Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.114
Filtrar
1.
J Math Biol ; 88(6): 77, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695878

RESUMO

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Assuntos
Número Básico de Reprodução , Eutrofização , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Fitoplâncton/virologia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Número Básico de Reprodução/estatística & dados numéricos , Haptófitas/virologia , Haptófitas/crescimento & desenvolvimento , Haptófitas/fisiologia , Simulação por Computador
2.
Glob Chang Biol ; 30(5): e17308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721885

RESUMO

At high latitudes, the suitable window for timing reproductive events is particularly narrow, promoting tight synchrony between trophic levels. Climate change may disrupt this synchrony due to diverging responses to temperature between, for example, the early life stages of higher trophic levels and their food resources. Evidence for this is equivocal, and the role of compensatory mechanisms is poorly understood. Here, we show how a combination of ocean warming and coastal water darkening drive long-term changes in phytoplankton spring bloom timing in Lofoten Norway, and how spawning time of Northeast Arctic cod responds in synchrony. Spring bloom timing was derived from hydrographical observations dating back to 1936, while cod spawning time was estimated from weekly fisheries catch and roe landing data since 1877. Our results suggest that land use change and freshwater run-off causing coastal water darkening has gradually delayed the spring bloom up to the late 1980s after which ocean warming has caused it to advance. The cod appear to track phytoplankton dynamics by timing gonadal development and spawning to maximize overlap between offspring hatch date and predicted resource availability. This finding emphasises the importance of land-ocean coupling for coastal ecosystem functioning, and the potential for fish to adapt through phenotypic plasticity.


Assuntos
Mudança Climática , Fitoplâncton , Estações do Ano , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Animais , Noruega , Reprodução , Gadus morhua/fisiologia , Gadus morhua/crescimento & desenvolvimento , Água do Mar , Temperatura
3.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693309

RESUMO

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Assuntos
Clorofila A , Ecossistema , Fitoplâncton , Estações do Ano , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Mar Mediterrâneo , Clorofila A/análise , Clorofila A/metabolismo , Clorofila/análise , Clorofila/metabolismo , Biomassa , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
4.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739806

RESUMO

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Assuntos
Clorofila A , Mudança Climática , Fitoplâncton , Estações do Ano , Clorofila A/metabolismo , Clorofila A/análise , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Estuários , Ecossistema , Plâncton/fisiologia , Plâncton/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo
5.
Curr Biol ; 34(8): 1786-1793.e4, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38614083

RESUMO

Soda lakes are some of the most productive aquatic ecosystems.1 Their alkaline-saline waters sustain unique phytoplankton communities2,3 and provide vital habitats for highly specialized biodiversity including invertebrates, endemic fish species, and Lesser Flamingos (Phoeniconaias minor).1,4 More than three-quarters of Lesser Flamingos inhabit the soda lakes of East Africa5; however, populations are in decline.6 Declines could be attributed to their highly specialized diet of cyanobacteria7 and dependence on a network of soda lake feeding habitats that are highly sensitive to climate fluctuations and catchment degradation.8,9,10,11,12 However, changing habitat availability has not been assessed due to a lack of in situ water quality and hydrology data and the irregular monitoring of these waterbodies.13 Here, we combine satellite Earth observations and Lesser Flamingo abundance observations to quantify spatial and temporal trends in productivity and ecosystem health over multiple decades at 22 soda lakes across East Africa. We found that Lesser Flamingo distributions are best explained by phytoplankton biomass, an indicator of food availability. However, timeseries analyses revealed significant declines in phytoplankton biomass from 1999 to 2022, most likely driven by substantial rises in lake water levels. Declining productivity has reduced the availability of healthy soda lake ecosystems, most notably in equatorial Kenya and northern Tanzania. Our results highlight the increasing vulnerability of Lesser Flamingos and other soda lake biodiversity in East Africa, particularly with increased rainfall predicted under climate change.14,15,16 Without improved lake monitoring and catchment management practices, soda lake ecosystems could be pushed beyond their environmental tolerances. VIDEO ABSTRACT.


