Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(3): 1345-1362, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385114

RESUMO

Triacylglycerols (TAGs) are the main storage lipids in photosynthetic organisms under stress. In the oleaginous alga Nannochloropsis oceanica, while multiple acyl CoA:diacylglycerol (DAG) acyltransferases (NoDGATs) are involved in TAG production, the role of the unique phospholipid:DAG acyltransferase (NoPDAT) remains unknown. Here, we performed a functional complementation assay in TAG-deficient yeast (Saccharomyces cerevisiae) and an in vitro assay to probe the acyltransferase activity of NoPDAT. Subcellular localization, overexpression, and knockdown (KD) experiments were also conducted to elucidate the role of NoPDAT in N. oceanica. NoPDAT, residing at the outermost plastid membrane, does not phylogenetically fall into the clades of algae or plants and uses phosphatidylethanolamine (PE) and phosphatidylglycerol with 16:0, 16:1, and 18:1 at position sn-2 as acyl-donors in vivo. NoPDAT KD, not triggering any compensatory mechanism via DGATs, led to an ∼30% decrease of TAG content, accompanied by a vast accumulation of PEs rich in 16:0, 16:1, and 18:1 fatty acids (referred to as "LU-PE") that was positively associated with CO2 availability. We conclude that the NoPDAT pathway is parallel to and independent of the NoDGAT pathway for oil production. LU-PE can serve as an alternative carbon sink for photosynthetically assimilated carbon in N. oceanica when PDAT-mediated TAG biosynthesis is compromised or under stress in the presence of high CO2 levels.


Assuntos
Aciltransferases , Microalgas , Fosfatidiletanolaminas , Aciltransferases/genética , Aciltransferases/metabolismo , Dióxido de Carbono/metabolismo , Sequestro de Carbono/genética , Sequestro de Carbono/fisiologia , Diacilglicerol O-Aciltransferase/metabolismo , Microalgas/genética , Microalgas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicerídeos/genética , Triglicerídeos/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1863(8): 183626, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901442

RESUMO

Recently, we reported that a ternary lipid bilayer comprising phosphatidylethanolamine (PE), phosphatidylcholine (PC), which were both derived from chicken egg, and cholesterol (Chol) generates microdomains that function as specific fusion sites for proteoliposomes. Chol-induced microdomain formation in a completely miscible lipid bilayer is an exceptional phenomenon. Numerous studies have elucidated the formation of domains in liquid ordered (Lo) and liquid disordered (Ld) phases of ternary bilayers, which comprise two partially miscible lipids and Chol. Herein, we investigated the composition and mechanism of formation of these unique microdomains in supported lipid bilayers (SLBs) using a fluorescence microscope and an atomic force microscope (AFM). We prepared ternary SLBs using egg-derived PC (eggPC), Chol and three different types of PE: egg-derived PE, 1-palmitoyl-2-oleoyl-PE, and 1,2-didocosahexaenoyl-PE (diDHPE). Fluorescence microscopy observations revealed that fluid and continuous SLBs were formed at PE concentrations (CPE) of ≥6 mol%. Fluorescence recovery after photobleaching measurement revealed that the microdomain was more fluid than the surrounding region that showed typical diffusion coefficient of the Lo phase. The microdomains were observed as depressions in the AFM topographies. Their area fraction (θ) increased with CPE, and diDHPE produced a significantly large θ among the three PEs. The microdomains in the PE+eggPC+Chol-SLBs were rich in polyunsaturated PE and were in the Ld-like phase. Associating eggPC and Chol caused polyunsaturated PE to segregate, resulting in a microdomain formation by conferring the umbrella effect on Chol, entropic effect of disordered acyl chains, and π-π interactions in the hydrophobic core.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Colesterol/genética , Bicamadas Lipídicas/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Microscopia de Fluorescência , Fosfatidilcolinas/química , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/genética , Fosfolipídeos/química , Fosfolipídeos/genética
3.
J Biol Chem ; 296: 100315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33485966

