Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Cells ; 13(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38534369

RESUMO

Activin A is known to impede tubular repair following renal ischemia, whereas exogenous follistatin, an activin A antagonist, has been shown to ameliorate kidney damage in rats. Despite these findings, the precise role of endogenous follistatin in the kidney has yet to be elucidated. In this study, we investigated the localization of follistatin in the normal human kidney and its potential utility as a marker for acute kidney injury (AKI). In a total of 118 AKI patients and 16 healthy adults, follistatin levels in serum and urine were quantified using ELISA, and correlations with clinical parameters were analyzed. Follistatin-producing cells were positive for Na-Cl co-transporter and uromodulin, but negative for aquaporin 1 and aquaporin 2. Unlike healthy adults, urinary follistatin significantly increased in AKI patients, correlating positively with AKI severity. Urinary follistatin levels were notably higher in patients needing renal replacement therapy. Significant correlations were observed with urinary protein, α1 microglobulin, and urinary NGAL, but not with urinary KIM-1, urinary L-FABP, urinary NAG, urinary ß2 microglobulin, or serum creatinine. Interestingly, no correlation between urinary and serum follistatin levels was identified, indicating a renal origin for urinary follistatin. In conclusion, follistatin, produced by distal tubules, is detectable in the urine of AKI patients, suggesting its potential as a valuable marker for monitoring acute tubular damage severity in AKI.


Assuntos
Injúria Renal Aguda , Folistatina , Adulto , Animais , Humanos , Ratos , Creatinina , Folistatina/metabolismo , Isquemia/metabolismo , Rim/metabolismo
2.
Obesity (Silver Spring) ; 32(2): 352-362, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38018497

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of the follistatin-like 1 (Fstl1) and disco-interacting protein 2 homolog A (DIP2a) axis in relation to lipid metabolism during and after endurance exercise and to elucidate the mechanisms underlying the metabolic effects of Fstl1 on adipocytes, considering its regulation by exercise and muscle mass and its link to obesity. METHODS: Twenty-nine sedentary males participated in endurance exercise, and blood samples were collected during and after the exercise. Body composition, Fstl1, glycerol, epinephrine, growth hormone, and atrial natriuretic peptide were measured. 3T3-L1 adipocytes, with or without DIP2a knockdown, were treated with Fstl1 to assess glycerol release, cyclic AMP/cyclic GMP production, and hormone sensitive lipase phosphorylation. The association between DIP2a gene expression levels in human adipose tissues and exercise-induced lipolysis was examined. RESULTS: Fstl1 levels significantly increased during endurance exercise and following recovery, correlating with lean body mass and lipolysis. In 3T3-L1 adipocytes, Fstl1 increased glycerol release, cyclic GMP production, and hormone sensitive lipase activation, but these effects were attenuated by DIP2a knockdown. DIP2a gene expression in human adipose tissues correlated with serum glycerol concentrations during endurance exercise. CONCLUSIONS: Fstl1 is a myokine facilitating lipid mobilization during and after endurance exercise through DIP2a-mediated lipolytic effects in adipocytes.


Assuntos
Proteínas Relacionadas à Folistatina , Folistatina , Humanos , Masculino , GMP Cíclico/metabolismo , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Glicerol/metabolismo , Mobilização Lipídica , Lipólise/fisiologia , Miocinas , Esterol Esterase/metabolismo
3.
Clin Exp Hypertens ; 45(1): 2277654, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37963199

RESUMO

OBJECTIVE: Endothelial dysfunction is a critical initiating factor in the development of hypertension and related complications. Follistatin-like 1 (FSTL1) can promote endothelial cell function and stimulates revascularization in response to ischemic insult. However, it is unclear whether FSTL1 has an effect on ameliorating endothelial dysfunction in spontaneously hypertensive rats (SHRs). METHODS: Wistar Kyoto (WKY) and SHRs were treated with a tail vein injection of vehicle (1 mL/day) or recombinant FSTL1 (100 µg/kg body weight/day) for 4 weeks. Blood pressure was measured by tail-cuff plethysmograph, and vascular reactivity in mesenteric arteries was measured using wire myography. RESULTS: We found that treatment with FSTL1 reversed impaired endothelium-dependent relaxation (EDR) in mesenteric arteries and lowered blood pressure of SHRs. Decreased AMP-activated protein kinase (AMPK) phosphorylation, elevated endoplasmic reticulum (ER) stress markers, increased reactive oxygen species (ROS), and reduction of nitric oxide (NO) production in mesenteric arteries of SHRs were also reversed by FSTL1 treatment. Ex vivo treatment with FSTL1 improved the impaired EDR in mesenteric arteries from SHRs and reversed tunicamycin (ER stress inducer)-induced ER stress and the impairment of EDR in mesenteric arteries from WKY rats. The effects of FSTL1 were abolished by cotreatment of compound C (AMPK inhibitor). CONCLUSIONS: These results suggest that FSTL1 prevents endothelial dysfunction in mesenteric arteries of SHRs through inhibiting ER stress and ROS and increasing NO production via activation of AMPK signaling.


