden of microbial species colonising the air conditioning system.


Assuntos
Filtros de Ar/microbiologia , Anti-Infecciosos/química , Antivirais/química , Filtros de Ar/virologia , Anti-Infecciosos/farmacologia , Antivirais/farmacologia , COVID-19/epidemiologia , COVID-19/virologia , Candida albicans/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/química , Clorexidina/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Fatores de Tempo
6.
Microbiol Spectr ; 9(3): e0065121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756075

RESUMO

Positive and negative ions (PAIs and NAIs, respectively) generated by air ionizers curb indoor spread of airborne pathogens through cellular oxidative damage. Thus, here, we asked whether ion exposure of Staphylococcus aureus and Escherichia coli bacteria-either plated on agar or trapped in air filters-would affect their viability and whether this effect would be influenced by variations in bacterial type and load, action area, distance from the ion generator, exposure time, or filter type. We selected these two vegetative bacterium species because, besides being representative of Gram-positive and Gram-negative strains, respectively, they are widely recognized as the two most common airborne pathogens. We observed a robust ion inhibitory effect on the viability of free bacteria regardless of the experimental condition employed. Specifically, 12-h ion exposure of plated S. aureus and E. coli, at either 5 cm or 10 cm from the ion source, reduced bacterial viability by ∼95% and 70%, respectively. Furthermore, 3-h ion exposure was sufficient to reduce the viability of both bacterial species trapped in filters. Our results showing a strong antibacterial activity of PAI and NAI under all experimental conditions tested further support the use of air ionizers for preventing and/or containing airborne infection in domestic and nondomestic settings. IMPORTANCE Indoor air is a well-established vehicle for direct and indirect spread of a wide variety of human pathogens-as bioaerosols are composed of bacteria, viruses, fungi, and other types of organisms-that may trigger some pathologies. Plasmacluster ionizers are known for their ability to generate positively or negatively charged air ions (PAIs and NAIs, respectively) that can kill/inactivate indoor airborne pathogens, through oxidative stress-induced damage, in various environments. Given these premises, the aim of this study was to evaluate the viability of Gram-positive and Gram-negative bacteria exposed to PAI and NAI under different experimental variables such as bacterial type and load, action area, distance from the ion generator, ion exposure time, and filter type. Altogether, our findings, demonstrating a remarkable PAI and NAI antibacterial activity, stress the importance of using air ionizers to prevent indoor airborne infection.


Assuntos
Filtros de Ar/microbiologia , Ar/análise , Escherichia coli/crescimento & desenvolvimento , Íons/química , Íons/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento , Microbiologia do Ar , Escherichia coli/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
Sci Rep ; 11(1): 22779, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34815494

RESUMO

Preventing nosocomial infection is a major unmet need of our times. Existing air decontamination technologies suffer from demerits such as toxicity of exposure, species specificity, noxious gas emission, environment-dependent performance and high power consumption. Here, we present a novel technology called "ZeBox" that transcends the conventional limitations and achieves high microbicidal efficiency. In ZeBox, a non-ionizing electric field extracts naturally charged microbes from flowing air and deposits them on engineered microbicidal surfaces. The surface's three dimensional topography traps the microbes long enough for them to be inactivated. The electric field and chemical surfaces synergistically achieve rapid inactivation of a broad spectrum of microbes. ZeBox achieved near complete kill of airborne microbes in challenge tests (5-9 log reduction) and [Formula: see text] efficiency in a fully functional stem cell research facility in the presence of humans. Thus, ZeBox fulfills the dire need for a real-time, continuous, safe, trap-and-kill air decontamination technology.


