Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 310
Filtrar
1.
J Pharm Biomed Anal ; 245: 116186, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692216

RESUMO

The inflorescences of the Mexican gordolobo are used as a folk medicine to treat various respiratory diseases. Currently, the botanical species that bear the name Mexican gordolobo belong to the genera Gnaphalium and Pseudognaphalium. Despite a long history of traditional use, most Mexican gordolobo species have never been fully chemically characterized, and the range of constituents in the species has not been comprehensively reported. To establish a quality control and chemical characterization method, a total of 49 samples belonging to 18 species of Pseudognaphalium and four species of Gnaphalium were studied. Nine flavones were quantified using a UPLC-PDA method. The method was validated in terms of linearity (R2 > 0.99), precision (intra- and inter-day: 0.1-3.9%), accuracy (96-103%), detection limit (10 ng/mL), limit of quantification (25 ng/mL) and robustness. 3-Methylquercetin, luteolin, quercetin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, apigenin and gnaphaliin A were present at relatively high levels in most of the samples analyzed. The samples of P. oxyphyllum and P. liebmannii showed the highest content of the 9 compounds analyzed. Whereas the samples of the 5 species of Gnaphalium showed the lowest levels, including non-detectable, of the 9 compounds quantified. This marks an important difference with Pseudognaphalium species. Furthermore, using UHPLC-ESI-QToF data with targeted and non-targeted approaches, 57 compounds, were identified in Mexican gordolobo samples. Flavonoids were the main group of compounds found in Mexican gordolobo.


Assuntos
Flavonas , Gnaphalium , Extratos Vegetais , Cromatografia Líquida de Alta Pressão/métodos , Flavonas/análise , Flavonas/química , Gnaphalium/química , Extratos Vegetais/química , Extratos Vegetais/análise , Limite de Detecção , Reprodutibilidade dos Testes , México , Controle de Qualidade , Medicina Tradicional/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodos
2.
J Sep Sci ; 46(22): e2300570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37759397

RESUMO

Polymethoxyflavones were a unique class of natural and safe flavonoids containing two or more methoxy groups, which were also the most abundant edible part in Citrus peel. The optimum condition in the process of selective extraction of polymethoxylated flavones from Citrus peel by matrix solid-phase dispersion (MSPD) was as follows: SBA-15 as adsorbent, ethyl acetate as eluent, the mass ratio of adsorbent to sample 1:1, and the mixture of sample and adsorbent was ground for 3 min. Twelve antioxidants were successfully screened by micro-fractionation bioactivity evaluation assay, in which four of them were flavonoid glycosides, seven of them were polymethoxylated flavones, and one was phenylpropanoid. 1-sinapoly-ß-D-glucopyranoside (1) was reported for the first time in Citrus peel. And antioxidant capacity of 1-sinapoly-ß-D-glucopyranoside, 5, 7, 8, 3', 4', 5'-hexamethoxyflavone (6), hexamethoxyflavone (11), and 5, 6, 7, 4'-tetramethoxyflavone (7) were reported for the first time. Nobiletin (compound 8), 3, 5, 6, 7, 8, 3', 4'-heptamethoxyflavone (9) and tangeretin (10) were isolated and purified by countercurrent chromatography combined with preparative liquid chromatography. Antioxidant activity evaluation indicated that the three isolated polymethoxylated flavones owned similar antioxidant activity. This study indicated that MSPD combined with micro-fractionation bioactive evaluation was efficient in screening bioactive compounds for rapid extraction and effective pinpointing bioactive substances in natural products.


