Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.131
Filtrar
1.
J Exp Biol ; 227(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38920135

RESUMO

Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.


Assuntos
Briozoários , Comportamento Alimentar , Fitoplâncton , Temperatura , Animais , Briozoários/fisiologia , Fitoplâncton/fisiologia
2.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829789

RESUMO

This paper reports an important conclusion that self-diffusion is not a necessary condition for inducing Turing patterns, while taxis could establish complex pattern phenomena. We investigate pattern formation in a zooplankton-phytoplankton model incorporating phytoplankton-taxis, where phytoplankton-taxis describes the zooplankton that tends to move toward the high-densities region of the phytoplankton population. By using the phytoplankton-taxis sensitivity coefficient as the Turing instability threshold, one shows that the model exhibits Turing instability only when repulsive phytoplankton-taxis is added into the system, while the attractive-type phytoplankton-taxis cannot induce Turing instability of the system. In addition, the system does not exhibit Turing instability when the phytoplankton-taxis disappears. Numerically, we display the complex patterns in 1D, 2D domains and on spherical and zebra surfaces, respectively. In summary, our results indicate that the phytoplankton-taxis plays a pivotal role in giving rise to the Turing pattern formation of the model. Additionally, these theoretical and numerical results contribute to our understanding of the complex interaction dynamics between zooplankton and phytoplankton populations.


Assuntos
Modelos Biológicos , Fitoplâncton , Zooplâncton , Animais , Zooplâncton/fisiologia , Fitoplâncton/fisiologia , Simulação por Computador , Dinâmica não Linear , Ecossistema , Plâncton/fisiologia , Dinâmica Populacional
3.
Nat Commun ; 15(1): 4834, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844446

RESUMO

Oceanic eddies are recognized as pivotal components in marine ecosystems, believed to concentrate a wide range of marine life spanning from phytoplankton to top predators. Previous studies have posited that marine predators are drawn to these eddies due to an aggregation of their forage fauna. In this study, we examine the response of forage fauna, detected by shipboard acoustics, across a broad sample of a thousand eddies across the world's oceans. While our findings show an impact of eddies on surface temperatures and phytoplankton in most cases, they reveal that only a minority (13%) exhibit significant effects on forage fauna, with only 6% demonstrating an oasis effect. We also show that an oasis effect can occur both in anticyclonic and cyclonic eddies, and that the few high-impact eddies are marked by high eddy amplitude and strong water-mass-trapping. Our study underscores the nuanced and complex nature of the aggregating role of oceanic eddies, highlighting the need for further research to elucidate how these structures attract marine predators.


Assuntos
Ecossistema , Oceanos e Mares , Fitoplâncton , Animais , Fitoplâncton/fisiologia , Temperatura , Organismos Aquáticos/fisiologia , Comportamento Predatório/fisiologia , Acústica
4.
Sci Rep ; 14(1): 13498, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866841

RESUMO

Aquatic macrophytes form a three dimensional complex structure in the littoral zones of lakes, with many physical, chemical and biological gradients and interactions. This special habitat harbours a unique microalgal assemblage called metaphyton, that differs both from the phytoplankton of the pelagial and from the benthic assemblages whose elements are tightly attached to the substrates. Since metaphytic assemblages significantly contribute to the diversity of lakes' phytoplankton, it is crucial to understand and disentangle those mechanisms that ensure their development. Therefore, we focused on the question of how a single solid physical structure contribute to maintaining metaphytic assemblages. Using a laboratory experiment we studied the floristic and functional differences of microalgal assemblages in microcosms that simulated the conditions that an open water, a complex natural macrophyte stand (Utricularia vulgaris L.), or an artificial substrate (cotton wool) provide for them. We inoculated the systems with a species rich (> 326 species) microalgal assemblage collected from a eutrophic oxbow lake, and studied the diversity, trait and functional group composition of the assemblages in a 24 day long experimental period. We found that both natural and artificial substrates ensured higher species richness than the open water environment. Functional richness in the open water environment was lower than in the aquaria containing natural macrophyte stand but higher than in which cotton wool was placed. This means that the artificial physical structure enhanced functional redundancy of the resident functional groups. Elongation measures of microalgal assemblages showed the highest variation in the microcosms that simulated the open water environment. Our results suggest that assembly of metaphytic algal communities is not a random process, instead a deterministic one driven by the niche characteristics of the complex three dimensional structure created by the stands of aquatic macrophytes.