Assuntos
Proteínas Relacionadas à Folistatina , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Proteínas Quinases Ativadas por AMP/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/farmacologia , Endotélio Vascular , Artérias Mesentéricas , Estresse do Retículo Endoplasmático
4.
Prostaglandins Other Lipid Mediat ; 169: 106785, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739334

RESUMO

Follistatin (FST) is a glycoprotein which main role is antagonizing activity of transforming growth factor ß superfamily members. Folistatin-related proteins such as follistatin-like 3 (FSTL3) also reveal these properties. The exact function of them has still not been established, but it can be bound to the pathogenesis of metabolic disorders. So far, there were performed a few studies about their role in type 2 diabetes, obesity or gestational diabetes and even less in type 1 diabetes. The outcomes are contradictory and do not allow to draw exact conclusions. In this article we summarize the available information about connections between follistatin, as well as follistatin-like 3, and metabolic disorders. We also emphasize the strong need of performing further research to explain their exact role, especially in the pathogenesis of diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Folistatina , Humanos , Folistatina/metabolismo , Obesidade/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Nat Commun ; 14(1): 4417, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537159

RESUMO

Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin ßA. We demonstrate that activin A, a homodimer of inhibin ßA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin ßA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.


Assuntos
Colesteatoma , Osteogênese , Humanos , Camundongos , Animais , Osteogênese/genética , Transcriptoma , Ativinas/genética , Ativinas/metabolismo , Folistatina/genética , Folistatina/metabolismo , Colesteatoma/patologia , Fibroblastos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(24): e2219649120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276408

RESUMO

How left-right (LR) asymmetry emerges in a patterning field along the anterior-posterior axis remains an unresolved problem in developmental biology. Left-biased Nodal emanating from the LR organizer propagates from posterior to anterior (PA) and establishes the LR pattern of the whole embryo. However, little is known about the regulatory mechanism of the PA spread of Nodal and its asymmetric activation in the forebrain. Here, we identify bilaterally expressed Follistatin (Fst) as a regulator blocking the propagation of the zebrafish Nodal ortholog Southpaw (Spaw) in the right lateral plate mesoderm (LPM), and restricting Spaw transmission in the left LPM to facilitate the establishment of a robust LR asymmetric Nodal patterning. In addition, Fst inhibits the Activin-Nodal signaling pathway in the forebrain thus preventing Nodal activation prior to the arrival, at a later time, of Spaw emanating from the left LPM. This contributes to the orderly propagation of asymmetric Nodal activation along the PA axis. The LR regulation function of Fst is further confirmed in chick and frog embryos. Overall, our results suggest that a robust LR patterning emerges by counteracting a Fst barrier formed along the PA axis.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Folistatina/genética , Folistatina/metabolismo , Padronização Corporal/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
7.
Physiol Behav ; 269: 114272, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37328021

RESUMO

INTRODUCTION AND AIM: Myostatin and follistatin are the main hormones for regulating muscle mass, and previous research suggests they are modulated by resistance training. We therefore performed a systematic review and meta-analysis to investigate the impact of resistance training on circulating myostatin and follistatin in adults. METHODS: A search was conducted in PubMed and Web of science from inception until October 2022 to identify original studies investigating the effects of resistance training compared with controls that did not exercise. Standardized mean differences and 95% confidence intervals (CIs) were calculated using random effects models. RESULTS: A total 26 randomized studies, including 36 interventions, and involving 768 participants (aged ∼18 - 82 years), were included in the meta-analysis. Resistance training effectively decreased myostatin [-1.31 (95% CI -1.74 - -0.88, p = 0.001, 26 studies] and increased follistatin [2.04 (95% CI: 1.51 - 2.52), p = 0.001, 14 studies]. Subgroup analyses revealed a significant decrease in myostatin and increase in follistatin regardless of age. CONCLUSION: Resistance training in adults is effective for reducing myostatin and increasing follistatin which may contribute to the beneficial effects of resistance training on muscle mass and metabolic outcomes.