Assuntos
Lagos , Fitoplâncton , Animais , Fitoplâncton/fisiologia , África Oriental , Ecossistema , Biomassa , Biodiversidade , Mudança Climática , População da África Oriental
6.
J Math Biol ; 88(6): 68, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661851

RESUMO

The coexistence of multiple phytoplankton species despite their reliance on similar resources is often explained with mean-field models assuming mixed populations. In reality, observations of phytoplankton indicate spatial aggregation at all scales, including at the scale of a few individuals. Local spatial aggregation can hinder competitive exclusion since individuals then interact mostly with other individuals of their own species, rather than competitors from different species. To evaluate how microscale spatial aggregation might explain phytoplankton diversity maintenance, an individual-based, multispecies representation of cells in a hydrodynamic environment is required. We formulate a three-dimensional and multispecies individual-based model of phytoplankton population dynamics at the Kolmogorov scale. The model is studied through both simulations and the derivation of spatial moment equations, in connection with point process theory. The spatial moment equations show a good match between theory and simulations. We parameterized the model based on phytoplankters' ecological and physical characteristics, for both large and small phytoplankton. Defining a zone of potential interactions as the overlap between nutrient depletion volumes, we show that local species composition-within the range of possible interactions-depends on the size class of phytoplankton. In small phytoplankton, individuals remain in mostly monospecific clusters. Spatial structure therefore favours intra- over inter-specific interactions for small phytoplankton, contributing to coexistence. Large phytoplankton cell neighbourhoods appear more mixed. Although some small-scale self-organizing spatial structure remains and could influence coexistence mechanisms, other factors may need to be explored to explain diversity maintenance in large phytoplankton.


Assuntos
Simulação por Computador , Ecossistema , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Dinâmica Populacional , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Dinâmica Populacional/estatística & dados numéricos , Biodiversidade
7.
Water Res ; 256: 121547, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583334

RESUMO

This study analyses over a decade (2009-2022) of monitoring data to understand the impact of hydrological characteristics on water quality and phytoplankton dynamics in Prospect Reservoir, a critical water supply for Greater Sydney, Australia, known for its excellent water quality. Water quality and phytoplankton dynamics were related to hydrodynamics, linked to flow management and the water quality of inflows. Phytoplankton biovolume increased after a prolonged drawdown and subsequent refill event, mainly driven by dinoflagellates, and corresponded to increases in total phosphorus and water temperature. The hydrological period following the 2019/2020 summer bushfires (post-bushfire) that impacted connected reservoirs, was marked by increased flow activity and nutrient loading, leading to significant shifts in the phytoplankton community. Functional group classification and ordination analysis indicated a transition from taxa typically dominant in oligotrophic conditions to meso­eutrophic. This transition correlated with elevated nutrient levels and chlorophyll-a (Chl-a), and reduced Secchi depth and dissolved oxygen, providing evidence of eutrophication. Q index indicated good water quality post-bushfire, contrasting with a eutrophic status assessment using Chl-a. Our findings highlight the importance of analysing long-term datasets encompassing varied hydroclimatological conditions for a deeper understanding of reservoir behaviour. A comprehensive approach to water quality assessment is recommended, combining functional group classification, Q index and Chl-a measurements for effective reservoir health assessment. This research provides novel insights into the effects of disturbances such as bushfires, on water quality and phytoplankton dynamics in an underrepresented geographic region, offering valuable knowledge for managing water resources amidst growing climate variability.


Assuntos
Hidrodinâmica , Fitoplâncton , Qualidade da Água , Fitoplâncton/fisiologia , Abastecimento de Água , Austrália , Clorofila A , Eutrofização , Monitoramento Ambiental
8.
Proc Biol Sci ; 291(2019): 20232564, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531400

RESUMO

Phytoplankton are photosynthetic marine microbes that affect food webs, nutrient cycles and climate regulation. Their roles are determined by correlated phytoplankton functional traits including cell size, chlorophyll content and cellular composition. Here, we explore patterns of evolution in interrelated trait values and correlations. Because both chance events and natural selection contribute to phytoplankton trait evolution, we used population bottlenecks to diversify six genotypes of Thalassiosirid diatoms. We then evolved them as large populations in two environments. Interspecific variation and within-species evolution were visualized for nine traits and their correlations using reduced axes (a trait-scape). Our main findings are that shifts in trait values resulted in movement of evolving populations within the trait-scape in both environments, but were more frequent when large populations evolved in a novel environment. Which trait relationships evolved was population-specific, but greater departures from ancestral trait correlations were associated with lower population growth rates. There was no single master trait that could be used to understand multi-trait evolution. Instead, repeatable multi-trait evolution occurred along a major axis of variation defined by several diatom traits and trait relationships. Because trait-scapes capture changes in trait relationships and values together, they offer an insightful way to study multi-trait variation.