Assuntos
Citrus , Flavonas , Citrus/química , Antioxidantes/farmacologia , Flavonas/análise , Flavonoides/análise , Cromatografia Líquida , Extratos Vegetais/farmacologia , Extratos Vegetais/química
3.
Molecules ; 28(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298768

RESUMO

In traditional oriental medicine, carrots (Daucus carota L.) are considered effective medicinal herbs; however, the use of D. carota leaves (DCL) as therapeutic agents has not been explored in depth. Therefore, we aimed to demonstrate the value of DCL, generally treated as waste while developing plants for wide industrial availability. Six flavone glycosides were isolated and identified from DCL, and their constituents were identified and quantitated using an NMR and HPLC/UV method, which was optimized and validated. The structure of chrysoeriol-7-rutinoside from DCL was elucidated for the first time. The method exhibited adequate relative standard deviation (<1.89%) and recovery (94.89-105.97%). The deglycosylation of DCL flavone glycosides by Viscozyme L and Pectinex was assessed. Upon converting the reaction contents to percentages, the luteolin, apigenin, and chrysoeriol groups showed values of 85.8, 33.1, and 88.7%, respectively. The enzyme-treated DCL had a higher inhibitory effect on TNF-α and IL-2 expression than that of the carrot roots or carrot leaves without enzyme treatments. These results highlight the importance of carrot leaves and could be used as baseline standardization data for commercial development.


Assuntos
Daucus carota , Flavonas , Glicosídeos/metabolismo , Daucus carota/química , Flavonas/análise , Folhas de Planta/química , Anti-Inflamatórios/metabolismo
4.
Molecules ; 28(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298879

RESUMO

Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat-in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.


Assuntos
Flavanonas , Flavonas , Lamiaceae , Cromatografia Líquida de Alta Pressão/métodos , Polifenóis/química , Flavonas/análise , Extratos Vegetais/química , Flavonóis/análise , Espectrometria de Massas em Tandem , Flavanonas/análise , Lamiaceae/química
5.
J Chromatogr Sci ; 61(9): 885-891, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37009711

RESUMO

In view of the adsorption performance of polyvinylpolypyrrolidone (PVPP) to flavones, the adsorption and purification of bamboo leaf flavones (BLFs) by PVPP were studied. The flavones solution was adsorbed by PVPP column chromatography, and then establish a relatively effective method for elution and purification of flavones from bamboo leaf. The optimal separation conditions of column chromatography were determined as the following: the feed concentration of 10 mg/mL, the ratio of diameter to height of 1:1.9, eluents of deionized water (21 mL) and 70% ethanol (800 mL) with a flow rate of 0.33 mL/min. The purity of flavones obtained from ethanol eluents (80-480 mL) was 96.2%. This showed that the PVPP had an ideal adsorption and purification effect on BLFs.


Assuntos
Flavonas , Flavonas/análise , Adsorção , Folhas de Planta/química , Etanol/química
6.
Nat Prod Res ; 37(2): 305-312, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34498962

RESUMO

A new muurolane-type sesquiterpene, a new flavone arabinofuranoside derivative, and other five known flavone arabinofuranoside derivatives were isolated from the leaves of Fissistigma bicolor (Annonaceae family). Their chemical structures were determined to be (1S,6R,7S)-muurola-4,10(14)-diene-15-ol (1), quercetin 3-O-ß-D-apiofuranosyl-(1→2)-α-L-arabinofuranoside (2), quercetin 3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinofuranoside (3), quercetin 3-O-α-L-arabinofuranoside (4), kaempferol 3-O-ß-D-apiofuranosyl-(1→2)-α-L-arabinofuranoside (5), kaempferol 3-O-α-L-rhamnopyranosyl-(1→2)-α-L-arabinofuranoside (6), and kaempferol 3-O-α-L-arabinofuranoside (7) by analyses of HR-ESI-MS and NMR spectral data. Compounds 4 and 7 containing monosaccharide, arabinofuranoside, potentially inhibited NO productions in LPS activated RAW264.7 cells (IC50 13.4 ± 0.5 and 12.6 ± 0.4 µM) in compared to disaccharide derivatives (IC50 ranging from 58.9 ± 3.3 to 65.6 ± 3.8 µM).