Assuntos
Miostatina , Treinamento Resistido , Humanos , Adulto , Idoso , Músculo Esquelético/fisiologia , Folistatina/metabolismo , Folistatina/farmacologia , Exercício Físico/fisiologia
8.
Circulation ; 147(24): 1809-1822, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37096577

RESUMO

BACKGROUND: Activins are novel therapeutic targets in pulmonary arterial hypertension (PAH). We therefore studied whether key members of the activin pathway could be used as PAH biomarkers. METHODS: Serum levels of activin A, activin B, α-subunit of inhibin A and B proteins, and the antagonists follistatin and follistatin-like 3 (FSTL3) were measured in controls and in patients with newly diagnosed idiopathic, heritable, or anorexigen-associated PAH (n=80) at baseline and 3 to 4 months after treatment initiation. The primary outcome was death or lung transplantation. Expression patterns of the inhibin subunits, follistatin, FSTL3, Bambi, Cripto, and the activin receptors type I (ALK), type II (ACTRII), and betaglycan were analyzed in PAH and control lung tissues. RESULTS: Death or lung transplantation occurred in 26 of 80 patients (32.5%) over a median follow-up of 69 (interquartile range, 50-81) months. Both baseline (hazard ratio, 1.001 [95% CI, 1.000-1.001]; P=0.037 and 1.263 [95% CI, 1.049-1.520]; P=0.014, respectively) and follow-up (hazard ratio, 1.003 [95% CI, 1.001-1.005]; P=0.001 and 1.365 [95% CI, 1.185-1.573]; P<0.001, respectively) serum levels of activin A and FSTL3 were associated with transplant-free survival in a model adjusted for age and sex. Thresholds determined by receiver operating characteristic analyses were 393 pg/mL for activin A and 16.6 ng/mL for FSTL3. When adjusted with New York Heart Association functional class, 6-minute walk distance, and N-terminal pro-B-type natriuretic peptide, the hazard ratios for transplant-free survival for baseline activin A <393 pg/mL and FSTL3 <16.6 ng/mL were, respectively, 0.14 (95% CI, 0.03-0.61; P=0.009) and 0.17 (95% CI, 0.06-0.45; P<0.001), and for follow-up measures, 0.23 (95% CI, 0.07-0.78; P=0.019) and 0.27 (95% CI, 0.09-0.78, P=0.015), respectively. Prognostic values of activin A and FSTL3 were confirmed in an independent external validation cohort. Histological analyses showed a nuclear accumulation of the phosphorylated form of Smad2/3, higher immunoreactivities for ACTRIIB, ALK2, ALK4, ALK5, ALK7, Cripto, and FSTL3 in vascular endothelial and smooth muscle layers, and lower immunostaining for inhibin-α and follistatin. CONCLUSIONS: These findings offer new insights into the activin signaling system in PAH and show that activin A and FSTL3 are prognostic biomarkers for PAH.


Assuntos
Folistatina , Hipertensão Arterial Pulmonar , Humanos , Folistatina/metabolismo , Inibinas/metabolismo , Ativinas/metabolismo , Pulmão/metabolismo
9.
Cells ; 12(5)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899937