Assuntos
Filtros de Ar/microbiologia , Infecção Hospitalar/prevenção & controle , Descontaminação/métodos , Filtros de Ar/tendências , Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Anti-Infecciosos , Descontaminação/instrumentação , Humanos , Material Particulado , Tecnologia
8.
Nat Commun ; 12(1): 3693, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140490

RESUMO

Air-transmitted pathogens may cause severe epidemics showing huge threats to public health. Microbial inactivation in the air is essential, whereas the feasibility of existing air disinfection technologies meets challenges including only achieving physical separation but no inactivation, obvious pressure drops, and energy intensiveness. Here we report a rapid disinfection method toward air-transmitted bacteria and viruses using the nanowire-enhanced localized electric field to damage the outer structures of microbes. This air disinfection system is driven by a triboelectric nanogenerator that converts mechanical vibration to electricity effectively and achieves self-powered. Assisted by a rational design for the accelerated charging and trapping of microbes, this air disinfection system promotes microbial transport and achieves high performance: >99.99% microbial inactivation within 0.025 s in a fast airflow (2 m/s) while only causing low pressure drops (<24 Pa). This rapid, self-powered air disinfection method may fill the urgent need for air-transmitted microbial inactivation to protect public health.


Assuntos
Filtros de Ar , Desinfecção/instrumentação , Desinfecção/métodos , Desenho de Equipamento/métodos , Viabilidade Microbiana , Nanofios/química , Filtros de Ar/microbiologia , Filtros de Ar/virologia , Bactérias/ultraestrutura , Eletricidade , Eletrodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Vibração , Vírus/ultraestrutura
9.
PLoS One ; 16(4): e0251049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914823

RESUMO

Respiratory infections, including SARS-CoV-2, are spread via inhalation or ingestion of airborne pathogens. Airborne transmission is difficult to control, particularly indoors. Manufacturers of high efficiency particulate air (HEPA) filters claim they remove almost all small particles including airborne bacteria and viruses. This study investigates whether modern portable, commercially available air filters reduce the incidence of respiratory infections and/or remove bacteria and viruses from indoor air. We systematically searched Medline, Embase and Cochrane for studies published between January 2000 and September 2020. Studies were eligible for inclusion if they included a portable, commercially available air filter in any indoor setting including care homes, schools or healthcare settings, investigating either associations with incidence of respiratory infections or removal and/or capture of aerosolised bacteria and viruses from the air within the filters. Dual data screening and extraction with narrative synthesis. No studies were found investigating the effects of air filters on the incidence of respiratory infections. Two studies investigated bacterial capture within filters and bacterial load in indoor air. One reported higher numbers of viable bacteria in the HEPA filter than in floor dust samples. The other reported HEPA filtration combined with ultraviolet light reduced bacterial load in the air by 41% (sampling time not reported). Neither paper investigated effects on viruses. There is an important absence of evidence regarding the effectiveness of a potentially cost-efficient intervention for indoor transmission of respiratory infections, including SARS-CoV-2. Two studies provide 'proof of principle' that air filters can capture airborne bacteria in an indoor setting. Randomised controlled trials are urgently needed to investigate effects of portable HEPA filters on incidence of respiratory infections.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/prevenção & controle , Infecções Respiratórias/prevenção & controle , SARS-CoV-2/isolamento & purificação , Filtros de Ar/microbiologia , Filtros de Ar/virologia , Bactérias/isolamento & purificação , Controle de Doenças Transmissíveis/métodos , Habitação , Humanos , Vírus/isolamento & purificação , Local de Trabalho
10.
Appl Opt ; 59(25): 7585-7595, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902458

RESUMO

We present evidence-based design principles for three different UV-C based decontamination systems for N95 filtering facepiece respirators (FFRs) within the context of the SARS-CoV-2 outbreak of 2019-2020. The approaches used here were created with consideration for the needs of low- and middle-income countries (LMICs) and other under-resourced facilities. As such, a particular emphasis is placed on providing cost-effective solutions that can be implemented in short order using generally available components and subsystems. We discuss three optical designs for decontamination chambers, describe experiments verifying design parameters, validate the efficacy of the decontamination for two commonly used N95 FFRs (3M, #1860 and Gerson #1730), and run mechanical and filtration tests that support FFR reuse for at least five decontamination cycles.