Assuntos
Annonaceae , Flavonas , Quempferóis/análise , Quercetina , Annonaceae/química , Flavonas/farmacologia , Flavonas/análise , Glicosídeos/química , Folhas de Planta/química , Estrutura Molecular
7.
Nat Prod Res ; 37(14): 2415-2420, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35142584

RESUMO

The ethanolic extract from leaves of Rauia resinosa, Rutaceae, provided a new flavone, 5-hydroxy-5',6,7-trimethoxy-3',4'-methylenedioxyflavone (1), in addition to four known compounds: 3',4',5,5',7-pentamethoxyflavone (2), 5,7,8-trimethoxy-3'4'-methylenedioxyflavone (3), 3',4',5,7,8-pentamethoxyflavone (4) and ß-sitosterol (5). The structures of all compounds were established on the basis of spectroscopic methods, mainly 1D and 2D NMR, UPLC-DAD-MS and UPLC-ESI-MS/MS, involving comparison with literature data. Cytotoxicity of leaves and stems extracts, their fractions and compounds (2), (3), (4) and (5) were evaluated against T24 (bladder carcinoma), TOV-21-G (ovarian adenocarcinoma) and HepG2 (liver carcinoma) cell lines.


Assuntos
Carcinoma , Flavonas , Rutaceae , Humanos , Espectrometria de Massas em Tandem , Flavonas/farmacologia , Flavonas/análise , Rutaceae/química , Extratos Vegetais/química , Folhas de Planta/química
8.
Molecules ; 27(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144777

RESUMO

Plant extracts are complex mixtures that are difficult to characterize, and mass spectrometry is one of the main techniques currently used in dereplication processes. Fridericia chica is a species with medicinal uses in Latin American countries, used in the treatment of inflammatory and infectious diseases. Extracts of this plant species are characterized by the presence of anthocyanidins. In this study, using high-resolution mass spectrometry coupled with liquid chromatography, it was possible to determine the molecular formula of thirty-nine flavonoids. Fragmentation analysis, ultraviolet spectrum and nuclear magnetic resonance data allowed the partial characterization of the structures of these compounds. The spectral dataset allowed the identification of a series of flavones in addition to the desoxyanthocyanidins common in extracts of the species. The occurrence of some of the proposed structures is uncommon in extracts of species of the Bignoniaceae family, and they are reported for the first time in the extract of this species. Quantitative analyses of total flavonoids confirmed the high content of these constituents in the species, with 4.09 ± 0.34 mg/g of dry plant material. The extract under study showed low in vitro cytotoxicity with CC50 ≥ 296.7 ± 1.4 µg/mL for Vero, LLC-MK2 and MRC-5 cell lines. In antiviral activity assays, inhibition of the cytopathic effects of Dengue, Zika and Mayaro viruses was observed, with EC50 values ranging between 30.1 and 40.9 µg/mL. The best result was observed against the Mayaro virus, with an EC50 of 30.1 µg/mL.


Assuntos
Bignoniaceae , Flavonas , Infecção por Zika virus , Zika virus , Antocianinas/análise , Antivirais/análise , Antivirais/farmacologia , Bignoniaceae/química , Flavonas/análise , Flavonas/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Espectrometria de Massas , Extratos Vegetais/química , Folhas de Planta/química
9.
J Ethnopharmacol ; 299: 115510, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35772602