RESUMO

Lipid flipping in the membrane bilayers is a widespread eukaryotic phenomenon that is catalyzed by assorted P4-ATPases. Its occurrence, mechanism, and importance in apicomplexan parasites have remained elusive, however. Here we show that Toxoplasma gondii, an obligate intracellular parasite with high clinical relevance, can salvage phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn) but not phosphatidylcholine (PtdCho) probes from its milieu. Consistently, the drug analogs of PtdCho are broadly ineffective in the parasite culture. NBD-PtdSer imported to the parasite interior is decarboxylated to NBD-PtdEtn, while the latter is not methylated to yield PtdCho, which confirms the expression of PtdSer decarboxylase but a lack of PtdEtn methyltransferase activity and suggests a role of exogenous lipids in membrane biogenesis of T. gondii. Flow cytometric quantitation of NBD-probes endorsed the selectivity of phospholipid transport and revealed a dependence of the process on energy and protein. Accordingly, our further work identified five P4-ATPases (TgP4-ATPase1-5), all of which harbor the signature residues and motifs required for phospholipid flipping. Of the four proteins expressed during the lytic cycle, TgP4-ATPase1 is present in the apical plasmalemma; TgP4-ATPase3 resides in the Golgi network along with its noncatalytic partner Ligand Effector Module 3 (TgLem3), whereas TgP4-ATPase2 and TgP4-ATPase5 localize in the plasmalemma as well as endo/cytomembranes. Last but not least, auxin-induced degradation of TgP4-ATPase1-3 impaired the parasite growth in human host cells, disclosing their crucial roles during acute infection. In conclusion, we show selective translocation of PtdEtn and PtdSer at the parasite surface and provide the underlying mechanistic and physiological insights in a model eukaryotic pathogen.


Assuntos
Adenosina Trifosfatases/genética , Bicamadas Lipídicas/metabolismo , Toxoplasma/genética , Toxoplasmose/genética , Adenosina Trifosfatases/química , Membrana Celular/genética , Membrana Celular/metabolismo , Citometria de Fluxo , Glicerofosfolipídeos/metabolismo , Complexo de Golgi/química , Complexo de Golgi/enzimologia , Humanos , Bicamadas Lipídicas/química , Lipídeos/química , Lipídeos/genética , Fosfatidilcolinas/genética , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Toxoplasma/enzimologia , Toxoplasma/patogenicidade , Toxoplasmose/parasitologia
4.
Nat Commun ; 11(1): 4317, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859896

RESUMO

Lipid membranes, nucleic acids, proteins, and metabolism are essential for modern cellular life. Synthetic systems emulating the fundamental properties of living cells must therefore be built upon these functional elements. In this work, phospholipid-producing enzymes encoded in a synthetic minigenome are cell-free expressed within liposome compartments. The de novo synthesized metabolic pathway converts precursors into a variety of lipids, including the constituents of the parental liposome. Balanced production of phosphatidylethanolamine and phosphatidylglycerol is realized, owing to transcriptional regulation of the activity of specific genes combined with a metabolic feedback mechanism. Fluorescence-based methods are developed to image the synthesis and membrane incorporation of phosphatidylserine at the single liposome level. Our results provide experimental evidence for DNA-programmed membrane synthesis in a minimal cell model. Strategies are discussed to alleviate current limitations toward effective liposome growth and self-reproduction.


Assuntos
Lipossomos/metabolismo , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/genética , Fosfatidilgliceróis/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Proteômica
5.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32269127