Assuntos
Filtros de Ar , Descontaminação/instrumentação , Desenho de Equipamento/métodos , Máscaras , Raios Ultravioleta , Filtros de Ar/microbiologia , Filtros de Ar/virologia , Reutilização de Equipamento , Umidade , Ozônio/síntese química , Ozônio/toxicidade , Temperatura , Raios Ultravioleta/efeitos adversos
11.
Sci Rep ; 10(1): 13875, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807805

RESUMO

Respiratory protection is key in infection prevention of airborne diseases, as highlighted by the COVID-19 pandemic for instance. Conventional technologies have several drawbacks (i.e., cross-infection risk, filtration efficiency improvements limited by difficulty in breathing, and no safe reusability), which have yet to be addressed in a single device. Here, we report the development of a filter overcoming the major technical challenges of respiratory protective devices. Large-pore membranes, offering high breathability but low bacteria capture, were functionalized to have a uniform salt layer on the fibers. The salt-functionalized membranes achieved high filtration efficiency as opposed to the bare membrane, with differences of up to 48%, while maintaining high breathability (> 60% increase compared to commercial surgical masks even for the thickest salt filters tested). The salt-functionalized filters quickly killed Gram-positive and Gram-negative bacteria aerosols in vitro, with CFU reductions observed as early as within 5 min, and in vivo by causing structural damage due to salt recrystallization. The salt coatings retained the pathogen inactivation capability at harsh environmental conditions (37 °C and a relative humidity of 70%, 80% and 90%). Combination of these properties in one filter will lead to the production of an effective device, comprehensibly mitigating infection transmission globally.


Assuntos
Filtros de Ar/microbiologia , Antibacterianos/química , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Máscaras/microbiologia , Membranas Artificiais , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Dispositivos de Proteção Respiratória/microbiologia , Cloreto de Sódio/química , Aerossóis , Antibacterianos/farmacologia , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cristalização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Temperatura Alta , Humanos , Umidade , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Cloreto de Sódio/farmacologia
12.
Sci Rep ; 10(1): 6417, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286482

RESUMO

Air purifiers with high-efficiency particulate air (HEPA) filters remove not only particulate matter but also airborne microorganisms in indoor environments. We investigated the bacterial community in HEPA filters (used for 1 year) and that in the floor dust of 12 office rooms in Beijing. We found that the viable bacteria proportion in the filter was significantly higher than that in the floor dust (p < 0.001). The Non-Metric Multi-Dimensional Scaling analysis showed that the bacterial communities in the filters and dust were significantly different (p = 0.001). The Chao1, Shannon-Wiener and phylogenetic diversity values in the filter were significantly higher than those in the dust (p < 0.001). The predominant bacterial classes in the filter were Alphaproteobacteria and Actinobacteria, whereas those in the dust were Bacteroidia, Clostridia and Bacilli. Human occupancy contributed more to the bacterial community in the filter than that in the dust. Klebsiella and Alloprevotella in the dust and filters positively correlated with the occupancy density. Soil bacteria contributed to a significantly higher proportion of the bacteria in the HEPA filter (p < 0.001). In contrast, human oral, indoor air and outdoor haze contributed to a higher proportion of the bacteria in the dust samples (p < 0.001, p < 0.01 and p < 0.05, respectively). As HEPA filters serve as an ecological niche for indoor bacteria, they should be carefully investigated during the assessment of indoor environmental health.