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Costus spiralis (Jacq.). Roscoe (Costaceae) is traditionally used in Brazil for the treatment of kidney diseases such as pyelonephritis, urethra inflammation, kidney stones, and inflammatory conditions. There are reports of its use by Brazilian Indians since the 17th century when it was known as "pacocatinga." Currently, the use of the Costus species in Brazil is widespread, which was evidenced by the inclusion of the genus in the Brazilian National List of Medicinal Plants of Interest to the Unified Health System (RENISUS). AIM OF THE STUDY: This study aimed to confirm the ethnopharmacological use of Costus spiralis in the treatment of kidney diseases, toxicity study using animal models, and the phytochemistry of the species. MATERIALS AND METHODS: The chemical profile of Costus spiralis leaves extract (CSLE) was obtained for the hydroethanolic extract by ultra-performance liquid chromatography coupled to a mass spectrometer and ultraviolet detector with diode array (UPLC-UV/DAD-ESI-MS). The acute oral toxicity of the extract was predicted using the neutral red uptake cytotoxicity assay. Wistar rats were used in a model in vivo for confirmation of acute oral toxicity (2000 mg/kg p.o. for 14 days.) and determination of the effect on a cisplatin-induced nephrotoxicity model. RESULTS: The analysis by UPLC-UV/DAD-ESI-MS showed that the chemical composition of the extract is mostly di-glycosylated flavones of apigenin. In the extract were identified the flavones vicenin II and schaftoside. The quantification of total flavonoids by spectrometry showed 0.880%. CSLE proved to be safe for acute oral administration (2000 mg/kg) with an IC50 value of 222.9 µg/mL and predicted oral toxic dose of 523.82 µg/mL in a neutral red uptake cytotoxicity assay. The absence of death allows the classification of the extract in class 5 according to OECD 423 guidelines and therefore it can be considered as a high acute safety product, which is highly relevant, considering the wide popular use of the species. In the cisplatin-induced nephrotoxicity model, C. spiralis extract (5, 15, and 30 mg/kg) significantly improved renal function, reversing almost completely the effects on plasma creatinine levels and creatinine clearance (p < 0.001). CONCLUSIONS: This study demonstrates that oral administration of Costus spiralis extract leaves is safe and effective in restoring the renal function in rats in a cisplatin-induced nephrotoxicity. It is suggested that the observed activity is related to the flavonoids present. This hypothesis should be confirmed, and the participation of other secondary metabolites should be investigated in the future.


Assuntos
Costus , Flavonas , Animais , Apigenina , Cisplatino/toxicidade , Costus/química , Creatinina , Flavonas/análise , Flavonoides/análise , Humanos , Rim , Vermelho Neutro/análise , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos , Ratos Wistar
10.
J Chromatogr A ; 1674: 463149, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35597199

RESUMO

In this study, full scan (FS)-parent ions list (PIL)-higher energy collision induced dissociation (HCD)-MS/MS (FS-PIL-HCD-MS/MS) was used to acquire the chemical profile of flavonoids in Scutellaria barbata. Mass defect filtering (MDF) induced subtype classification and diagnostic product ions (DPIs) dominated structural confirmation were integrated into an effective strategy for the systematic screening and identification of the flavonoids. An in-house flavonoid MS database based on molecular design was established to construct a modified triangle MDF algorithm for progressive screening and subtype classification. The obtained results demonstrated that the modified MDF was capable of simplifying the workload in formula editing and subsequent screening process, and distinguishing different subtypes. The fragmentation behaviors of eleven reference standards were evaluated to obtain the MS2 fragmentation pathway and DPIs which can provide a criterion to eliminate false-positive results and judge the target flavonoids with the exact number and position of substituents for the first time. Structure confirmation was characterized by comparing with the reference substance, searching the database, and analyzing DPIs. To distinguish some isomers, ClogP (the calculated lipophilicity parameter) was adopted. As a result, 127 target flavonoids, including 30 flavone/flavonol aglycones, 10 flavanone/flavanonol aglycones, 49 flavone/flavonol monoglycosides, 16 flavanone/flavanonol monoglycosides, 21 flavone/flavonol diglycosides and 1 flavanone/flavanonol diglycoside, were ultimately identified or tentatively characterized based on the MS fragmentation pathway and DPIs analysis. This study provides a novel MDF method with improved subtype classification and develops a novel strategy for the progressive screening, subtype classification and systematic characterization of complex components in herbal medicines.