RESUMO

Positive-strand RNA [(+)RNA] viruses assemble numerous membrane-bound viral replicase complexes (VRCs) with the help of viral replication proteins and co-opted host proteins within large viral replication compartments in the cytosol of infected cells. In this study, we found that deletion or depletion of Sac1 phosphatidylinositol 4-phosphate [PI(4)P] phosphatase reduced tomato bushy stunt virus (TBSV) replication in yeast (Saccharomyces cerevisiae) and plants. We demonstrate a critical role for Sac1 in TBSV replicase assembly in a cell-free replicase reconstitution assay. The effect of Sac1 seems to be direct, based on its interaction with the TBSV p33 replication protein, its copurification with the tombusvirus replicase, and its presence in the virus-induced membrane contact sites and within the TBSV replication compartment. The proviral functions of Sac1 include manipulation of lipid composition, sterol enrichment within the VRCs, and recruitment of additional host factors into VRCs. Depletion of Sac1 inhibited the recruitment of Rab5 GTPase-positive endosomes and enrichment of phosphatidylethanolamine in the viral replication compartment. We propose that Sac1 might be a component of the assembly hub for VRCs, likely in collaboration with the co-opted the syntaxin18-like Ufe1 SNARE protein within the TBSV replication compartments. This work also led to demonstration of the enrichment of PI(4)P phosphoinositide within the replication compartment. Reduction in the PI(4)P level due to chemical inhibition in plant protoplasts; depletion of two PI(4)P kinases, Stt4p and Pik1p; or sequestration of free PI(4)P via expression of a PI(4)P-binding protein in yeast strongly inhibited TBSV replication. Altogether, Sac1 and PI(4)P play important proviral roles during TBSV replication.IMPORTANCE Replication of positive-strand RNA viruses depends on recruitment of host components into viral replication compartments or organelles. Using TBSV, we uncovered the critical roles of Sac1 PI(4)P phosphatase and its substrate, PI(4)P phosphoinositide, in promoting viral replication. Both Sac1 and PI(4)P are recruited to the site of viral replication to facilitate the assembly of the viral replicase complexes, which perform viral RNA replication. We found that Sac1 affects the recruitment of other host factors and enrichment of phosphatidylethanolamine and sterol lipids within the subverted host membranes to promote optimal viral replication. In summary, this work demonstrates the novel functions of Sac1 and PI(4)P in TBSV replication in the model host yeast and in plants.


Assuntos
Interações Hospedeiro-Patógeno/genética , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Tombusvirus/genética , Replicação Viral/genética , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/metabolismo , Células Vegetais/metabolismo , Células Vegetais/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Protoplastos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esteróis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
6.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32303746

RESUMO

The yeast phosphatidylserine (PtdSer) decarboxylase Psd2 is proposed to engage in a membrane contact site (MCS) for PtdSer decarboxylation to phosphatidylethanolamine (PtdEtn). This proposed MCS harbors Psd2, the Sec14-like phosphatidylinositol transfer protein (PITP) Sfh4, the Stt4 phosphatidylinositol (PtdIns) 4-OH kinase, the Scs2 tether, and an uncharacterized protein. We report that, of these components, only Sfh4 and Stt4 regulate Psd2 activity in vivo. They do so via distinct mechanisms. Sfh4 operates via a mechanism for which its PtdIns-transfer activity is dispensable but requires an Sfh4-Psd2 physical interaction. The other requires Stt4-mediated production of PtdIns-4-phosphate (PtdIns4P), where Stt4 (along with the Sac1 PtdIns4P phosphatase and endoplasmic reticulum-plasma membrane tethers) indirectly modulate Psd2 activity via a PtdIns4P homeostatic mechanism that influences PtdSer accessibility to Psd2. These results identify an example in which the biological function of a Sec14-like PITP is cleanly uncoupled from its canonical in vitro PtdIns-transfer activity and challenge popular functional assumptions regarding lipid-transfer protein involvements in MCS function.


Assuntos
Proteínas de Membrana/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , 1-Fosfatidilinositol 4-Quinase/genética , Transporte Biológico/genética , Metabolismo dos Lipídeos/genética , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 295(13): 4124-4133, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221031

RESUMO

An early exposure to lipid biochemistry in the laboratory of Konrad Bloch resulted in a fascination with the biosynthesis, structures, and functions of bacterial lipids. The discovery of plasmalogens (1-alk-1'-enyl, 2-acyl phospholipids) in anaerobic Gram-positive bacteria led to studies on the physical chemistry of these lipids and the cellular regulation of membrane lipid polymorphism in bacteria. Later studies in several laboratories showed that the formation of the alk-1-enyl ether bond involves an aerobic process in animal cells and thus is fundamentally different from that in anaerobic organisms. Our work provides evidence for an anaerobic process in which plasmalogens are formed from their corresponding diacyl lipids. Studies on the roles of phospholipases in Listeria monocytogenes revealed distinctions between its phospholipases and those previously discovered in other bacteria and showed how the Listeria enzymes are uniquely fitted to the intracellular lifestyle of this significant human pathogen.