RESUMO

Activin A, a member of the TGF-beta superfamily, is a negative regulator of tubular regeneration after renal ischemia. Activin action is controlled by an endogenous antagonist, follistatin. However, the role of follistatin in the kidney is not fully understood. In the present study, we examined the expression and localization of follistatin in normal and ischemic rat kidneys and measured urinary follistatin in rats with renal ischemia to assess whether urinary follistatin could serve as a biomarker for acute kidney injury. Using vascular clamps, renal ischemia was induced for 45 min in 8-week-old male Wistar rats. In normal kidneys, follistatin was localized in distal tubules of the cortex. In contrast, in ischemic kidneys, follistatin was localized in distal tubules of both the cortex and outer medulla. Follistatin mRNA was mainly present in the descending limb of Henle of the outer medulla in normal kidneys but was upregulated in the descending limb of Henle of both the outer and inner medulla after renal ischemia. Urinary follistatin, which was undetectable in normal rats, was significantly increased in ischemic rats and peaked 24 h after reperfusion. There was no correlation between urinary follistatin and serum follistatin. Urinary follistatin levels were increased according to ischemic duration and were significantly correlated with the follistatin-positive area as well as the acute tubular damage area. These results suggest that follistatin normally produced by renal tubules increases and becomes detectable in urine after renal ischemia. Urinary follistatin might be useful to assess the severity of acute tubular damage.


Assuntos
Folistatina , Rim , Animais , Masculino , Ratos , Folistatina/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Túbulos Renais/metabolismo , Ratos Wistar
10.
Mol Metab ; 71: 101703, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906067

RESUMO

OBJECTIVE: Body weight change and obesity follow the variance of excess energy input balanced against tightly controlled EE (energy expenditure). Since insulin resistance can reduce energy storage, we investigated whether genetic disruption of hepatic insulin signaling reduced adipose mass with increased EE. METHODS: Insulin signaling was disrupted by genetic inactivation of Irs1 (Insulin receptor substrate 1) and Irs2 in hepatocytes of LDKO mice (Irs1L/L·Irs2L/L·CreAlb), creating a state of complete hepatic insulin resistance. We inactivated FoxO1 or the FoxO1-regulated hepatokine Fst (Follistatin) in the liver of LDKO mice by intercrossing LDKO mice with FoxO1L/L or FstL/L mice. We used DEXA (dual-energy X-ray absorptiometry) to assess total lean mass, fat mass and fat percentage, and metabolic cages to measure EE (energy expenditure) and estimate basal metabolic rate (BMR). High-fat diet was used to induce obesity. RESULTS: Hepatic disruption of Irs1 and Irs2 (LDKO mice) attenuated HFD (high-fat diet)-induced obesity and increased whole-body EE in a FoxO1-dependent manner. Hepatic disruption of the FoxO1-regulated hepatokine Fst normalized EE in LDKO mice and restored adipose mass during HFD consumption; moreover, hepatic Fst disruption alone increased fat mass accumulation, whereas hepatic overexpression of Fst reduced HFD-induced obesity. Excess circulating Fst in overexpressing mice neutralized Mstn (Myostatin), activating mTORC1-promoted pathways of nutrient uptake and EE in skeletal muscle. Similar to Fst overexpression, direct activation of muscle mTORC1 also reduced adipose mass. CONCLUSIONS: Thus, complete hepatic insulin resistance in LDKO mice fed a HFD revealed Fst-mediated communication between the liver and muscle, which might go unnoticed during ordinary hepatic insulin resistance as a mechanism to increase muscle EE and constrain obesity.


Assuntos
Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/fisiologia , Metabolismo Basal , Folistatina/metabolismo , Obesidade/metabolismo , Fígado/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica/efeitos adversos
11.
Integr Biol (Camb) ; 152023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36781971

RESUMO

The lymphatic system plays an active role during infection, however the role of lymphatic-neutrophil interactions in host-defense responses is not well understood. During infection with pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia pestis, neutrophils traffic from sites of infection through the lymphatic vasculature, to draining lymph nodes to interact with resident lymphocytes. This process is poorly understood, in part, due to the lack of in vitro models of the lymphatic system. Here we use a 3D microscale lymphatic vessel model to examine neutrophil-lymphatic cell interactions during host defense responses to pathogens. In previous work, we have shown that follistatin is secreted at high concentrations by lymphatic endothelial cells during inflammation. Follistatin inhibits activin A, a member of the TGF-ß superfamily, and, together, these molecules form a signaling pathway that plays a role in regulating both innate and adaptive immune responses. Although follistatin and activin A are constitutively produced in the pituitary, gonads and skin, their major source in the serum and their effects on neutrophils are poorly understood. Here we report a microfluidic model that includes both blood and lymphatic endothelial vessels, and neutrophils to investigate neutrophil-lymphatic trafficking during infection with P. aeruginosa. We found that lymphatic endothelial cells produce secreted factors that increase neutrophil migration toward P. aeruginosa, and are a significant source of both follistatin and activin A during Pseudomonas infection. We determined that follistatin produced by lymphatic endothelial cells inhibits activin A, resulting in increased neutrophil migration. These data suggest that the follistatin:activin A ratio influences neutrophil trafficking during infection with higher ratios increasing neutrophil migration.