Assuntos
Flavanonas , Flavonas , Scutellaria , Cromatografia Líquida de Alta Pressão/métodos , Flavanonas/análise , Flavonas/análise , Flavonoides/análise , Flavonóis/análise , Íons/química , Espectrometria de Massas em Tandem/métodos
11.
Food Chem ; 377: 131901, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34999455

RESUMO

Glycosylated flavones (GFs) are important components of green tea and have various structures and isomers. The annotation of GFs' chemical structures is challenging. Ultrahigh-performance liquid chromatography-high resolution mass spectrometry can provide informative mass ions for GF annotation. However, distinguishing the mass features of GFs from those of thousands of ions is difficult. In this study, integrated ion-filtering strategies for O- and C-glycosyl flavones were constructed, and the mass-fragmentation characteristics were summarized from GF standards. Ultimately, 29 GFs with different types of aglycones and glycosides, connection modes, and locations were annotated. According to principal component analysis and t-test results, significant differences were observed in the contents of 16 components in the two kinds of tea. Among them, the contents of 11 GFs in autumn teas were significantly higher than those in spring teas. This study provided an efficient strategy for isomer annotation in food analysis.


Assuntos
Flavonas , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Flavonas/análise , Íons , Chá
12.
Nat Prod Res ; 36(15): 3850-3857, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33648400

RESUMO

In an attempt to find species specific markers, a phenoxychromone (1) and eight isoflavonoids including six isoflavans (2-7) and two isoflavanones (8 and 9) were isolated from the root of Glycyrrhiza uralensis. Among the isolated phenolic compounds, glycyurelone (1), glycyurelvanins A and B (2 and 3) were found to be undescribed while others, (-)-vestitol (4), conferol A (5), glyasperin C (6), glyasperin D (7), (-)-licoisoflavanone (8), and (-)-3'-(γ,γ-dimethylallyl)kievitone (9) were previously reported. All compounds except 4 and 5 were prenylated and majority of these possess isoflavan scaffold with highly conserved stereo specificity at C-3 center. Structure elucidation was mainly based on extensive NMR, ECD and mass spectral data analysis.


Assuntos
Flavonas , Glycyrrhiza uralensis , Glycyrrhiza , Flavonas/análise , Glycyrrhiza/química , Glycyrrhiza uralensis/química , Fenóis/análise , Extratos Vegetais/química , Raízes de Plantas/química
13.
Nat Prod Res ; 36(14): 3644-3650, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33494636

RESUMO

A new acridone alkaloid, reticarcidone A (1), decorated with an oxygenated isopentenyl group between C-1 and C-2, was isolated from the leaves of Citrus reticulata Blanco, together with nine known acridone alkaloids (2-10) and fifteen flavones compounds (11-25). The structure of those compounds were confirmed by analysis of comprehensive 1D and 2D NMR, and MS data. Reticarcidone A (1) was the first pyrano[2,3-a]acridone isolated from the genus Citrus. Some of these compounds showed moderated cytotoxicity against the five human tumor cell lines MCF-7, SMMC-7721, HL-60, A549 and SW480.


Assuntos
Alcaloides , Citrus , Flavonas , Acridonas/química , Acridonas/farmacologia , Alcaloides/química , Linhagem Celular Tumoral , Citrus/química , Flavonas/análise , Flavonas/farmacologia , Humanos , Estrutura Molecular , Folhas de Planta/química
14.
Nat Prod Rep ; 38(11): 1967-1993, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34821250