Assuntos
Diatomáceas , Diatomáceas/fisiologia , Fitoplâncton/fisiologia , Clorofila , Fotossíntese , Cadeia Alimentar
9.
Sci Total Environ ; 927: 171977, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547969

RESUMO

Perfluoroalkyl substances (PFAS) are of great ecological concern, however, exploration of their impact on bacteria-phytoplankton consortia is limited. This study employed a bioassay approach to investigate the effect of unary exposures of increasing concentrations of PFAS (perfluorooctane sulfonate (PFOS) and 6:2 fluorotelomer sulfonate (6:2 FTS)) on microbial communities from the northwestern Gulf of Mexico. Each community was examined for changes in growth and photophysiology, exudate production and shifts in community structure (16S and 18S rRNA genes). 6:2 FTS did not alter the growth or health of phytoplankton communities, as there were no changes relative to the controls (no PFOS added). On the other hand, PFOS elicited significant phototoxicity (p < 0.05), altering PSII antennae size, lowering PSII connectivity, and decreasing photosynthetic efficiency over the incubation (four days). PFOS induced a cellular protective response, indicated by significant increases (p < 0.001) in the release of transparent exopolymer particles (TEP) compared to the control. Eukaryotic communities (18S rRNA gene) changed substantially (p < 0.05) and to a greater extent than prokaryotic communities (16S rRNA gene) in PFOS treatments. Community shifts were concentration-dependent for eukaryotes, with the low treatment (5 mg/L PFOS) dominated by Coscinodiscophyceae (40 %), and the high treatment (30 mg/L PFOS) marked by a Trebouxiophyceae (50 %) dominance. Prokaryotic community shifts were not concentration dependent, as both treatment levels became depleted in Cyanobacteriia and were dominated by members of the Bacteroidia, Gammaproteobacteria, and Alphaproteobacteria classes. Further, PFOS significantly decreased (p < 0.05) the Shannon diversity and Pielou's evenness across treatments for eukaryotes, and in the low treatment (5 mg/L PFOS) for prokaryotes. These findings show that photophysiology was not impacted by 6:2 FTS but PFOS elicited toxicity that impacted photosynthesis, exudate release, and community composition. This research is crucial in understanding how PFOS impacts microbial communities.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Fotossíntese , Fitoplâncton , Poluentes Químicos da Água , Fluorocarbonos/toxicidade , Fotossíntese/efeitos dos fármacos , Ácidos Alcanossulfônicos/toxicidade , Poluentes Químicos da Água/toxicidade , Fitoplâncton/efeitos dos fármacos , Fitoplâncton/fisiologia , Microbiota/efeitos dos fármacos , Golfo do México , Bactérias/efeitos dos fármacos
10.
Sci Total Environ ; 927: 172105, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556011

RESUMO

A digestibility enhancing effect of natural food on stomachless fish model (Cyprinus carpio) was verified by fluorogenic substrate assays of enzymatic activities in experimental pond carp gut flush and planktonic food over a full vegetative season. Then compared with size-matched conspecific grown artificially (tank carp) and an advanced omnivore species possessing true stomach (tilapia, Oreochromis niloticus). Results suggested activities of digestive enzymes (except amylolytic) were significantly higher in pond carp (p ≤ 0.05) than in the size-matched tank carp. Even compared to tilapia, pond carp appeared superior (p < 0.05; proteolytic or chitinolytic activities) or comparable (p > 0.05; phosphatase or cellulolytic activities). Amylolytic, chitinolytic, and phosphatases activities in pond carp gut significantly increased (p ≤ 0.01) over season. Several orders-of-magnitude higher enzymatic activities were detected in planktonic natural food than expressed in carp gut. Amino acid markers in planktonic food revealed a higher share of zooplankton (microcrustaceans), but not phytoplankton, synchronized with higher activities of complex polysaccharide-splitting enzymes (cellulolytic and chitinolytic) in fish gut. Periods of clear water phase low in chlorophyll-a and nutrients, but high in certain zooplankton (preferably cladocerans), may create a synergistic digestibility effect in pond carp. We conclude aquatic ecosystem components (natural food, water, microbiota) enhance fishes' hydrolyzing capabilities of C/N/P macromolecules and even their complex polymers such as cellulose, chitin, and maybe phytate (to be validated), to the extent that being stomachless is not an issue. Aquatic nutritional ecologists may consider that laboratory-based understandings of digestibility may underestimate digestion efficiency of free-ranging fish in ponds or lakes.