Assuntos
Biodiversidade , Ecossistema , Lagos , Microalgas , Microalgas/crescimento & desenvolvimento , Microalgas/fisiologia , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento
5.
Harmful Algae ; 136: 102656, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876531

RESUMO

Sandusky Bay is the drowned mouth of the Sandusky River in the southwestern portion of Lake Erie. The bay is a popular recreation location and a regional source for drinking water. Like the western basin of Lake Erie, Sandusky Bay is known for being host to summer cyanobacterial harmful algal blooms (cHABs) year after year, fueled by runoff from the predominantly agricultural watershed and internal loading of legacy nutrients (primarily phosphorus). Since at least 2003, Sandusky Bay has harbored a microcystin-producing bloom of Planktothrix agardhii, a species of filamentous cyanobacteria that thrives in low light conditions. Long-term sampling (2003-2018) of Sandusky Bay revealed regular Planktothrix-dominated blooms during the summer months, but in recent years (2019-2022), 16S rRNA gene community profiling revealed that Planktothrix has largely disappeared. From 2017-2022, microcystin decreased well below the World Health Organization (WHO) guidelines. Spring TN:TP ratios increased in years following dam removal, yet there were no statistically significant shifts in other physicochemical variables, such as water temperature and water clarity. With the exception of the high bloom of Planktothrix in 2018, there was no statistical difference in chlorophyll during all other years. Concurrent with the disappearance of Planktothrix, Cyanobium spp. have become the dominant cyanobacterial group. The appearance of other potential toxigenic genera (i.e., Aphanizomenon, Dolichospermum, Cylindrospermopsis) may motivate monitoring of new toxins of concern in Sandusky Bay. Here, we document the regime shift in the cyanobacterial community and propose evidence supporting the hypothesis that the decline in the Planktothrix bloom was linked to the removal of an upstream dam on the Sandusky River.


Assuntos
Baías , Proliferação Nociva de Algas , Fitoplâncton , Planktothrix , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Baías/microbiologia , Microcistinas/metabolismo , Microcistinas/análise , Monitoramento Ambiental , Estações do Ano , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/fisiologia , Cianobactérias/genética
6.
Harmful Algae ; 136: 102619, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876523

RESUMO

In August 2018, the harmful algae species Margalefidinium polykrikoides bloomed to levels previously unobserved in the open waters of Narragansett Bay, Rhode Island, in a transient but intense bloom. Detected by an Imaging FlowCytobot providing hourly data, it is characterized by a time span of less than a week and patchiness with sub-daily oscillations in concentration. The highest concentrations are recorded at lower salinity and higher temperature, suggesting the bloom may have developed in the upper bay and was transported south. The proportion of chains increased during the height of the bloom, and many of the images contained 4-cells per chain. The development of the bloom was favored by optimal temperature and salinity conditions as well as increased nitrogen coincident with greater precipitation and river flow. The period preceding bloom formation also saw a sharp decrease in the dominating large chain-forming diatom Eucampia sp. and highly abundant Skeletonema spp., thus reducing competition over resources for the slow-growing M. polykrikoides. The height of the bloom was reached during the lowest tidal range of the month when the turbulence and water displacement were lower. This time series highlights an out-of-the-ordinary bloom's environmental and biological conditions and the importance of frequent sampling during known favorable conditions.


Assuntos
Proliferação Nociva de Algas , Fitoplâncton , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Rhode Island , Salinidade , Monitoramento Ambiental/métodos , Diatomáceas/fisiologia , Diatomáceas/crescimento & desenvolvimento , Baías , Temperatura
7.
Glob Chang Biol ; 30(6): e17348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822656

RESUMO

Global climate change intensifies the water cycle and makes freshest waters become fresher and vice-versa. But how this change impacts phytoplankton in coastal, particularly harmful algal blooms (HABs), remains poorly understood. Here, we monitored a coastal bay for a decade and found a significant correlation between salinity decline and the increase of Karenia mikimotoi blooms. To examine the physiological linkage between salinity decreases and K. mikimotoi blooms, we compare chemical, physiological and multi-omic profiles of this species in laboratory cultures under high (33) and low (25) salinities. Under low salinity, photosynthetic efficiency and capacity as well as growth rate and cellular protein content were significantly higher than that under high salinity. More strikingly, the omics data show that low salinity activated the glyoxylate shunt to bypass the decarboxylation reaction in the tricarboxylic acid cycle, hence redirecting carbon from CO2 release to biosynthesis. Furthermore, the enhanced glyoxylate cycle could promote hydrogen peroxide metabolism, consistent with the detected decrease in reactive oxygen species. These findings suggest that salinity declines can reprogram metabolism to enhance cell proliferation, thus promoting bloom formation in HAB species like K. mikimotoi, which has important ecological implications for future climate-driven salinity declines in the coastal ocean with respect to HAB outbreaks.