Assuntos
Anaerobiose/genética , Lipídeos/genética , Plasmalogênios/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipídeos/biossíntese , Lipídeos/química , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Plasmalogênios/química , Plasmalogênios/genética
8.
Biochem Pharmacol ; 166: 192-202, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31129050

RESUMO

Duration of gene silencing due to the short-term silencing effects induced by exogenous siRNA have limited the therapeutic applications of RNAi and the development of RNAi-based therapeutics. We here generated Eg5 shRNA-expressing plasmids using the inverted terminal repeats (ITRs) sequences to produce Eg5 hairpin RNA under the control of U6 promoter. Using PEGylated DC-Chol/DOPE cationic liposomes, we demonstrated that a single systemic administration of Eg5 shRNA-expressing plasmid/liposome lipoplexes induced the long-term Eg5 silencing in the tumor sites of tumor-bearing mice, and ultimately lead to more sustained anticancer effects than standard synthetic siEg5/liposome lipoplexes. This non-viral Eg5 shRNA expression system had no risk of immunogenicity anticipated in the use of viral vectors, and could reduce the potential of off-target effects by scaling down the administration dose of RNAi therapeutics in patient. Therefore, the sustainable shRNA expression properties in the tumor sites suggest an efficient strategy to overcome the limitations caused by chemically synthesized siRNA methods such as short-term silencing effects and off-target effects. Herein, this study provides a non-viral silencing strategy for inducing long-term Eg5 silencing in vivo and suggests the great potential of Eg5 shRNA-expressing lipoplexes as a DNA-based RNAi therapeutics for cancer treatment.


Assuntos
Colesterol/análogos & derivados , Inativação Gênica/fisiologia , Cinesinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Plasmídeos/biossíntese , RNA Interferente Pequeno/biossíntese , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Colesterol/administração & dosagem , Colesterol/biossíntese , Colesterol/genética , Feminino , Expressão Gênica , Inativação Gênica/efeitos dos fármacos , Técnicas de Transferência de Genes , Humanos , Cinesinas/administração & dosagem , Cinesinas/genética , Lipossomos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/genética , Plasmídeos/administração & dosagem , Plasmídeos/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Distribuição Aleatória , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
J Proteome Res ; 18(3): 1133-1144, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30706713

RESUMO

Hyperlipidemia, characterized by high serum lipids, is a risk factor for cardiovascular disease. Recent studies have identified an important role for celastrol, a proteasome inhibitor isolated from Tripterygium wilfordii Hook. F., in obesity-related metabolic disorders. However, the exact influences of celastrol on lipid metabolism remain largely unknown. Celastrol inhibited the terminal differentiation of 3T3-L1 adipocytes and decreased the levels of triglycerides in wild-type mice. Lipidomics analysis revealed that celastrol increased the metabolism of lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), sphingomyelins (SMs), and phosphatidylethanolamines (PEs). Further, celastrol reversed the tyloxapol-induced hyperlipidemia induced associated with increased plasma LPCs, PCs, SMs, and ceramides (CMs). Among these lipids, LPC(16:0), LPC(18:1), PC(22:2/15:0), and SM(d18:1/22:0) were also decreased by celastrol in cultured 3T3-L1 adipocytes, mice, and tyloxapol-treated mice. The mRNAs encoded by hepatic genes associated with lipid synthesis and catabolism, including Lpcat1, Pld1, Smpd3, and Sptc2, were altered in tyloxapol-induced hyperlipidemia, and significantly recovered by celastrol treatment. The effect of celastrol on lipid metabolism was significantly reduced in Fxr-null mice, resulting in decreased Cers6 and Acer2 mRNAs compared to wild-type mice. These results establish that FXR was responsible in part for the effects of celastrol in controlling lipid metabolism and contributing to the recovery of aberrant lipid metabolism in obesity-related metabolic disorders.