Assuntos
Folistatina , Pseudomonas aeruginosa , Folistatina/metabolismo , Pseudomonas aeruginosa/metabolismo , Neutrófilos/metabolismo , Endotélio Linfático/metabolismo , Células Endoteliais/metabolismo
12.
Clin Cancer Res ; 29(10): 1969-1983, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36795892

RESUMO

PURPOSE: We recently reported that the transcription factor NFATC4, in response to chemotherapy, drives cellular quiescence to increase ovarian cancer chemoresistance. The goal of this work was to better understand the mechanisms of NFATC4-driven ovarian cancer chemoresistance. EXPERIMENTAL DESIGN: We used RNA sequencing to identify NFATC4-mediated differential gene expression. CRISPR-Cas9 and FST (follistatin)-neutralizing antibodies were used to assess impact of loss of FST function on cell proliferation and chemoresistance. ELISA was used to quantify FST induction in patient samples and in vitro in response to chemotherapy. RESULTS: We found that NFATC4 upregulates FST mRNA and protein expression predominantly in quiescent cells and FST is further upregulated following chemotherapy treatment. FST acts in at least a paracrine manner to induce a p-ATF2-dependent quiescent phenotype and chemoresistance in non-quiescent cells. Consistent with this, CRISPR knockout (KO) of FST in ovarian cancer cells or antibody-mediated neutralization of FST sensitizes ovarian cancer cells to chemotherapy treatment. Similarly, CRISPR KO of FST in tumors increased chemotherapy-mediated tumor eradication in an otherwise chemotherapy-resistant tumor model. Suggesting a role for FST in chemoresistance in patients, FST protein in the abdominal fluid of patients with ovarian cancer significantly increases within 24 hours of chemotherapy exposure. FST levels decline to baseline levels in patients no longer receiving chemotherapy with no evidence of disease. Furthermore, elevated FST expression in patient tumors is correlated with poor progression-free, post-progression-free, and overall survival. CONCLUSIONS: FST is a novel therapeutic target to improve ovarian cancer response to chemotherapy and potentially reduce recurrence rates.


Assuntos
Folistatina , Neoplasias Ovarianas , Humanos , Feminino , Folistatina/genética , Folistatina/metabolismo , Folistatina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proliferação de Células , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética
13.
Nat Commun ; 14(1): 143, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650150

RESUMO

Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.


Assuntos
Carcinoma , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Macrófagos Alveolares/metabolismo , Ativinas/metabolismo , Folistatina/genética , Folistatina/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Carcinoma/metabolismo
14.
J Cell Mol Med ; 27(1): 127-140, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528873

RESUMO

Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.


Assuntos
Movimento Celular , Endométrio , Folistatina , Sistema de Sinalização das MAP Quinases , Animais , Feminino , Camundongos , Gravidez , Movimento Celular/fisiologia , Hormônio Foliculoestimulante/metabolismo , Folistatina/genética , Folistatina/metabolismo , Células Estromais/metabolismo , Útero/metabolismo , Endométrio/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia
15.
Exp Clin Endocrinol Diabetes ; 131(4): 228-235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36549337

RESUMO

The interactions between muscle and bone are noted in the clinical relationships between sarcopenia and osteoporosis. Myokines secreted from the skeletal muscles play roles in muscle-bone interactions related to various physiological and pathophysiological states. Although numerous evidence suggests that growth hormone (GH) influences both muscle and bone, the effects of GH on the muscle-bone interactions have remained unknown. We, therefore, investigated the influences of GH administration for 8 weeks on muscle and bone, including myokine expression, in mice with or without ovariectomy (OVX). GH administration significantly increased muscle mass in the whole body and lower limbs, as well as tissue weights of the extensor digitorum longus (EDL) and soleus muscles in mice with or without OVX. Moreover, it markedly increased grip strength in both mice. As for femurs, GH administration significantly increased cortical thickness and area in mice with or without OVX. Moreover, GH significantly blunted the decrease in the ratio of bone volume to tissue volume at the trabecular bone in mice with OVX. GH administration significantly decreased follistatin mRNA levels in the EDL, but not the soleus, muscles in mice with or without OVX, although it did not affect the other myokines examined. However, GH administration significantly elevated serum follistatin levels in mice. In conclusion, this study indicates that GH administration increases skeletal muscle mass and grip strength and cortical and trabecular bone-related parameters obtained by micro-computed tomography analyses in mice. However, myokine regulation might not be critical for the effects of GH on muscle and bone.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Camundongos , Feminino , Animais , Hormônio do Crescimento/farmacologia , Folistatina/metabolismo , Folistatina/farmacologia , Microtomografia por Raio-X , Hormônio do Crescimento Humano/metabolismo , Músculo Esquelético/metabolismo , Densidade Óssea
16.
J Sports Sci Med ; 21(4): 616-624, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36523894

