Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
Nature ; 619(7970): 551-554, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438519

RESUMO

Strong natural variability has been thought to mask possible climate-change-driven trends in phytoplankton populations from Earth-observing satellites. More than 30 years of continuous data were thought to be needed to detect a trend driven by climate change1. Here we show that climate-change trends emerge more rapidly in ocean colour (remote-sensing reflectance, Rrs), because Rrs is multivariate and some wavebands have low interannual variability. We analyse a 20-year Rrs time series from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite, and find significant trends in Rrs for 56% of the global surface ocean, mainly equatorward of 40°. The climate-change signal in Rrs emerges after 20 years in similar regions covering a similar fraction of the ocean in a state-of-the-art ecosystem model2, which suggests that our observed trends indicate shifts in ocean colour-and, by extension, in surface-ocean ecosystems-that are driven by climate change. On the whole, low-latitude oceans have become greener in the past 20 years.


Assuntos
Mudança Climática , Cor , Ecossistema , Oceanos e Mares , Fitoplâncton , Imagens de Satélites , Análise Espaço-Temporal , Mudança Climática/estatística & dados numéricos , Ecologia , Fitoplâncton/isolamento & purificação , Fitoplâncton/fisiologia , Modelos Climáticos , Fatores de Tempo
2.
mBio ; 12(6): e0297321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903046

RESUMO

The Andvord fjord in the West Antarctic Peninsula (WAP) is known for its productivity and abundant megafauna. Nevertheless, seasonal patterns of the molecular diversity and abundance of protistan community members underpinning WAP productivity remain poorly resolved. We performed spring and fall expeditions pursuing protistan diversity, abundance of photosynthetic taxa, and the connection to changing conditions. 18S rRNA amplicon sequence variant (ASV) profiles revealed diverse predatory protists spanning multiple eukaryotic supergroups, alongside enigmatic heterotrophs like the Picozoa. Among photosynthetic protists, cryptophyte contributions were notable. Analysis of plastid-derived 16S rRNA ASVs supported 18S ASV results, including a dichotomy between cryptophytes and diatom contributions previously reported in other Antarctic regions. We demonstrate that stramenopile and cryptophyte community structures have distinct attributes. Photosynthetic stramenopiles exhibit high diversity, with the polar diatom Fragilariopsis cylindrus, unidentified Chaetoceros species, and others being prominent. Conversely, ASV analyses followed by environmental full-length rRNA gene sequencing, electron microscopy, and flow cytometry revealed that a novel alga dominates the cryptophytes. Phylogenetic analyses established that TPG clade VII, as named here, is evolutionarily distinct from cultivated cryptophyte lineages. Additionally, cryptophyte cell abundance correlated with increased water temperature. Analyses of global data sets showed that clade VII dominates cryptophyte ASVs at Southern Ocean sites and appears to be endemic, whereas in the Arctic and elsewhere, Teleaulax amphioxeia and Plagioselmis prolonga dominate, although both were undetected in Antarctic waters. Collectively, our studies provide baseline data against which future change can be assessed, identify different diversification patterns between stramenopiles and cryptophytes, and highlight an evolutionarily distinct cryptophyte clade that thrives under conditions enhanced by warming. IMPORTANCE The climate-sensitive waters of the West Antarctic Peninsula (WAP), including its many fjords, are hot spots of productivity that support multiple marine mammal species. Here, we profiled protistan molecular diversity in a WAP fjord known for high productivity and found distinct spatiotemporal patterns across protistan groups. Alongside first insights to seasonal changes in community structure, we discovered a novel phytoplankton species with proliferation patterns linked to temperature shifts. We then examined evolutionary relationships between this novel lineage and other algae and their patterns in global ocean survey data. This established that Arctic and Antarctic cryptophyte communities have different species composition, with the newly identified lineage being endemic to Antarctic waters. Our research provides critical knowledge on how specific phytoplankton at the base of Antarctic food webs respond to warming, as well as information on overall diversity and community structure in this changing polar environment.