Assuntos
Mudança Climática , Proliferação Nociva de Algas , Salinidade , Fotossíntese , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Carbono/metabolismo , Carbono/análise
8.
J Math Biol ; 89(2): 15, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884837

RESUMO

Mycoloop is an important aquatic food web composed of phytoplankton, chytrids (one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids infect phytoplankton and fragment them for easy consumption by zooplankton. The free-living chytrid zoospores are also a food resource for zooplankton. A dynamic reaction-diffusion-advection mycoloop model is proposed to describe the Phytoplankton-chytrid-zooplankton interactions in a poorly mixed aquatic environment. We analyze the dynamics of the mycoloop model to obtain dissipativity, steady state solutions, and persistence. We rigorously derive several critical thresholds for phytoplankton or zooplankton invasion and chytrid transmission among phytoplankton. Numerical diagrams show that varying ecological factors affect the formation and breakup of the mycoloop, and zooplankton can inhibit chytrid transmission among phytoplankton. Furthermore, this study suggests that mycoloop may either control or cause phytoplankton blooms.


Assuntos
Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Zooplâncton , Fitoplâncton/fisiologia , Fitoplâncton/microbiologia , Fitoplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Zooplâncton/microbiologia , Animais , Quitridiomicetos/fisiologia , Quitridiomicetos/patogenicidade , Ecossistema , Dinâmica Populacional/estatística & dados numéricos , Simulação por Computador
9.
J Math Biol ; 89(1): 8, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801565

RESUMO

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Assuntos
Simulação por Computador , Modelos Biológicos , Oxigênio , Fitoplâncton , Zooplâncton , Animais , Oxigênio/metabolismo , Zooplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Fitoplâncton/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Oceanos e Mares , Plâncton/metabolismo , Plâncton/crescimento & desenvolvimento , Conceitos Matemáticos , Ecossistema , Água do Mar/química , Cadeia Alimentar , Anaerobiose
10.
Mar Environ Res ; 198: 106528, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696934

RESUMO

Phytoplankton is of utmost importance to the marine ecosystem and, subsequently, to the Blue Economy. This study aims to explain the reasons for variability of phytoplankton by estimating the dependency of Chlorophyll-a (Chl-a) on various limiting factors using statistics. The global oceans are classified into coherent units that display similar sensitivity to changing parameters and processes using the k-means algorithm. The resulting six clusters are based on the limiting factors (PAR, iron, or nitrate) that modulate Chl-a yield divisions of the oceans, similar to regions of different trophic statuses. The clusters range from the polar and equatorial regions with high nutrient values limited by light, to open oceanic regions in downwelling gyres limited by nutrients. Some clusters also show a high dependency on marine dissolved iron. Further, oceans are also divided into eight clusters based on the processes (stratification, upwelling, topography, and solar insolation) that impact ocean productivity. The study shows that considering temporal variations is crucial for segregating oceans into ecological zones by utilizing correlation of time-series data into classification. Our results provide valuable insights into the regulation of phytoplankton abundance and its variability, which can help in understanding the implications of climate change and other anthropogenic effects on marine biology.


Assuntos
Biomassa , Ecossistema , Oceanos e Mares , Fitoplâncton , Fitoplâncton/fisiologia , Clorofila , Clorofila A , Monitoramento Ambiental , Mudança Climática
11.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739806

RESUMO

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Assuntos
Clorofila A , Mudança Climática , Fitoplâncton , Estações do Ano , Clorofila A/metabolismo , Clorofila A/análise , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Estuários , Ecossistema , Plâncton/fisiologia , Plâncton/crescimento & desenvolvimento , Biomassa , Clorofila/metabolismo
12.
J Math Biol ; 88(6): 77, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695878

RESUMO

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Assuntos
Número Básico de Reprodução , Eutrofização , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Fitoplâncton/virologia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Número Básico de Reprodução/estatística & dados numéricos , Haptófitas/virologia , Haptófitas/crescimento & desenvolvimento , Haptófitas/fisiologia , Simulação por Computador
13.
Mar Environ Res ; 198: 106568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820828