RESUMO

Covering: up to the end of 2020Recently introduced computational metabolome mining tools have started to positively impact the chemical and biological interpretation of untargeted metabolomics analyses. We believe that these current advances make it possible to start decomposing complex metabolite mixtures into substructure and chemical class information, thereby supporting pivotal tasks in metabolomics analysis including metabolite annotation, the comparison of metabolic profiles, and network analyses. In this review, we highlight and explain key tools and emerging strategies covering 2015 up to the end of 2020. The majority of these tools aim at processing and analyzing liquid chromatography coupled to mass spectrometry fragmentation data. We start with defining what substructures are, how they relate to molecular fingerprints, and how recognizing them helps to decompose complex mixtures. We continue with chemical classes that are based on the presence or absence of particular molecular scaffolds and/or functional groups and are thus intrinsically related to substructures. We discuss novel tools to mine substructures, annotate chemical compound classes, and create mass spectral networks from metabolomics data and demonstrate them using two case studies. We also review and speculate about the opportunities that NMR spectroscopy-based metabolome mining of complex metabolite mixtures offers to discover substructures and chemical classes. Finally, we will describe the main benefits and limitations of the current tools and strategies that rely on them, and our vision on how this exciting field can develop toward repository-scale-sized metabolomics analyses. Complementary sources of structural information from genomics analyses and well-curated taxonomic records are also discussed. Many research fields such as natural products discovery, pharmacokinetic and drug metabolism studies, and environmental metabolomics increasingly rely on untargeted metabolomics to gain biochemical and biological insights. The here described technical advances will benefit all those metabolomics disciplines by transforming spectral data into knowledge that can answer biological questions.


Assuntos
Misturas Complexas/química , Metabolômica/métodos , Cromatografia Líquida , Flavonas/análise , Espectroscopia de Ressonância Magnética , Sideritis/química , Espectrometria de Massas em Tandem
15.
Bol. latinoam. Caribe plantas med. aromát ; 20(6): 598-610, nov. 2021. tab
Artigo em Inglês | LILACS | ID: biblio-1369781

RESUMO

Lophophytum species are holoparasites that grow on tree roots. The objectives of the work were to explore the chemical composition of the tubers of two Lophophytum species and to analyze the antioxidant, anti-inflammatory and antilithiatic activity of their extracts using in vitro methods. The chemical composition was determined by histochemical, phytochemical and TLC tests. In addition, the profile of phenolic compounds was determined by HPLC-MS. The presence of secondary metabolites of recognized activity was demonstrated. The results of the HPLC-MS/MS allowed the tentative identification of catechin, luteolin and glycosides of eriodictyol, naringenin and luteolin in the extract of Lophophytum leandriand eriodictyol, naringenin, luteolin and their glycosylated derivatives in Lophophytum mirabile. The extracts showed promising antioxidant (DPPH, ABTS and ß-carotene-linoleic acid), anti-inflammatory (inhibition of 5-LOX) and anti-urolytic (by bioautographic TLC) activity. It is noteworthy that these are the first results of the phytochemical composition and biological activity of L. mirabile. However, in vivo studies are required to corroborate these activities.


Las especies de Lophophytumson holoparásitas que crecen en raíces de árboles. Los objetivos del trabajo fueron explorar la composición química del túber de dos especies de Lophophytum y analizar la actividad antioxidante, antiinflamatoria y antilitiásica de sus extractos usando métodos in vitro. La composición química se determinó mediante pruebas histoquímicas, fitoquímicas y por TLC. Además, se determinó el perfil de compuestos fenólicos por HPLC-MS/MS. Se demostró presencia de metabolitos secundarios de reconocida actividad. Los resultados del HPLC-MS/MS permitieron identificar tentativamente catequina, luteolina y glucósidos de eriodictiol, naringenina y luteolina en el extracto de Lophophytum leandriy eriodictiol, naringenina, luteolina y sus derivados glicosilados en Lophophytum mirabile. Los extractos mostraron prometedora actividad antioxidante (DPPH, ABTS y ß-caroteno-ácido linoleico), antiinflammatoria (inhibición de la 5-LOX) y antiurolitiásica (por TLC bioautográfica). Es de destacar que estos son los primeros resultados de composición fitoquímica y actividad biológica de L. mirabile. Sin embargo, se requieren estudios in vivo para corroborar dichas actividades.