Assuntos
Biodiversidade , Fitoplâncton/isolamento & purificação , Regiões Antárticas , Criptófitas/classificação , Criptófitas/genética , Criptófitas/isolamento & purificação , Estuários , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Plastídeos/classificação , Plastídeos/genética , Estações do Ano , Estramenópilas/classificação , Estramenópilas/genética , Estramenópilas/isolamento & purificação
3.
Nature ; 597(7876): 370-375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526706

RESUMO

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Incêndios Florestais/estatística & dados numéricos , Aerossóis/análise , Aerossóis/química , Atmosfera/química , Austrália , Clorofila A/análise , Imagens de Satélites , Estações do Ano , Fuligem/análise
4.
Toxins (Basel) ; 13(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203459

RESUMO

Bulgaria, situated on the Balkan Peninsula, is rich in small and shallow, natural and man-made non-lotic waterbodies, which are threatened by blooms of Cyanoprokaryota/Cyanobacteria. Although cyanotoxins in Bulgarian surface waters are receiving increased attention, there is no information on microviridins and their producers. This paper presents results from a phytoplankton study, conducted in August 2019 in three lakes (Durankulak, Vaya, Uzungeren) and five reservoirs (Duvanli, Mandra, Poroy, Sinyata Reka, Zhrebchevo) in which a molecular-genetic analysis (PCR based on the precursor mdnA gene and subsequent translation to amino acid alignments), combined with conventional light microscopy and an HPLC analysis of marker pigments, were applied for the identification of potential microviridin producers. The results provide evidence that ten strains of the genus Microcystis, and of its most widespread species M. aeruginosa in particular, are potentially toxigenic in respect to microviridins. The mdnA sequences were obtained from all studied waterbodies and their translation to amino-acid alignments revealed the presence of five microviridin variants (types B/C, Izancya, CBJ55500.1 (Microcystis 199), and MC19, as well as a variant, which was very close to type A). This study adds to the general understanding of the microviridin occurrence, producers, and sequence diversity.


Assuntos
Lagos/microbiologia , Microcystis/metabolismo , Peptídeos Cíclicos/metabolismo , Fitoplâncton/metabolismo , Bulgária , Monitoramento Ambiental , Genes Bacterianos , Microcystis/genética , Microcystis/isolamento & purificação , Peptídeos Cíclicos/genética , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Abastecimento de Água
5.
Environ Microbiol ; 23(1): 327-339, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185973

RESUMO

Microbial taxon-taxon co-occurrences may directly or indirectly reflect the potential relationships between the members within a microbial community. However, to what extent and the specificity by which these co-occurrences are influenced by environmental factors remains unclear. In this report, we evaluated how the dynamics of microbial taxon-taxon co-occurrence is associated with the changes of environmental factors in Nan Lake at Wuhan city, China with a Modified Liquid Association method. We were able to detect more than 1000 taxon-taxon co-occurrences highly correlated with one or more environmental factors across a phytoplankton bloom using 16S rRNA gene amplicon community profiles. These co-occurrences, referred to as environment dependent co-occurrences (ED_co-occurrences), delineate a unique network in which a taxon-taxon pair exhibits specific, and potentially dynamic correlations with an environmental parameter, while the individual relative abundance of each may not. Microcystis involved ED_co-occurrences are in important topological positions in the network, suggesting relationships between the bloom dominant species and other taxa could play a role in the interplay of microbial community and environment across various bloom stages. Our results may broaden our understanding of the response of a microbial community to the environment, particularly at the level of microbe-microbe associations.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Lagos/microbiologia , China , Cianobactérias/genética , Cianobactérias/metabolismo , DNA Bacteriano/genética , Microbiota , Fitoplâncton/classificação , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , RNA Ribossômico 16S/genética
6.
Toxins (Basel) ; 12(12)2020 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33291341

RESUMO

Pectenotoxins (PTXs) are produced by Dinophysis spp., along with okadaic acid, dinophysistoxin 1, and dinophysistoxin 2. The okadaic acid group toxins cause diarrhetic shellfish poisoning (DSP), so are therefore regulated. New Zealand currently includes pectenotoxins within the DSP regulations. To determine the impact of this decision, shellfish biotoxin data collected between 2009 and 2019 were examined. They showed that 85 samples exceeded the DSP regulatory limit (0.45%) and that excluding pectenotoxins would have reduced this by 10% to 76 samples. The incidence (1.3%) and maximum concentrations of pectenotoxins (0.079 mg/kg) were also found to be low, well below the current European Food Safety Authority (EFSA) safe limit of 0.12 mg/kg. Inclusion within the DSP regulations is scientifically flawed, as pectenotoxins and okadaic acid have a different mechanism of action, meaning that their toxicities are not additive, which is the fundamental principle of grouping toxins. Furthermore, evaluation of the available toxicity data suggests that pectenotoxins have very low oral toxicity, with recent studies showing no oral toxicity in mice dosed with the PTX analogue PTX2 at 5000 µg/kg. No known human illnesses have been reported due to exposure to pectenotoxins in shellfish, a fact which combined with the toxicity data indicates that they pose negligible risk to humans. Regulatory policies should be commensurate with the level of risk, thus deregulation of PTXs ought to be considered, a stance already adopted by some countries.