RESUMO

The responses of Phytoplankton Size Classes (PSCs) to seasons and the distinct phases of coastal upwelling in the northern Indian Ocean is an understudied aspect. This study introduces observations from a monthly time series conducted at three cross-shore transects in the south, central, and north regions between 6 and 13°N along the southwest coast of India in the Southeastern Arabian Sea (SEAS). The data represent pre-upwelling (late April to early May), early upwelling (early to mid-June), peak upwelling (early to mid-August), late upwelling (mid to late September), and post-upwelling (late October to early November) phases. The pre-upwelling had a stratified and nitrate-depleted upper euphotic column due to the intrusion of low saline Bay of Bengal water and solar heating which resulted in a low phytoplankton biomass (chlorophyll-a) contributed by pico-PSC (av. 56.21 ± 21.23 %) followed by nano-PSC (25.25 ± 5.98 %). During the early upwelling, a dominant micro-PSC was prevalent in the coastal stations in the south transect due to the initiation of upwelling there. The peak upwelling was characterised by significant nutrient enrichment causing the dominance of larger micro- and meso-PSCs in the entire coastal region (av. 79.13 ± 39.68 %). Since the late upwelling had less nutrient enrichment, the contribution of nano- and pico-PSCs increased along the south and central transects. By the post-upwelling phase, the dominance of nano-PSC (av. 57.85 ± 11.02 %) and pico-PSC (av. 21.19 ± 11.72 %) was reestablished in the study area due to the end of the nutrient enrichment of upwelling. The subsurface chlorophyll maxima, which was found below 50 m during the pre-upwelling phase, had altered into a thick layer (30 m) and shifted to the upper water column during the upwelling phases when nutrients were higher and solar radiation was lower in the surface waters. A sequential transition of PSCs from pre-upwelling to post-upwelling was evident and it appears that the very high supply of nutrients NO3 and SiO4 (>5 µM) during different phases of upwelling favoured the dominance of larger PSCs.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Estações do Ano , Fitoplâncton/fisiologia , Oceano Índico , Água do Mar/química , Biomassa , Índia , Clorofila A/análise
14.
Glob Chang Biol ; 30(5): e17308, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38721885

RESUMO

At high latitudes, the suitable window for timing reproductive events is particularly narrow, promoting tight synchrony between trophic levels. Climate change may disrupt this synchrony due to diverging responses to temperature between, for example, the early life stages of higher trophic levels and their food resources. Evidence for this is equivocal, and the role of compensatory mechanisms is poorly understood. Here, we show how a combination of ocean warming and coastal water darkening drive long-term changes in phytoplankton spring bloom timing in Lofoten Norway, and how spawning time of Northeast Arctic cod responds in synchrony. Spring bloom timing was derived from hydrographical observations dating back to 1936, while cod spawning time was estimated from weekly fisheries catch and roe landing data since 1877. Our results suggest that land use change and freshwater run-off causing coastal water darkening has gradually delayed the spring bloom up to the late 1980s after which ocean warming has caused it to advance. The cod appear to track phytoplankton dynamics by timing gonadal development and spawning to maximize overlap between offspring hatch date and predicted resource availability. This finding emphasises the importance of land-ocean coupling for coastal ecosystem functioning, and the potential for fish to adapt through phenotypic plasticity.


Assuntos
Mudança Climática , Fitoplâncton , Estações do Ano , Fitoplâncton/fisiologia , Fitoplâncton/crescimento & desenvolvimento , Animais , Noruega , Reprodução , Gadus morhua/fisiologia , Gadus morhua/crescimento & desenvolvimento , Água do Mar , Temperatura
15.
Glob Chang Biol ; 30(5): e17316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767231

RESUMO

Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year-round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote and Synechococcus communities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote, Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. Unlike Synechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates than Synechococcus. This work both produces and demonstrates the necessity of taxon- and site-specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change.


Assuntos
Mudança Climática , Fitoplâncton , Estações do Ano , Synechococcus , Synechococcus/fisiologia , Synechococcus/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Água do Mar/química , Temperatura
16.
Sci Adv ; 10(20): eadl5904, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758795

RESUMO

Marine heatwaves are increasing in frequency and intensity as climate change progresses, especially in the highly productive Arctic regions. Although their effects on primary producers will largely determine the impacts on ecosystem services, mechanistic understanding on phytoplankton responses to these extreme events is still very limited. We experimentally exposed Arctic phytoplankton assemblages to stable warming, as well as to repeated heatwaves, and measured temporally resolved productivity, physiology, and composition. Our results show that even extreme stable warming increases productivity, while the response to heatwaves depends on the specific scenario applied and is not predictable from stable warming responses. This appears to be largely due to the underestimated impact of the cool phase following a heatwave, which can be at least as important as the warm phase for the overall response. We show that physiological and compositional adjustments to both warm and cool phases drive overall phytoplankton productivity and need to be considered mechanistically to predict overall ecosystem impacts.


