RESUMO
Chemical modification of primary amino groups of mitochondrial membrane proteins by the fluorescent probe fluorescamine induces non-specific membrane permeabilisation. Titration of the lysine ϵ-amino group promoted efflux of accumulated Ca(2+), collapse of transmembrane potential and mitochondrial swelling. Ca(2+) release was inhibited by cyclosporin A. Considering the latter, we assumed that fluorescamine induces permeability transition. Carboxyatractyloside also inhibited the reaction. Using a polyclonal antibody for adenine nucleotide translocase, Western blot analysis showed that the carrier appeared labelled with the fluorescent probe. The results point out the importance of the ϵ-amino group of lysine residues, located in the adenine nucleotide carrier, on the modulation of membrane permeability, since its blockage suffices to promote opening of the non-specific nanopore.