Assuntos
Hiperlipidemias/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Triterpenos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Lisofosfatidilcolinas/genética , Camundongos , Triterpenos Pentacíclicos , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Fosfolipase D/genética , Polietilenoglicóis/toxicidade , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/genética
10.
J Biol Chem ; 293(45): 17593-17605, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30237174

RESUMO

Mitochondrial synthesis of cardiolipin (CL) and phosphatidylethanolamine requires the transport of their precursors, phosphatidic acid and phosphatidylserine, respectively, to the mitochondrial inner membrane. In yeast, the Ups1-Mdm35 and Ups2-Mdm35 complexes transfer phosphatidic acid and phosphatidylserine, respectively, between the mitochondrial outer and inner membranes. Moreover, a Ups1-independent CL accumulation pathway requires several mitochondrial proteins with unknown functions including Mdm31. Here, we identified a mitochondrial porin, Por1, as a protein that interacts with both Mdm31 and Mdm35 in budding yeast (Saccharomyces cerevisiae). Depletion of the porins Por1 and Por2 destabilized Ups1 and Ups2, decreased CL levels by ∼90%, and caused loss of Ups2-dependent phosphatidylethanolamine synthesis, but did not affect Ups2-independent phosphatidylethanolamine synthesis in mitochondria. Por1 mutations that affected its interactions with Mdm31 and Mdm35, but not respiratory growth, also decreased CL levels. Using HeLa cells, we show that mammalian porins also function in mitochondrial CL metabolism. We conclude that yeast porins have specific and critical functions in mitochondrial phospholipid metabolism and that porin-mediated regulation of CL metabolism appears to be evolutionarily conserved.


Assuntos
Cardiolipinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/genética , Células HeLa , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/genética , Porinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Artigo em Inglês | MEDLINE | ID: mdl-29987148

RESUMO

The global emergence of plasmid-mediated colistin resistance genes mcr-1 and mcr-3 has threatened the role of the "last-resort" drug colistin in the defense against infections caused by multidrug-resistant Gram-negative bacteria. However, functional differences between these two genes in mediating colistin resistance remain poorly understood. Protein sequence alignment of MCR-3 and MCR-1 was therefore conducted in Clustal Omega to identify sequence divergence. The molecular recognition of lipid A head group phosphatidylethanolamine and MCR-3 enzyme was studied by homology modeling and molecular docking, with the catalytic mechanism of MCR-3 also being explored. Thr277 in MCR-3 was validated as the key amino acid residue responsible for the catalytic reaction using site-directed mutagenesis and was shown to act as a nucleophile. Lipid A modification induced by the MCR-3 and MCR-1 enzymes was confirmed by electrospray ionization-time of flight mass spectrometry. Far-UV circular dichroism spectra of the MCR-3 and MCR-1 enzymes suggested that MCR-3 was more thermostable than MCR-1, with a melting temperature of 66.19°C compared with 61.14°C for MCR-1. These data provided molecular insight into the functional differences between mcr-3 and mcr-1 in conferring colistin resistance.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Lipídeo A/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida/métodos , Fosfatidiletanolaminas/genética , Plasmídeos/genética
12.
J Mol Evol ; 86(1): 68-76, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29330556

RESUMO

Phosphatidylcholine (PC) is one of the most common phospholipids in eukaryotes, although some green algae such as Chlamydomonas reinhardtii are known to lack PC. Recently, we detected PC in four species in the genus Chlamydomonas: C. applanata NIES-2202, C. asymmetrica NIES-2207, C. debaryana NIES-2212, and C. sphaeroides NIES-2242. To reveal the PC biosynthesis pathways in green algae and the evolutionary scenario involved in their diversity, we analyzed the PC biosynthesis genes in these four algae using draft genome sequences. Homology searches suggested that PC in these species is synthesized by phosphoethanolamine-N-methyltransferase (PEAMT) and/or phosphatidylethanolamine-N-methyltransferase (PEMT), both of which are absent in C. reinhardtii. Recombinant PEAMTs from these algae showed methyltransferase activity for phosphoethanolamine but not for monomethyl phosphoethanolamine in vitro, in contrast to land plant PEAMT, which catalyzes the three methylations from phosphoethanolamine to phosphocholine. This suggested an involvement of other methyltransferases in PC biosynthesis. Here, we characterized the putative phospholipid-N-methyltransferase (PLMT) genes of these species by genetic and phylogenetic analysis. Complementation assays using a PC biosynthesis-deficient yeast suggested that the PLMTs of these algae can synthesize PC from phosphatidylethanolamine. These results indicated that the PC biosynthesis pathways in green algae differ from those of land plants, although the enzymes involved are homologous. Phylogenetic analysis suggested that the PEAMTs and PLMTs in these algae were inherited from the common ancestor of green algae. The absence of PC biosynthesis in many Chlamydomonas species is likely a result of parallel losses of PEAMT and PLMT in this genus.