Assuntos
Extratos Vegetais/farmacologia , Extratos Vegetais/química , Balanophoraceae/química , Cromatografia Líquida de Alta Pressão , Flavanonas/análise , Flavonas/análise , Compostos Fenólicos/análise , Espectrometria de Massas em Tandem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química
16.
Mediators Inflamm ; 2021: 5265444, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594156

RESUMO

BACKGROUND: Gastrointestinal motility disorder is a common gastrointestinal disease, which seriously affects life quality. Traditional Chinese medicine (TCM) has been widely used as an alternative therapy for gastrointestinal motility disorder. Acacetin is a natural flavonoid compound that has antioxidant and anti-inflammatory, antidepressant, and anticancer properties. However, the efficacy of Acacetin in the treatment of gastrointestinal motility disorders has not been studied. Our aim was to investigate the mechanism of Acacetin-alleviated gastrointestinal motility disorder and its efficacy based on network pharmacology. METHODS: We performed network pharmacology to predict the active components, match Weishu decoction (WSD) targets in gastrointestinal motility disorders, and investigate its potential pharmacological mechanisms. We performed the GO and KEGG enrichment analysis. In vivo, we investigated the effects of Acacetin in the gastrointestinal motility disorder model. RESULTS: Based on network pharmacological method, the key active ingredient of WSD was identified as Acacetin, and the enrichment signaling pathway was the PI3K-AKT signaling pathway. Acacetin and Mosapride accelerated gastric emptying time, reduced gastric remnant rate, and increased small intestinal propulsion rate. The levels of GAS and MTL were increased after using Acacetin. These results indicated that Acacetin could improve gastrointestinal motility disorders. Among them, high-dose Acacetin showed a better effect. Acacetin could regulate protein and lipid metabolism in mice with gastrointestinal motility disorder. Furthermore, Acacetin could modulate gastrointestinal inflammation and apoptosis. The detection of the PI3K-AKT signaling pathway-related proteins showed that Acacetin improved gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway. CONCLUSION: The key ingredient Acacetin in WSD could alleviate gastrointestinal motility disorder by inhibiting the activation of the PI3K-AKT signaling pathway based on network pharmacology analysis. The efficacy and safety of Acacetin treatment provide strong experimental support for the clinical treatment of gastrointestinal motility disorder.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Flavonas/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Farmacologia em Rede/métodos , Animais , Apoptose/efeitos dos fármacos , Medicamentos de Ervas Chinesas/análise , Flavonas/análise , Gastroenteropatias/tratamento farmacológico , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos
17.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638940

RESUMO

Several phytochemical-containing herbal extracts are increasingly marketed as health-promoting products. In particular, chamomile (Matricaria recutita L.) is well known for its anti-inflammatory, analgesic, and antitumor properties. Here, we evaluated differences in chemical composition among six commercially available products and their potential impact on biological activity in human immortalized colonocytes. Our investigation encompassed: (i) preparation of dry extracts and yield evaluation; (ii) qualitative and quantitative analysis of phenol content; (iii) modulation of redox state; and (iv) bioavailability of main bioactive compounds. We demonstrated that apparently identical products showed huge heterogeneity, in terms of yield extraction, chemical composition, and antioxidant effects. All samples contained high amounts of flavonoids and cinnamic acid derivatives, but differentially concentrated in the six extracts. Depending on polyphenol content, chamomile samples possessed variable antioxidant potential, in terms of decreased radical generation and increased reduced glutathione levels. The observed effects might be ascribed to flavones (apigenin, luteolin, and their glycones) highly represented in the six extracts. Nonetheless, chamomile extracts exerted cytotoxic effects at high concentrations, suggesting that a herbal medicine is not always safe. In conclusion, due to the complexity and variability of plant matrices, studies evaluating effectiveness of chamomile should always be accompanied by preliminary characterization of phytochemical composition.