Assuntos
Toxinas Marinhas/isolamento & purificação , Toxinas Marinhas/toxicidade , Intoxicação por Frutos do Mar/prevenção & controle , Frutos do Mar/análise , Frutos do Mar/toxicidade , Animais , Bivalves , Nova Zelândia , Ácido Okadáico/análogos & derivados , Ácido Okadáico/isolamento & purificação , Ácido Okadáico/toxicidade , Fitoplâncton/isolamento & purificação , Medição de Risco/métodos , Intoxicação por Frutos do Mar/etiologia
7.
Sci Rep ; 10(1): 20727, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244023

RESUMO

Size is a fundamental cellular trait that is important in determining phytoplankton physiological and ecological processes. Fossil coccospheres, the external calcite structure produced by the excretion of interlocking plates by the phytoplankton coccolithophores, can provide a rare window into cell size in the past. Coccospheres are delicate however and are therefore poorly preserved in sediment. We demonstrate a novel technique combining imaging flow cytometry and cross-polarised light (ISX+PL) to rapidly and reliably visually isolate and quantify the morphological characteristics of coccospheres from marine sediment by exploiting their unique optical and morphological properties. Imaging flow cytometry combines the morphological information provided by microscopy with high sample numbers associated with flow cytometry. High throughput imaging overcomes the constraints of labour-intensive manual microscopy and allows statistically robust analysis of morphological features and coccosphere concentration despite low coccosphere concentrations in sediments. Applying this technique to the fine-fraction of sediments, hundreds of coccospheres can be visually isolated quickly with minimal sample preparation. This approach has the potential to enable rapid processing of down-core sediment records and/or high spatial coverage from surface sediments and may prove valuable in investigating the interplay between climate change and coccolithophore physiological/ecological response.


Assuntos
Citometria de Fluxo/métodos , Sedimentos Geológicos/análise , Microscopia/métodos , Fitoplâncton/isolamento & purificação , Fitoplâncton/fisiologia , Carbonato de Cálcio/química , Fósseis
8.
Environ Microbiol ; 22(11): 4718-4731, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32881227

RESUMO

To assess the comparability between taxonomic identification methods for phytoplankton, multiple approaches were used to characterize phytoplankton community composition within the Neuse River Estuary (NRE), North Carolina. Small subunit 18S rRNA gene sequencing and accessory pigment analysis displayed similar trends, indicating chlorophytes were the dominant microalgal group during most of the year, whereas results from microscopic cell counts, biovolume analysis and metatranscriptomics suggested diatom and dinoflagellate-dominated communities. Spatial environmental gradients drove variation in taxonomic composition due to preferences for specific environmental conditions among different microalgal groups. Cryptophytes were a greater proportion of the phytoplankton community within high nutrient, fresher environments whereas diatoms and dinoflagellates dominated higher salinity sections of the estuary. This study provides a detailed examination of phytoplankton communities associated with environmental gradients present in the NRE. The high level of taxonomic resolution offered by DNA sequencing (i.e., species to sub-species level) provides a better understanding of population dynamics at the base of estuarine food webs.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Eutrofização , Fitoplâncton/classificação , North Carolina , Fitoplâncton/citologia , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Rios/química , Rios/microbiologia , Salinidade , Análise Espaço-Temporal
9.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190357, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862820