RESUMO

Resistance exercise (RE) activates cell signaling pathways associated with myostatin. Decorin is located in the extracellular matrix (ECM) and can block the inhibitory effect of myostatin. This study sought to determine the impact of low-load (LL) and high-load (HL) RE on myostatin mRNA and protein expression along with changes in muscle decorin and circulating follistatin. Ten resistance-trained men performed a LL (50% 1RM) and HL (80% 1RM) RE session using the angled leg press and leg extension with load and volume equated. Venous blood samples and muscle biopsies were obtained prior to and at 3h and 24h following each RE session. Muscle myostatin mRNA expression was increased at 24h post-exercise (p = 0.032) in LL and at 3h (p = 0.044) and 24h (p = 0.003) post-exercise in HL. Muscle decorin was increased at 24h post-exercise (p < 0.001) in LL and HL; however, muscle myostatin was increased at 24h post-exercise (p < 0.001) only in HL. For muscle Smad 2/3, no significant differences were observed (p > 0.05). Serum follistatin was increased and myostatin decreased at 24h post-exercise (p < 0.001) in LL and HL. Muscle myostatin gene and protein expression increased in response to HL RE. However, serum myostatin was decreased in the presence of increases in decorin in muscle and follistatin in circulation. Therefore, our data suggest a possible mechanism may exist where decorin within the ECM is able to bind to, and decrease, myostatin that might otherwise enter the circulation for activin IIB (ACTIIB) receptor binding and subsequent canonical signaling through Smad 2/3.


Assuntos
Decorina , Exercício Físico , Miostatina , Humanos , Masculino , Decorina/genética , Decorina/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Folistatina/genética , Folistatina/metabolismo , Músculo Esquelético/fisiologia , Miostatina/genética , Miostatina/metabolismo , Treinamento Resistido , RNA Mensageiro/genética , Exercício Físico/fisiologia
17.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497076

RESUMO

Follistatin (FST) as a gonadal protein is central to the establishment and maintenance of pregnancy. Trophoblasts' migration and invasion into the endometrium are critical events in placental development. This study aimed to elucidate the role of FST in the migration and invasion of placental trophoblasts of mice. We found that FST increased the vitality and proliferation of primary cultured trophoblasts of embryonic day 8.5 (E8.5) mice and promoted wound healing of trophoblasts. Moreover, FST significantly induced migration of trophoblasts in a microfluidic device and increased the number of invasive trophoblasts by Matrigel-coated transwell invasion assay. Being treated with FST, the adhesion of trophoblasts was inhibited, but intracellular calcium flux of trophoblasts was increased. Western blotting results showed that FST had no significant effects on the level of p-Smad3 or the ratio of p-Smad3/Smad3 in trophoblasts. Interestingly, FST elevated the level of p-JNK; the ratio of p-JNK/JNK; and expression of migration-related proteins N-cadherin, vimentin, ezrin and MMP2 in trophoblasts. Additionally, the migration of trophoblasts and expression of N-cadherin, vimentin, and MMP2 in trophoblasts induced by FST were attenuated by JNK inhibitor AS601245. These findings suggest that the elevated FST in pregnancy may act as a chemokine to induce trophoblast migration and invasion through the enhanced JNK signaling to maintain trophoblast function and promote placental development.