Assuntos
Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Bactérias/isolamento & purificação , Poeira/análise , Pequim , Biodiversidade , Escherichia coli/isolamento & purificação , Viabilidade Microbiana , Filogenia , Análise de Componente Principal , Estatísticas não Paramétricas
13.
BMC Biotechnol ; 19(1): 52, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31345193

RESUMO

BACKGROUND: Packing materials is a critical design consideration when employing biological reactor to treat malodorous gases. The acidification of packing bed usually results in a significant drop in the removal efficiency. In the present study, a biotrickling filter (BTF2) packed with plastic balls in the upper layer and with lava rocks in the bottom layer, was proposed to mitigate the acidification. RESULTS: Results showed that using combined packing materials efficiently enhanced the removal performance of BTF2 when compared with BTF1, which was packed with sole lava rocks. Removal efficiencies of more than 92.5% on four sulfur compounds were achieved in BTF2. Average pH value in its bottom packing bed was about 4.86, significantly higher than that in BTF1 (2.85). Sulfate and elemental sulfur were observed to accumulate more in BTF1 than in BTF2. Analysis of principal coordinate analysis proved that structure of microbial communities in BTF2 changed less after the shutdown but more when the initial pH value was set at 5.5. Network analysis of significant co-occurrence patterns based on the correlations between microbial taxa revealed that BTF2 harbored more diverse microorganisms involving in the bio-oxidation of sulfur compounds and had more complex interactions between microbial species. CONCLUSIONS: Results confirmed that using combined packing materials effectively improved conditions for the growth of microorganisms. The robustness of reactor against acidification, adverse temperature and gas supply shutdown was greatly enhanced. These provided a theoretical basis for using mixed packing materials to improve removal performance.


Assuntos
Filtros de Ar/microbiologia , Reatores Biológicos/microbiologia , Microbiota , Compostos de Enxofre/isolamento & purificação , Compostos de Enxofre/metabolismo , Poluentes Atmosféricos/isolamento & purificação , Poluentes Atmosféricos/metabolismo , Biodegradação Ambiental , Filtração/instrumentação , Filtração/métodos , Oxirredução
14.
Microb Biotechnol ; 12(4): 775-786, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106964

RESUMO

In this study, the microbial community structure of two full-scale biotrickling filters treating exhaust air from a pig housing facility were evaluated using 16S metabarcoding. The effect of inoculation with activated sludge of a nearby domestic waste water treatment plant was investigated, which is a cheap procedure and easy to apply in practice. The study was performed at a three-stage and a two-stage full-scale biotrickling filter; of which, only the latter was inoculated. Both biotrickling filters evolved towards a rather similar community over time, which differed from the one in the activated sludge used for inoculation. However, the bacterial population at both biotrickling filters showed small differences on the family level. A large population of heterotrophic bacteria, including denitrifying bacteria, was present in both biotrickling filters. In the non-inoculated biotrickling filter, nitrite-oxidizing bacteria (NOB) could not be detected, which corresponded with the incomplete nitrification leading to high nitrite accumulation observed in this system. Inoculation with the wide spectrum inoculum activated sludge had in this study a positive effect on the biotrickling filter performance (higher ammonia removal and lower nitrous oxide production). It could thus be beneficial to inoculate biotrickling filters in order to enrich NOB at the start-up, making it easier to keep the free nitrous acid concentration low enough to not be inhibited by it.


Assuntos
Filtros de Ar/microbiologia , Bactérias/classificação , Metagenoma , Microbiota , Criação de Animais Domésticos , Animais , Bactérias/genética , Análise por Conglomerados , Código de Barras de DNA Taxonômico , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
15.
Sci Total Environ ; 671: 59-65, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30927728