Assuntos
Mudança Climática , Ecossistema , Fitoplâncton , Fitoplâncton/fisiologia , Regiões Árticas , Temperatura Alta , Aquecimento Global
17.
Math Biosci ; 372: 109202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692481

RESUMO

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (µmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where µ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.


Assuntos
Modelos Biológicos , Fitoplâncton , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Temperatura , Eutrofização , Animais , Zooplâncton/fisiologia , Zooplâncton/crescimento & desenvolvimento , Luz Solar
18.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693309

RESUMO

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Assuntos
Clorofila A , Ecossistema , Fitoplâncton , Estações do Ano , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Mar Mediterrâneo , Clorofila A/análise , Clorofila A/metabolismo , Clorofila/análise , Clorofila/metabolismo , Biomassa , Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto
19.
Mar Environ Res ; 198: 106524, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664079

RESUMO

Diatoms and dinoflagellates are two typical functional groups of phytoplankton assemblages, which play a crucial role in the structure and functioning of most marine ecosystems. To date, a novel challenge in ecology and biogeochemistry is to address the influences of environmental changes associated with climate change and human activities on the dynamics of diatoms and dinoflagellates. However, the knowledge of the key environmental factors controlling the diatom-dinoflagellate dynamics remains to be improved, particularly in the coastal ecosystems. Therefore, we conducted four cruises along the Qingdao coastline in spring, summer, autumn, and winter 2022 to explore how diatoms and dinoflagellates varied in response to regional environmental changes. The results showed that the phytoplankton communities were dominated by diatoms and dinoflagellates in terms of abundance and species diversity throughout the year in the study region. Yet, there were significant seasonal variability of diatoms and dinoflagellates across the four seasons. For example, diatom species was the most diverse during autumn, and the higher average abundance was observed in the fall and winter. In contrast, the average abundance of dinoflagellates was maximum during the summer and minimum in the autumn season. Moreover, the abundance and species ratios of diatoms/dinoflagellates (dia/dino) also showed significant seasonal variations in the region. The dia/dino abundance ratio was lowest in summer, while the dia/dino species ratio showed an increasing trend from spring to fall and a slight descending trend during winter. Based on the redundancy analysis, we revealed that diatoms and dinoflagellates responded differently to various environmental variables in different seasons, of which temperature and nutrients (especially dissolved inorganic nitrogen, DIN) had highly significant correlations with both the dia/dino abundance and species ratios. Thus, we suggested that temperature and DIN were the key factors controlling the seasonal dynamics of diatoms and dinoflagellates in the Qingdao coastal area.


Assuntos
Mudança Climática , Diatomáceas , Dinoflagellida , Estações do Ano , Dinoflagellida/fisiologia , Diatomáceas/fisiologia , China , Fitoplâncton/fisiologia , Monitoramento Ambiental , Ecossistema , Biodiversidade
20.
Mar Environ Res ; 198: 106473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676969

RESUMO

In this study, we investigated the hydrological and ecological impacts of heavy rainfall caused by the storm Rumbia and Typhoon Lekima on Laizhou Bay (LZB) through land‒sea synchronous field surveys, online remote sensors, and simulated enclosure experiments. Within two weeks of Rumbia, approximately 9% and 16% of the annual riverine total nitrogen (TN) and total phosphorus (TP) fluxes, respectively, were transported to the LZB and the proportions were 17% and 35%, respectively, for Lekima. The land use on the watersheds increased the rates of land-derived nutrient loading and altered their biogeochemical forms. Consequently, the average concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) in the LZB increased by 2.6 and 1.0 times post-Rumbia and by 3.5 and 1.3 times post-Lekima, respectively. Relatively lower salinity and temperature, sudden increases in DIN, and strengthened coastal currents stimulated the growth of highly adaptable and small diatoms, resulting in the first diatom blooms. Subsequently, a bloom of Noctiluca scintillans formed.


Assuntos
Baías , Tempestades Ciclônicas , Monitoramento Ambiental , Eutrofização , Nitrogênio , Fósforo , Fitoplâncton , China , Fitoplâncton/fisiologia , Fósforo/análise , Nitrogênio/análise , Chuva , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...