Assuntos
Fatores Quimiotáticos , Folistatina , Placenta , Animais , Feminino , Camundongos , Gravidez , Caderinas/metabolismo , Movimento Celular , Fatores Quimiotáticos/metabolismo , Placenta/metabolismo , Placentação , Trofoblastos/metabolismo , Folistatina/metabolismo
18.
Physiol Res ; 71(6): 783-790, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36281727

RESUMO

Myostatin (MSTN), an important negative regulator of skeletal muscle, plays an important role in skeletal muscle health. In previous study, we found that the expression of MSTN was different during skeletal muscle injury repair. Therefore, we explored the expression changes of MSTN at different time points during skeletal muscle injury repair after eccentric exercise. In addition, MSTN is regulated by follistatin (FST) and decorin (DCN) in vivo, so our study examined the time-specific changes of FST, DCN and MSTN in the circulation and skeletal muscle during skeletal muscle injury repair after eccentric exercise, and to explore the reasons for the changes of MSTN in the process of exercise-induced muscle injury repair, to provide a basis for promoting muscle injury repair. The rats performed one-time eccentric exercise. Blood and skeletal muscle were collected at the corresponding time points, respectively immediate after exercise (D0), one day (D1), two days (D2), three days (D3), seven days (W1) and fourteen days (W2) after exercise (n=8). The levels of MSTN, FST, DCN in serum and mRNA and protein expression in muscle were detected. MSTN changes in the blood and changes in DCN and FST showed the opposite trend, except immediately after exercise. The change trends of mRNA and protein of gastrocnemius DCN and MSTN are inconsistent, there is post-transcriptional regulation of MSTN and DCN in gastrocnemius. Acute eccentric exercise might stimulate the secretion of DCN and FST into the circulation and inhibit MSTN. MSTN may be regulated by FST and DCN after acute eccentric exercise.


Assuntos
Decorina , Folistatina , Músculo Esquelético , Miostatina , Condicionamento Físico Animal , Animais , Ratos , Decorina/genética , Decorina/metabolismo , Folistatina/genética , Folistatina/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo , RNA Mensageiro/genética , Fatores de Tempo
19.
Small ; 18(44): e2204436, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098251

RESUMO

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Folistatina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/terapia , Músculo Esquelético/metabolismo
20.
Stem Cell Res Ther ; 13(1): 403, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35932064

RESUMO

BACKGROUND: Mesenchymal stem cell (MSC) therapy has been shown to be a promising option for liver fibrosis treatment. However, critical factors affecting the efficacy of MSC therapy for liver fibrosis remain unknown. Follistatin-like 1 (FSTL1), a TGF-ß-induced matricellular protein, is documented as an intrinsic regulator of proliferation and differentiation in MSCs. In the present study, we characterized the potential role of FSTL1 in MSC-based anti-fibrotic therapy and further elucidated the mechanisms underlying its action. METHODS: Human umbilical cord-derived MSCs were characterized by flow cytometry. FSTL1low MSCs were achieved by FSTL1 siRNA. Migration capacity was evaluated by wound-healing and transwell assay. A murine liver fibrotic model was created by carbon tetrachloride (CCl4) injection, while control MSCs or FSTL1low MSC were transplanted via intravenous injection 12 weeks post CCl4 injection. Histopathology, liver function, fibrosis degree, and inflammation were analysed thereafter. Inflammatory cell infiltration was evaluated by flow cytometry after hepatic nonparenchymal cell isolation. An MSC-macrophage co-culture system was constructed to further confirm the role of FSTL1 in the immunosuppressive capacity of MSCs. RNA sequencing was used to screen target genes of FSTL1. RESULTS: FSTL1low MSCs had comparable gene expression for surface markers to wildtype but limited differentiation and migration capacity. FSTL1low MSCs failed to alleviate CCl4-induced hepatic fibrosis in a mouse model. Our data indicated that FSTL1 is essential for the immunosuppressive action of MSCs on inflammatory macrophages during liver fibrotic therapy. FSTL1 silencing attenuated this capacity by inhibiting the downstream JAK/STAT1/IDO pathway. CONCLUSIONS: Our data suggest that FSTL1 facilitates the immunosuppression of MSCs on macrophages and that guarantee the anti-fibrotic effect of MSCs in liver fibrosis.


Assuntos
Proteínas Relacionadas à Folistatina , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Folistatina/efeitos adversos , Folistatina/metabolismo , Proteínas Relacionadas à Folistatina/genética , Humanos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...