Assuntos
Antioxidantes/química , Camomila/química , Matricaria/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Plantas Medicinais/química , Polifenóis/análise , Antioxidantes/farmacologia , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Cinamatos/análise , Flavonas/análise , Flavonoides/análise , Humanos , Oxirredução/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361585

RESUMO

Bioactive molecules from the class of polyphenols are secondary metabolites from plants. They are present in honey from nectar and pollen of flowers from where honeybees collect the "raw material" to produce honey. Robinia pseudoacacia and Helianthus annuus are important sources of nectar for production of two monofloral honeys with specific characteristics and important biological activity. A high-performance liquid chromatography-electro spray ionization-mass spectrometry (HPLC-ESI-MS) separation method was used to determine polyphenolic profile from the two types of Romanian unifloral honeys. Robinia and Helianthus honey showed a common flavonoid profile, where pinobanksin (1.61 and 1.94 mg/kg), pinocembrin (0.97 and 1.78 mg/kg) and chrysin (0.96 and 1.08 mg/kg) were identified in both honey types; a characteristic flavonoid profile in which acacetin (1.20 mg/kg), specific only for Robinia honey, was shown; and quercetin (1.85 mg/kg), luteolin (21.03 mg/kg), kaempferol (0.96 mg/kg) and galangin (1.89 mg/kg), specific for Helianthus honey, were shown. In addition, different phenolic acids were found in Robinia and Helianthus honey, while abscisic acid was found only in Robinia honey. Abscisic acid was correlated with geographical location; the samples collected from the south part of Romania had higher amounts, due to climatic conditions. Acacetin was proposed as a biochemical marker for Romanian Robinia honey and quercetin for Helianthus honey.


Assuntos
Análise de Alimentos , Helianthus , Mel/análise , Polifenóis/análise , Robinia , Espectrometria de Massas por Ionização por Electrospray , Flavonas/análise , Quercetina/análise
19.
Molecules ; 26(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34299432

RESUMO

Physiologically dropped immature Citrus reticulata Blanco fruits are regarded as waste and discarded in the citrus orchard but are a good source of bioactive compounds including flavonoids, antioxidants and total phenols. A study was undertaken to identify and quantify these bioactive compounds and to investigate the influence of different drying techniques, namely freeze drying and hot air oven drying, on flavonoids namely flavanone glycosides, antioxidant potential and total phenol content in immature dropped fruits of Citrus reticulata Blanco. Flavonoids were quantified in high-performance liquid chromatography (HPLC). The antioxidant activity were investigated with three assays azino-bis [3-ethylbenzthiazoline-6-sulfonic acid]) (ABTS), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), Ferric Reducing Ability of Plasma (FRAP) and total phenol content was determined. Freeze dried samples of 12 and 14 mm size retained maximum hesperidin flavonoid content (27.03% and 27.20%) as compared to the hot air dried samples (17.99%) and retained higher phenolic content ranged from 50.54-54.19 mg GAEL-1. The antioxidant activity in freeze dried fruits was from 12.21-13.55 mM L-1 Trolox and 15.27-16.72 mM L-1 Trolox with ABTS, DPPH assay and FRAP values ranging from 7.31-9.07 mM L-1 Trolox. Significant positive correlation was found between the flavonoid hesperidin with antioxidant assays and total phenolic content (TPC). The results showed that waste citrus fruits can act as potential source of bioflavonoids, especially hesperidin, and antioxidants for pharmaceutical as well as nutraceutical industry.


Assuntos
Citrus/química , Flavonoides/química , Manipulação de Alimentos/métodos , Antioxidantes , Cromatografia Líquida de Alta Pressão/métodos , Citrus/metabolismo , Citrus/fisiologia , Dessecação/métodos , Flavonas/análise , Flavonoides/análise , Liofilização/métodos , Frutas/química , Glicosídeos/análise , Hesperidina/análise , Temperatura Alta , Fenóis/química , Extratos Vegetais/química
20.
BMC Plant Biol ; 21(1): 258, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34134628

RESUMO

BACKGROUND: Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS: We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS: Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.


Assuntos
Flavonas/análise , Primulaceae/ultraestrutura , Tricomas/ultraestrutura , Microscopia , Microscopia Eletrônica , Primulaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...