RESUMO

Exposure to viable bacterial and fungal spores re-aerosolized from air handling filters may create a major health risk. Assessing and controlling this exposure have been of interest to the bio-defense and indoor air quality communities. Methods are being developed for inactivating stress-resistant viable microorganisms collected on ventilation filters. Here we investigated the inactivation of spores of Bacillus thuringiensis var. kurstaki (Btk), a recognized simulant for B. antracis, and Aspergillus fumigatus, a common opportunistic pathogen used as an indicator for indoor air quality. The viability change was measured on filters treated with ultraviolet (UV) irradiation and gaseous iodine. The spores were collected on high-efficiency particulate air (HEPA) and non-HEPA filters, both flattened for testing purposes to represent "surface" filters. A mixed cellulose ester (MCE) membrane filter was also tested as a reference. Additionally, a commercial HEPA unit with a deep-bed (non-flattened) filter was tested. Combined treatments of Btk spores with UV and iodine on MCE filter produced a synergistic inactivation effect. No similar synergy was observed for A. fumigatus. For spores collected on an MCE filter, the inactivation effect was about an order of magnitude greater for Btk compared to A. fumigatus. The filter type was found to be an important factor affecting the inactivation of Btk spores while it was not as influential for A. fumigatus. Overall, the combined effect of UV irradiation and gaseous iodine on viable bacterial and fungal spores collected on flat filters was found to be potent. The benefit of either simultaneous or sequential treatment was much lower for Btk spores embedded inside the deep-bed (non-flattened) HEPA filter, but for A. fumigatus the inactivation on flattened and non-flattened HEPA filters was comparable. For both species, applying UV first and gaseous iodine second produced significantly higher inactivation than when applying them simultaneously or in an opposite sequence.


Assuntos
Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Desinfecção/métodos , Iodo/administração & dosagem , Esporos Bacterianos/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Raios Ultravioleta , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/fisiologia , Bacillus thuringiensis/efeitos dos fármacos , Bacillus thuringiensis/fisiologia , Gases/administração & dosagem , Esporos Bacterianos/fisiologia , Esporos Fúngicos/fisiologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-30813565

RESUMO

High-throughput quantitative PCR combined with Illumina sequencing and network analysis were used to characterize the antibiotic resistance gene (ARG) profiles in air-conditioning filters from different environments. In total, 177 ARGs comprising 10 ARG types were determined. The detectable numbers and the relative abundance of ARGs in hospitals and farms were significantly higher than those in city and village residences. Compared to hospitals, farms had a higher level of tetracycline, multidrug, integrase, and macrolide⁻lincosamide⁻streptogramin (MLS) B resistance genes but a lower level of beta-lactam resistance genes. The bl3_cpha gene was the most abundant resistance gene subtype in hospital samples with an abundance of 2.01 × 10-4 copies/16S rRNA, while a level of only 5.08 × 10-12 copies/16S rRNA was observed in farm samples. There was no significant difference in bacterial diversity among the hospitals, farms, and residences, and Proteobacteria was the most abundant phylum. Network analysis revealed that Proteobacteria and Actinobacteria were possible hosts of the beta-lactam, MLSB, aminoglycoside, multidrug, sulfonamide, and tetracycline resistance genes. The results demonstrate that ARGs exist in indoor environments and that farms and hospitals are important sources. This study provides a useful reference for understanding the distribution patterns and risk management of ARGs in indoor environments.


Assuntos
Ar Condicionado/estatística & dados numéricos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Microbiologia Ambiental , Monitoramento Ambiental , Genes Bacterianos/genética , Filtros de Ar/microbiologia , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Fazendas/estatística & dados numéricos , Hospitais/estatística & dados numéricos , Habitação/estatística & dados numéricos , Prevalência
17.
Indoor Air ; 29(3): 390-402, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624800

RESUMO

Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long-term sampling method to characterize airborne particle-bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle-bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.


Assuntos
Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental/métodos , Ar Condicionado/instrumentação , Microbiologia do Ar , DNA Bacteriano/análise , Endotoxinas/análise , Fungos/isolamento & purificação , Calefação/instrumentação , Habitação , Humanos , Organofosfatos/análise , Ácidos Ftálicos/análise , Estações do Ano , Texas , Ventilação/instrumentação
18.
Biocontrol Sci ; 23(4): 215-221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584208