Assuntos
Chlamydomonas/genética , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/genética , Sequência de Aminoácidos/genética , Sequência de Bases/genética , Evolução Biológica , Chlamydomonas/metabolismo , Clorófitas/genética , Clorófitas/metabolismo , Clonagem Molecular/métodos , Etanolaminas/metabolismo , Evolução Molecular , Metiltransferases/genética , Metiltransferases/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Filogenia
13.
FEBS Lett ; 592(8): 1273-1290, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29067684

RESUMO

Mitochondrial structure and function are influenced by the unique phospholipid composition of its membranes. While mitochondria contain all the major classes of phospholipids, recent studies have highlighted specific roles of the nonbilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) in the assembly and activity of mitochondrial respiratory chain (MRC) complexes. The nonbilayer phospholipids are cone-shaped molecules that introduce curvature stress in the bilayer membrane and have been shown to impact mitochondrial fusion and fission. In addition to their overlapping roles in these mitochondrial processes, each nonbilayer phospholipid also plays a unique role in mitochondrial function; for example, CL is specifically required for MRC supercomplex formation. Recent discoveries of mitochondrial PE- and CL-trafficking proteins and prior knowledge of their biosynthetic pathways have provided targets for precisely manipulating nonbilayer phospholipid levels in the mitochondrial membranes in vivo. Thus, the genetic mutants of these pathways could be valuable tools in illuminating molecular functions and biophysical properties of nonbilayer phospholipids in driving mitochondrial bioenergetics and dynamics.


Assuntos
Cardiolipinas/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/metabolismo , Animais , Cardiolipinas/genética , Transporte de Elétrons/fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Fosfatidiletanolaminas/genética , Transporte Proteico/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-28754315

RESUMO

The protozoan parasite Leishmania infantum is a causative agent of the disease visceral leishmaniasis, which can be fatal if not properly treated. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthesis pathways are attractive targets for new antileishmanial compounds since these Leishmania cell membrane phospholipids are important for parasite morphology and physiology. In this work we observed Leishmania synthesize PC and PE from extracellular choline and ethanolamine, respectively, suggesting the presence of CDP-choline and CDP-ethanolamine pathways. In addition, Leishmania converted PE to PC, indicating the parasite possesses phosphatidylethanolamine N-methyltransferase (PEMT) activity. The first step in the biosynthesis of PC or PE requires the phosphorylation of choline or ethanolamine by a kinase. We cloned the gene encoding a putative choline/ethanolamine kinase from Leishmania infantum and expressed and purified the encoded recombinant protein. The enzyme possesses choline kinase activity with a Vmax of 3.52µmol/min/mg and an apparent Km value of 0.089mM with respect to choline. The enzyme can also phosphorylate ethanolamine in vitro, but the apparent Km for ethanolamine is 850-fold greater than for choline. In an effort to probe requirements for small molecule inhibition of Leishmania choline kinase, the recombinant enzyme was evaluated for the ability to be inhibited by novel quaternary ammonium salts. The most effective inhibitor was N-iodomethyl-N,N,-dimethyl-N-(6,6-diphenyl hex-5-en-1-yle) ammonium iodide, denoted compound C6. In the presence of 4mM compound C6, the Vmax/Km decreased to approximately 1% of the wild-type catalytic efficiency. In addition, in Leishmania cells treated with compound C6 choline transport was inhibited.