RESUMO

Increasing contributions of prymnesiophytes such as Phaeocystis pouchetii and Emiliania huxleyi to Barents Sea (BS) phytoplankton production have been suggested based on in situ observations of phytoplankton community composition, but the scattered and discontinuous nature of these records confounds simple inference of community change or its relationship to salient environmental variables. However, provided that meaningful assessments of phytoplankton community composition can be inferred based on their optical characteristics, ocean-colour records offer a potential means to develop a synthesis between sporadic in situ observations. Existing remote-sensing algorithms to retrieve phytoplankton functional types based on chlorophyll-a (chl-a) concentration or indices of pigment packaging may, however, fail to distinguish Phaeocystis from other blooms of phytoplankton with high pigment packaging, such as diatoms. We develop a novel algorithm to distinguish major phytoplankton functional types in the BS and apply it to the MODIS-Aqua ocean-colour record, to study changes in the composition of BS phytoplankton blooms in July, between 2002 and 2018, creating time series of the spatial distribution and intensity of coccolithophore, diatom and Phaeocystis blooms. We confirm a north-eastward expansion in coccolithophore bloom distribution, identified in previous studies, and suggest an inferred increase in chl-a concentrations, reported by previous researchers, may be partly explained by increasing frequencies of Phaeocystis blooms. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Haptófitas/isolamento & purificação , Oceanos e Mares , Tecnologia de Sensoriamento Remoto/métodos , Água do Mar/microbiologia , Algoritmos , Regiões Árticas , Clorofila A/metabolismo , Cor , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/isolamento & purificação , Diatomáceas/metabolismo , Ecossistema , Eutrofização , Aquecimento Global , Haptófitas/crescimento & desenvolvimento , Haptófitas/metabolismo , Modelos Biológicos , Noruega , Fenômenos Ópticos , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Fitoplâncton/metabolismo , Tecnologia de Sensoriamento Remoto/estatística & dados numéricos , Estações do Ano
10.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190356, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-32862822

RESUMO

Global warming affects primary producers in the Arctic, with potential consequences for the bacterial community composition through the consumption of microalgae-derived dissolved organic matter (DOM). To determine the degree of specificity in the use of an exudate by bacterial taxa, we used simple microalgae-bacteria model systems. We isolated 92 bacterial strains from the sea ice bottom and the water column in spring-summer in the Baffin Bay (Arctic Ocean). The isolates were grouped into 42 species belonging to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Forty strains were tested for their capacity to grow on the exudate from two Arctic diatoms. Most of the strains tested (78%) were able to grow on the exudate from the pelagic diatom Chaetoceros neogracilis, and 33% were able to use the exudate from the sea ice diatom Fragilariopsis cylindrus. 17.5% of the strains were not able to grow with any exudate, while 27.5% of the strains were able to use both types of exudates. All strains belonging to Flavobacteriia (n = 10) were able to use the DOM provided by C. neogracilis, and this exudate sustained a growth capacity of up to 100 times higher than diluted Marine Broth medium, of two Pseudomonas sp. strains and one Sulfitobacter strain. The variable bioavailability of exudates to bacterial strains highlights the potential role of microalgae in shaping the bacterial community composition. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Diatomáceas/metabolismo , Água do Mar/química , Água do Mar/microbiologia , Regiões Árticas , Bactérias/classificação , Biodegradação Ambiental , Biodiversidade , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/isolamento & purificação , Ecossistema , Aquecimento Global , Camada de Gelo/química , Camada de Gelo/microbiologia , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Microalgas/metabolismo , Modelos Biológicos , Oceanos e Mares , Compostos Orgânicos/metabolismo , Filogenia , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Fitoplâncton/metabolismo
11.
Toxins (Basel) ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825482

RESUMO

Dihydrodinophysistoxin-1 (dihydro-DTX1, (M-H)-m/z 819.5), described previously from a marine sponge but never identified as to its biological source or described in shellfish, was detected in multiple species of commercial shellfish collected from the central coast of the Gulf of Maine, USA in 2016 and in 2018 during blooms of the dinoflagellate Dinophysis norvegica. Toxin screening by protein phosphatase inhibition (PPIA) first detected the presence of diarrhetic shellfish poisoning-like bioactivity; however, confirmatory analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS) failed to detect okadaic acid (OA, (M-H)-m/z 803.5), dinophysistoxin-1 (DTX1, (M-H)-m/z 817.5), or dinophysistoxin-2 (DTX2, (M-H)-m/z 803.5) in samples collected during the bloom. Bioactivity-guided fractionation followed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) tentatively identified dihydro-DTX1 in the PPIA active fraction. LC-MS/MS measurements showed an absence of OA, DTX1, and DTX2, but confirmed the presence of dihydro-DTX1 in shellfish during blooms of D. norvegica in both years, with results correlating well with PPIA testing. Two laboratory cultures of D. norvegica isolated from the 2018 bloom were found to produce dihydro-DTX1 as the sole DSP toxin, confirming the source of this compound in shellfish. Estimated concentrations of dihydro-DTX1 were >0.16 ppm in multiple shellfish species (max. 1.1 ppm) during the blooms in 2016 and 2018. Assuming an equivalent potency and molar response to DTX1, the authority initiated precautionary shellfish harvesting closures in both years. To date, no illnesses have been associated with the presence of dihydro-DTX1 in shellfish in the Gulf of Maine region and studies are underway to determine the potency of this new toxin relative to the currently regulated DSP toxins in order to develop appropriate management guidance.