RESUMO

Few studies have evaluated the performance of air purifiers in removing airborne fungi in houses. Here, we evaluated the ability of a HEPA air purifier fan to remove airborne fungi in six houses in Japan. In each house, the number of airborne fungi decreased more rapidly when the air purifier fan was on (test measurement) than when it was off (control) , demonstrating its ability to decrease the fungal concentration. The number of airborne fungi decreased between 1.5 and 6 times faster when the air purifier fan was on than when it was off (spontaneous decrease) . Clean air change rates, calculated from measurements taken 15 min after the test equipment operation began, ranged from 2.9 to 5.4 (h-1) , indicating adequate air cleaning. One of the six test houses contained a much greater concentration of airborne fungi than the standard set by the Architectural Institute of Japan. When the air purifier fan was operated in the house, the indoor/outdoor (I/O) ratio decreased from 77.5, equating to a fungal concentration of 53,000 cfu/m3 at 0 min to 0.72 or 620 cfu/m3 after 45 min, which is below the standard. This reduction clearly demonstrated the antifungal effect of the air purifier fan.


Assuntos
Filtros de Ar/microbiologia , Microbiologia do Ar , Monitoramento Ambiental/métodos , Fungos/isolamento & purificação , Contagem de Colônia Microbiana/métodos , Habitação , Japão
19.
Environ Sci Pollut Res Int ; 25(10): 9806-9816, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372522

RESUMO

A biotrickling filter was evaluated to treat the air of the interior of a bioprocess research laboratory. Initially, various solid-phase microextraction (SPME) fibers were used to identify and quantify the volatile organic pollutants and hexane, methyl isobutyl ketone, benzene, toluene, and xylene were further selected as indicators due to their prevalence and relative abundance. The system treated organic loading rates between 0.16 mgcarbon m-3 h-1 and close to 30 mgcarbon m-3 h-1 achieving removal efficiencies (RE) over 85% during 136 operational days. Respirometry experiments demonstrated that moderate acidification (below 5.0), due to microbial activity, adversely affected biofilter performance and consequently pH control was necessary to maintain performance.


Assuntos
Filtros de Ar , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental/métodos , Compostos Orgânicos Voláteis/análise , Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Biodegradação Ambiental , Monitoramento Ambiental/instrumentação , Filtração , Microextração em Fase Sólida
20.
PLoS One ; 12(10): e0186558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29028843

RESUMO

Air filtration has been shown to be efficient in reducing pathogen burden in circulating air. We determined at laboratory scale the retention efficiency of different air filter types either composed of a prefilter (EU class G4) and a secondary fiberglass filter (EU class F9) or consisting of a filter mat (EU class M6 and F8-9). Four filter prototypes were tested for their capability to remove aerosol containing equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), bovine enterovirus 1 (BEV), Actinobacillus pleuropneumoniae (APP), and Staphylococcus (S.) aureus from air. Depending on the filter prototype and utilisation, the airflow was set at 1,800 m3/h (combination of upstream prefilter and fiberglass filter) or 80 m3/h (filter mat). The pathogens were aerosolized and their concentration was determined in front of and behind the filter by culture or quantitative real-time RT-PCR. Furthermore, survival of the pathogens over time in the filter material was determined. Bacteria were most efficiently filtered with a reduction rate of up to 99.9% depending on the filter used. An approximately 98% reduction was achieved for the viruses tested. Viability or infectivity of APP or PRRSV in the filter material decreased below the detection limit after 4 h and 24 h, respectively, whereas S. aureus was still culturable after 4 weeks. Our results demonstrate that pathogens can efficiently be reduced by air filtration. Consequently, air filtration combined with other strict biosecurity measures markedly reduces the risk of introducing airborne transmitted pathogens to animal facilities. In addition, air filtration might be useful in reducing bioaerosols within a pig barn, hence improving respiratory health of pigs.


Assuntos
Filtros de Ar/microbiologia , Microbiologia do Ar , Laboratórios , Suínos , Animais , Bactérias/isolamento & purificação , Cinética , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...