Assuntos
Carpas , Ecossistema , Animais , Carpas/fisiologia , Carpas/metabolismo , Digestão/fisiologia , Plâncton/fisiologia , Zooplâncton/fisiologia , Fitoplâncton/fisiologia
11.
Sci Total Environ ; 922: 171284, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432389

RESUMO

Humic thermokarst lakes of permafrost peatlands in Western Siberia Lowland (WSL) are major environmental controllers of carbon and nutrient storage in inland waters and greenhouse gases emissions to the atmosphere in the subarctic. In contrast to sizable former research devoted to hydrochemical and hydrobiological (phytoplankton) composition, zooplankton communities of these thermokarst lakes and thaw ponds remain poorly understood, especially along the latitudinal gradient, which is a perfect predictor of permafrost zones. To fill this gap, 69 thermokarst lakes of the WSL were sampled using unprecedented spatial coverage, from continuous to sporadic permafrost zone, in order to assess zooplankton (Cladocera, Copepoda, Rotifera) diversity and abundance across three main open water physiological seasons (spring, summer and autumn). We aimed at assessing the relationship of environmental factors (water column hydrochemistry, nutrients, and phytoplankton parameters) with the abundance and diversity of zooplankton. A total of 74 zooplankton species and taxa were detected, with an average eight taxa per lake/pond. Species richness increased towards the north and reached the maximum in the continuous permafrost zone with 13 species found in this zone only. In contrast, the number of species per waterbody decreased towards the north, which was mainly associated with a decrease in the number of cladocerans. Abundance and diversity of specific zooplankton groups strongly varied across the seasons and permafrost zones. Among the main environmental controllers, Redundancy Analysis revealed that water temperature, lake area, depth, pH, Dissolved Inorganic and Organic Carbon and CO2 concentrations were closely related to zooplankton abundance. Cladocerans were positively related to water temperature during all seasons. Copepods were positively related to depth and lake water pH in all seasons. Rotifers were related to different factors in each season, but were most strongly associated with DOC, depth, CH4, phytoplankton and cladoceran abundance. Under climate warming scenario, considering water temperature increase and permafrost boundary shift northward, one can expect an increase in the diversity and abundance of cladocerans towards the north which can lead to partial disappearance of copepods, especially rare calanoid species.


Assuntos
Cladocera , Copépodes , Pergelissolo , Rotíferos , Animais , Estações do Ano , Sibéria , Zooplâncton/fisiologia , Lagos/química , Rotíferos/fisiologia , Fitoplâncton/fisiologia , Copépodes/fisiologia , Carbono , Água
12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38442732

RESUMO

Ocean microbes are involved in global processes such as nutrient and carbon cycling. Recent studies indicated diverse modes of algal-bacterial interactions, including mutualism and pathogenicity, which have a substantial impact on ecology and oceanic carbon sequestration, and hence, on climate. However, the airborne dispersal and pathogenicity of bacteria in the marine ecosystem remained elusive. Here, we isolated an airborne algicidal bacterium, Roseovarius nubinhibens, emitted to the atmosphere as primary marine aerosol (referred also as sea spray aerosols) and collected above a coccolithophore bloom in the North Atlantic Ocean. The aerosolized bacteria retained infective properties and induced lysis of Gephyrocapsa huxleyi cultures.This suggests that the transport of marine bacteria through the atmosphere can effectively spread infection agents over vast oceanic regions, highlighting its significance in regulating the cell fate in algal blooms.


Assuntos
Fitoplâncton , Água do Mar , Fitoplâncton/fisiologia , Água do Mar/microbiologia , Ecossistema , Oceanos e Mares , Bactérias/genética
13.
Sci Total Environ ; 926: 171971, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547992

RESUMO

Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.