Assuntos
Dinoflagellida/isolamento & purificação , Toxinas Marinhas/análise , Ácido Okadáico/análogos & derivados , Frutos do Mar/análise , Animais , Dinoflagellida/química , Maine , Toxinas Marinhas/toxicidade , Ácido Okadáico/análise , Ácido Okadáico/toxicidade , Fitoplâncton/química , Fitoplâncton/isolamento & purificação , Frutos do Mar/toxicidade , Intoxicação por Frutos do Mar/diagnóstico , Intoxicação por Frutos do Mar/etiologia , Espectrometria de Massas em Tandem/métodos
12.
Environ Microbiol ; 22(9): 3863-3882, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32656913

RESUMO

Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 µatm) or future CO2 levels predicted for the year 2100 (900 µatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.


Assuntos
Dióxido de Carbono/metabolismo , Haptófitas/metabolismo , Ferro/metabolismo , Microbiota , Fitoplâncton/metabolismo , Dióxido de Carbono/análise , Concentração de Íons de Hidrogênio , Ferro/química , Metaboloma , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia
13.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32561583

RESUMO

Cultivated bacterioplankton representatives from diverse lineages and locations are essential for microbiology, but the large majority of taxa either remain uncultivated or lack isolates from diverse geographic locales. We paired large-scale dilution-to-extinction (DTE) cultivation with microbial community analysis and modeling to expand the phylogenetic and geographic diversity of cultivated bacterioplankton and to evaluate DTE cultivation success. Here, we report results from 17 DTE experiments totaling 7,820 individual incubations over 3 years, yielding 328 repeatably transferable isolates. Comparison of isolates to microbial community data for source waters indicated that we successfully isolated 5% of the observed bacterioplankton community throughout the study; 43% and 26% of our isolates matched operational taxonomic units and amplicon single-nucleotide variants, respectively, within the top 50 most abundant taxa. Isolates included those from previously uncultivated clades such as SAR11 LD12 and Actinobacteria acIV, as well as geographically novel members from other ecologically important groups like SAR11 subclade IIIa, SAR116, and others, providing isolates in eight putatively new genera and seven putatively new species. Using a newly developed DTE cultivation model, we evaluated taxon viability by comparing relative abundance with cultivation success. The model (i) revealed the minimum attempts required for successful isolation of taxa amenable to growth on our media and (ii) identified possible subpopulation viability variation in abundant taxa such as SAR11 that likely impacts cultivation success. By incorporating viability in experimental design, we can now statistically constrain the effort necessary for successful cultivation of specific taxa on a defined medium.IMPORTANCE Even before the coining of the term "great plate count anomaly" in the 1980s, scientists had noted the discrepancy between the number of microorganisms observed under the microscope and the number of colonies that grew on traditional agar media. New cultivation approaches have reduced this disparity, resulting in the isolation of some of the "most wanted" bacterial lineages. Nevertheless, the vast majority of microorganisms remain uncultured, hampering progress toward answering fundamental biological questions about many important microorganisms. Furthermore, few studies have evaluated the underlying factors influencing cultivation success, limiting our ability to improve cultivation efficacy. Our work details the use of dilution-to-extinction (DTE) cultivation to expand the phylogenetic and geographic diversity of available axenic cultures. We also provide a new model of the DTE approach that uses cultivation results and natural abundance information to predict taxon-specific viability and iteratively constrain DTE experimental design to improve cultivation success.