Assuntos
Ecossistema , Oxigênio , Biomassa , Oceanos e Mares , Temperatura , Fitoplâncton/fisiologia
14.
PLoS One ; 19(2): e0295686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324513

RESUMO

Phytoplankton face numerous pressures resulting from chemical and physical stressors, primarily induced by human activities. This study focuses on investigating the interactive effects of widely used antifouling agent Irgarol 1051 and UV radiation on the photo-physiology of marine diatoms from diverse latitudes, within the context of global warming. Our findings clearly shown that both Irgarol and UV radiation have a significant inhibitory impact on the photochemical performance of the three diatoms examined, with Irgarol treatment exhibiting more pronounced effects. In the case of the two temperate zone diatoms, we observed a decrease in the inhibition induced by Irgarol 1051 and UVR as the temperature increased up to 25°C. Similarly, for the subarctic species, an increase in temperature resulted in a reduction in the inhibition caused by Irgarol and UVR. These results suggest that elevated temperatures can mitigate the short-term inhibitory effects of both Irgarol and UVR on diatoms. Furthermore, our data indicate that increased temperature could significantly interact with UVR or Irgarol for temperate diatoms, while this was not the case for cold water diatoms, indicating temperate and subarctic diatoms may respond differentially under global warming.


Assuntos
Diatomáceas , Triazinas , Humanos , Diatomáceas/fisiologia , Raios Ultravioleta , Temperatura , Fitoplâncton/fisiologia
15.
Mar Environ Res ; 196: 106371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309244

RESUMO

This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020-Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p < 0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite + nitrate (N + N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N + N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries.


Assuntos
COVID-19 , Diatomáceas , Dinoflagellida , Humanos , Fitoplâncton/fisiologia , Nitrogênio/análise , Connecticut , New York , Águas Residuárias , Diatomáceas/fisiologia , Rios , Estuários
16.
Mar Environ Res ; 196: 106376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316569

RESUMO

The northeastern East China Sea is a highly dynamic marine ecosystem influenced by seasonally varying water mass properties. However, despite being among the world's fastest-warming ocean, there has been limited investigation into the impacts of warming on protistan communities. We collected seawater from two stations (E42 and E46) with different natural protist communities and environmental attributes to investigate the acclimation of the two communities to artificially elevated temperatures (ambient T, +2, and +4 °C). Nutrient and Chl-a conditions reflected oceanographic differences, providing insights into protistan community dynamics. Notably, small-sized autotrophic protists prevailed in the phosphate-deficient E42 community, with mid-incubation heterotrophic conversions. Higher temperatures exacerbated the effects of the P deficiency on the E42 community. While the proportions of Bacillariophyta increased only in the nutrient-balanced E46 communities, those of mixotrophic dinoflagellates increased with elevated temperature, regardless of P deficiency, suggesting that mixotrophy likely aids adaptation in changing marine environments. In summary, the findings of this microcosm study illuminate the potential modulation of spring protistan communities in the northeastern East China Sea under anticipated future warming.


Assuntos
Diatomáceas , Dinoflagellida , Ecossistema , Água do Mar , Diatomáceas/fisiologia , China , Fitoplâncton/fisiologia
17.
Mar Pollut Bull ; 201: 116179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394795

RESUMO

We obtained historical and observational data on phytoplankton communities from 1959 to 2023 to explore the responses of the phytoplankton community structure to long-term environmental changes in the southern Yellow Sea (SYS), China. The results revealed a decrease in the proportions of diatom cell abundance within the phytoplankton community by 8 %, accompanied by a corresponding increase in that of dinoflagellates. Dominant phytoplankton species were mainly chain-forming diatoms before 2000, and large dinoflagellate species from the genera Tripos and Noctiluca increased their dominance after 2000. Warm-water phytoplankton species have increased in dominance over the study period. Correlation analysis revealed that the ocean warming and alterations in nutrient structure (N/P and Si/N ratios) were mostly responsible for the long-term evolution trend, and these changes may result in an increase in dinoflagellate harmful algal blooms, reduced efficiency of the biological carbon pump, and heightened hypoxia in the future, which should draw our attention.


Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton/fisiologia , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , China
18.
Water Res ; 253: 121325, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367379

RESUMO

Phytoplankton taxa are strongly interconnected as a network, which could show temporal dynamics and non-linear responses to changes in drivers at both seasonal and long-term scale. Using a high quality dataset of 20 Danish lakes (1989-2008), we applied extended Local Similarity Analysis to construct temporal network of phytoplankton communities for each lake, obtained sub-network for each sampling month, and then measured indices of network complexity and stability for each sub-network. We assessed how lake re-oligotrophication, climate warming and grazers influenced the temporal dynamics on network complexity and stability of phytoplankton community covering three aspects: seasonal trends, long-term trends and detrended variability. We found strong seasonality for the complexity and stability of phytoplankton network, an increasing trend for the average degree, modularity, nestedness, persistence and robustness, and a decreasing trend for connectance, negative:positive interactions and vulnerability. Our study revealed a cascading effect of lake re-oligotrophication, climate warming and zooplankton grazers on phytoplankton network stability through changes in network complexity characterizing diversity, interactions and topography. Network stability of phytoplankton increased with average degree, modularity, nestedness and decreased with connectance and negative:positive interactions. Oligotrophication and warming stabilized the phytoplankton network (enhanced robustness, persistence and decreased vulnerability) by enhancing its average degree, modularity, nestedness and by reducing its connectance, while zooplankton richness promoted stability of phytoplankton network through increases in average degree and decreases in negative interactions. Our results further indicate that the stabilization effects might lead to more closed, compartmentalized and nested interconnections especially in the deeper lakes, in the warmer seasons and during bloom periods. From a temporal dynamic network view, our findings highlight stabilization of the phytoplankton community as an adaptive response to lake re-oligotrophication, climate warming and grazers.


Assuntos
Clima , Fitoplâncton , Animais , Fitoplâncton/fisiologia , Estações do Ano , Zooplâncton/fisiologia , Lagos , Ecossistema
19.
Nat Commun ; 15(1): 1783, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413588

RESUMO

Predicting the magnitude of herbicide impacts on marine primary productivity remains challenging because the extent of worldwide herbicide pollution in coastal waters and the concentration-response relationships of phytoplankton communities to multiple herbicides are unclear. By analyzing the spatiotemporal distribution of herbicides at 661 bay and gulf stations worldwide from 1990 to 2022, we determined median, third quartile and maximum concentrations of 12 triazine herbicides of 0.18 nmol L-1, 1.27 nmol L-1 and 29.50 nmol L-1 (95%Confidence Interval: CI 1.06, 1.47), respectively. Under current herbicide stress, phytoplankton primary productivity was inhibited by more than 5% at 25% of the sites and by more than 10% at 10% of the sites (95%CI 3.67, 4.34), due to the inhibition of highly abundant sensitive species, community structure/particle size succession (from Bacillariophyta to Dinophyceae and from nano-phytoplankton to micro-phytoplankton), and resulting growth rate reduction. Concurrently, due to food chain cascade effects, the dominant micro-zooplankton population shifted from larger copepod larvae to smaller unicellular ciliates, which might prolong the transmission process in marine food chain and reduce the primary productivity transmission efficiency. As herbicide application rates on farmlands worldwide are correlated with residues in their adjacent seas, a continued future increase in herbicide input may seriously affect the stability of coastal waters.


Assuntos
Diatomáceas , Herbicidas , Animais , Herbicidas/toxicidade , Zooplâncton/fisiologia , Fitoplâncton/fisiologia , Água do Mar/química , Ecossistema
20.
Ecology ; 105(4): e4274, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38419360

RESUMO

Identification of the key biotic and abiotic drivers within food webs is important for understanding species abundance changes in ecosystems, particularly across ecotones where there may be strong variation in interaction strengths. Using structural equation models (SEMs) and four decades of integrated data from the San Francisco Estuary, we investigated the relative effects of top-down, bottom-up, and environmental drivers on multiple trophic levels of the pelagic food web along an estuarine salinity gradient and at both annual and monthly temporal resolutions. We found that interactions varied across the estuarine gradient and that the detectability of different interactions depended on timescale. For example, for zooplankton and estuarine fishes, bottom-up effects appeared to be stronger in the freshwater upstream regions, while top-down effects were stronger in the brackish downstream regions. Some relationships (e.g., bottom-up effects of phytoplankton on zooplankton) were seen primarily at annual timescales, whereas others (e.g., temperature effects) were only observed at monthly timescales. We also found that the net effect of environmental drivers was similar to or greater than bottom-up and top-down effects for all food web components. These findings can help identify which trophic levels or environmental factors could be targeted by management actions to have the greatest impact on estuarine forage fishes and the spatial and temporal scale at which responses might be observed. More broadly, this study highlights how environmental gradients can structure community interactions and how long-term data sets can be leveraged to generate insights across multiple scales.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Água Doce , Peixes/fisiologia , Fitoplâncton/fisiologia , Zooplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...