Assuntos
Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Biodiversidade , Fitoplâncton/isolamento & purificação , Modelos Biológicos
14.
Toxins (Basel) ; 12(4)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316304

RESUMO

The contribution of picocyanobacteria to summer phytoplankton blooms, accompanied by an ecological crisis, is a new phenomenon in Europe. This issue requires careful investigation. We studied allelopathic activity of freshwater picocyanobacterium Synechococcus sp. on phytoplankton assemblages from three freshwater lakes. In this study, the allelopathic activity of the Synechococcus sp. on the total abundance, biomass, as well as structure of the phytoplankton assemblages were investigated. Our results indicated that addition of exudates obtained from Synechococcus sp. affected the number of cells and biomass of the phytoplankton communities; the degree of inhibition or stimulation was different for each species, causing a change in the phytoplankton abundance and dominance during the experiment. We observed that some group of organisms (especially cyanobacteria from the genus Aphanothece, Limnothrix, Microcystis, and Synechococcus) showed tolerance for allelopathic compounds produced and released by Synechococcus sp. It is also worth noting that in some samples, Bacillariophyceae (e.g., Amphora pediculus, Navicula pygmaea, and Nitzschia paleacea) were completely eliminated in the experimental treatments, while present in the controls. This work demonstrated that the allelopathic activity exhibited by the Synechococcus sp. is probably one of the major competitive strategies affecting some of the coexisting phytoplankton species in freshwater ecosystems. To our best knowledge this is the first report of the allelopathic activity of Synechococcus sp. in the freshwater reservoirs, and one of the few published works showing allelopathic properties of freshwater picocyanobacteria on coexisting phytoplankton species.


Assuntos
Alelopatia , Lagos/microbiologia , Fitoplâncton/isolamento & purificação , Synechococcus/isolamento & purificação , Biomassa , Fitoplâncton/fisiologia , Polônia , Synechococcus/fisiologia
15.
ISME J ; 14(6): 1451-1462, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32127656

RESUMO

Theory predicts that trade-offs, quantifying costs of functional trait adjustments, crucially affect community trait adaptation to altered environmental conditions, but empirical verification is scarce. We evaluated trait dynamics (antipredator defense, maximum growth rate, and phosphate affinity) of a lake phytoplankton community in a seasonally changing environment, using literature trait data and 21 years of species-resolved high-frequency biomass measurements. The trait data indicated a concave defense-growth trade-off, promoting fast-growing species with intermediate defense. With seasonally increasing grazing pressure, the community shifted toward higher defense levels at the cost of lower growth rates along the trade-off curve, while phosphate affinity explained some deviations from it. We discuss how low fitness differences of species, inferred from model simulations, in concert with stabilizing mechanisms, e.g., arising from further trait dimensions, may lead to the observed phytoplankton diversity. In conclusion, quantifying trade-offs is key for predictions of community trait adaptation and biodiversity under environmental change.


Assuntos
Lagos/química , Fitoplâncton/crescimento & desenvolvimento , Adaptação Fisiológica , Biodiversidade , Biomassa , Cinética , Fenótipo , Fitoplâncton/química , Fitoplâncton/classificação , Fitoplâncton/isolamento & purificação , Estações do Ano
16.
Opt Express ; 28(1): 558-569, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118981

RESUMO

Qiandao Lake is located in the northern edge of subtropics, and its water body is thermally stratified in summer. It is of great scientific significance to study the vertical physical and chemical indexes and phytoplankton characteristics of the Qiandao Lake to reveal the aquatic ecosystem structure of the thermally stratified lake. Conventional observation uses in-situ profile instruments, which is time consuming and labor intensive. In recent years, lidar has shown increasing oceanic applications; however, it has not yet been extensively applied in inland water. There are no studies using lidar for detecting subsurface plankton layer in Qiandao Lake. In this study, we investigated the applicability of this technology for identifying subsurface plankton layer. A simple and fast phytoplankton layer detection method was introduced. The lidar-detected layer was found to well correspond with that of the in-situ measured subsurface chlorophyll maximum layer (SCML) and phycocyanin maximum layer. Primary results show that lidar and our detection method are effective for subsurface phytoplankton layer detection. They can serve as a good monitoring tool for studying inland water stratification.


Assuntos
Lagos , Luz , Fitoplâncton/isolamento & purificação , Navios , Geografia , Reprodutibilidade dos Testes , Propriedades de Superfície
17.
Ecotoxicol Environ Saf ; 191: 110226, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981955

RESUMO

Since 2006, harmful dinoflagellate blooms of Cochlodinium geminatum have infrequently occurred in the Pearl River Estuary, South China. During late October to early November in 2018, C. geminatum blooms occurred again in the region. To investigate the blooming mechanism in certain temporal conditions, we analysed the changes in the environmental parameters and phytoplankton community structure during and after the bloom. The results indicated that the water temperature and salinity had large impacts on the bloom. During the C. geminatum bloom, the phytoplankton community structure changed and the number of dominant species decreased. After the bloom, the species number and abundance of diatoms increased, as the species diversity was recovering. Retinal was detected in the field samples and cultured C. geminatum. It has been demonstrated to exist in some algae species (e.g. Cyanophyta, Chlorophyta, Bacillariophyta, and Euglenophyt), and our results indicates that such teratogens also exist in dinoflagellates. The highest concentration of retinal was detected during the bloom. This result indicates that the retinal content may accumulate during a bloom. Retinal has been demonstrated to be a teratogenic agent and may therefore present a potential risk to aquatic organisms during a bloom episode. This research provided more comprehensive information concerning the ecological influences of C. geminatum blooms.


Assuntos
Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Estuários , Retinoides/análise , Teratogênicos/análise , China , Clorófitas/química , Diatomáceas/isolamento & purificação , Fenômenos Ecológicos e Ambientais , Fitoplâncton/isolamento & purificação , Rios , Salinidade
18.
PLoS One ; 14(12): e0225551, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790456

RESUMO

The community structure and assemblages of marine benthic organisms were investigated in coastal areas near the Jang Bogo Antarctic Research Station in Terra Nova Bay during the 2012-2018 summer seasons. We also examined the recovery pattern of marine benthic organisms following disturbance due to the construction of the Jang Bogo Station. A total of 26 taxa were identified in the study area during the experimental period. Species number and diversity indices (richness, evenness, and diversity) were relatively low compared to data previously reported from Terra Nova Bay. Sphaerotylus antarcticus, Clavularia frankliniana, Hydractinia sp., Iridaea cordata, Fragilariopsis spp., Alcyonium antarcticum, and Metalaeospira pixelli were the dominant species in this area. Of these, the diatom Fragilariopsis spp. were the most abundant species, indicating their key role in maintaining the marine benthic community and controlling biogeochemical cycling. During the construction of the Jang Bogo Station, sediment coverage increased and diatoms declined due to the release of sediment into the coastal area. In February 2014, one month after the disturbance due to cyclone, the diatom coverage increased dramatically and thereby species number, richness index, and diversity index steadily rose from 2015 to 2018. However, non-metric multidimensional scaling ordination analysis of species similarities among sampling times showed that community structure had not completely recovered by 2018. Thus, long-term monitoring is required to elucidate the post-disturbance settlement mechanisms of marine benthic organisms at the study area in Terra Nova Bay.


Assuntos
Baías/microbiologia , Diatomáceas/isolamento & purificação , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia , Regiões Antárticas , Biota , Monitorização de Parâmetros Ecológicos/tendências , Sedimentos Geológicos/microbiologia , Estações do Ano
19.
ISME J ; 13(10): 2536-2550, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31227817

RESUMO

Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fitoplâncton/metabolismo , Enxofre/metabolismo , Alphaproteobacteria/genética , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Diatomáceas/metabolismo , Processos Heterotróficos , Oceanos e Mares , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia
20.
J Microbiol ; 57(4): 252-262, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30929228

RESUMO

Phytoplankton and bacterioplankton play a key role in carbon cycling of aquatic ecosystems. In this study, we found that co-occurrence patterns between different types of phytoplankton, bacterioplankton, and environmental parameters in Lake Baikal during spring were different over the course of three consecutive years. The composition of phytoplankton and bacterial communities was investigated using microscopy and 16S rRNA gene pyrosequencing, respectively. Non-metric multidimensional scaling (NMDS) revealed a relationship between the structure of phytoplankton and bacterial communities and temperature, location, and sampling year. Associations of bacteria with diatoms, green microalgae, chrysophyte, and cryptophyte were identified using microscopy. Cluster analysis revealed similar correlation patterns between phytoplankton abundance, number of attached bacteria, ratio of bacteria per phytoplankton cell and environmental parameters. Positive and negative correlations between different species of phytoplankton, heterotrophic bacteria and environmental parameters may indicate mutualistic or competitive relationships between microorganisms and their preferences to the environment.


Assuntos
Organismos Aquáticos/isolamento & purificação , Bactérias/isolamento & purificação , Lagos/microbiologia , Lagos/parasitologia , Fitoplâncton/isolamento & purificação , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Bactérias/classificação , Bactérias/genética , Ecossistema , Lagos/química , Filogenia , Fitoplâncton/classificação , Fitoplâncton/genética , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...