Assuntos
Colina Quinase/metabolismo , Leishmania infantum/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Proteínas de Protozoários/metabolismo , Colina Quinase/antagonistas & inibidores , Colina Quinase/genética , Inibidores Enzimáticos/química , Leishmania infantum/genética , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Proteínas de Protozoários/genética , Especificidade por Substrato/fisiologia
15.
Apoptosis ; 22(8): 971-987, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28623512

RESUMO

Phosphatidylethanolamine (PE) is one of the most abundant phospholipids in mammalian plasma membranes. In healthy cells, PE resides predominantly in the inner leaflet of the cell membrane. In dead or dying cells on the other hand, PE is externalized to the outer leaflet of the plasma membrane. The exposure of PE on the cell surface has therefore become an attractive target for the molecular imaging of cell death using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). This has motivated the development of PE-specific probes to measure cell death in vitro and non-invasively in vivo. In this review, we highlight the biological roles of PE on cell membranes, and PE exposure as a biomarker of cell death in disease processes, along with the use of PE-binding molecular probes to target PE for the characterization of cell death on a cellular and tissue level. We specifically emphasize the preclinical applications of radiolabeled duramycin for the non-invasive imaging of cell death in animal models of disease and in tumors after therapy. In addition, we discuss the clinical relevance, limitations and future perspectives of this imaging approach of cell death.


Assuntos
Apoptose/genética , Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Fosfatidiletanolaminas/isolamento & purificação , Animais , Bacteriocinas/química , Biomarcadores/metabolismo , Membrana Celular/genética , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Peptídeos/química , Fosfatidiletanolaminas/genética , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único/métodos
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(7): 716-725, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28473294

RESUMO

In the yeast Saccharomyces cerevisiae, the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) produces the largest amount of cellular phosphatidylethanolamine (PE). Psd1p is synthesized as a larger precursor on cytosolic ribosomes and then imported into mitochondria in a three-step processing event leading to the formation of an α-subunit and a ß-subunit. The α-subunit harbors a highly conserved motif, which was proposed to be involved in phosphatidylserine (PS) binding. Here, we present a molecular analysis of this consensus motif for the function of Psd1p by using Psd1p variants bearing either deletions or point mutations in this region. Our data show that mutations in this motif affect processing and stability of Psd1p, and consequently the enzyme's activity. Thus, we conclude that this consensus motif is essential for structural integrity and processing of Psd1p.


Assuntos
Sítios de Ligação/genética , Carboxiliases/genética , Carboxiliases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Mutação Puntual/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
Genetics ; 206(2): 953-971, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28396508

RESUMO

Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems.


Assuntos
Linhagem da Célula/genética , Células Germinativas/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética , Proteômica , Adipócitos/metabolismo , Animais , Dieta , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Hexoquinase/biossíntese , Hexoquinase/genética , Células-Tronco de Oogônios/metabolismo , Fosfatidiletanolaminas/biossíntese , Fosfatidiletanolaminas/genética , Vitelogênese/genética
18.
Sci Rep ; 6: 37770, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883062

RESUMO

Temperature is a critical environmental factor that affects microalgal growth. However, microalgal coping mechanisms for temperature variations are unclear. Here, we determined changes in transcriptome, total carbohydrate, total fatty acid methyl ester, and fatty acid composition of Tetraselmis sp. KCTC12432BP, a strain with a broad temperature tolerance range, to elucidate the tolerance mechanisms in response to large temperature variations. Owing to unavailability of genome sequence information, de novo transcriptome assembly coupled with BLAST analysis was performed using strand specific RNA-seq data. This resulted in 26,245 protein-coding transcripts, of which 83.7% could be annotated to putative functions. We identified more than 681 genes differentially expressed, suggesting an organelle-specific response to temperature variation. Among these, the genes related to the photosynthetic electron transfer chain, which are localized in the plastid thylakoid membrane, were upregulated at low temperature. However, the transcripts related to the electron transport chain and biosynthesis of phosphatidylethanolamine localized in mitochondria were upregulated at high temperature. These results show that the low energy uptake by repressed photosynthesis under low and high temperature conditions is compensated by different mechanisms, including photosystem I and mitochondrial oxidative phosphorylation, respectively. This study illustrates that microalgae tolerate different temperature conditions through organelle specific mechanisms.


Assuntos
Organelas/genética , Phaeophyceae/genética , Transcriptoma/genética , Células Cultivadas , Transporte de Elétrons/genética , Perfilação da Expressão Gênica/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Microalgas/genética , Mitocôndrias/genética , Fosforilação Oxidativa , Fosfatidiletanolaminas/genética , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Temperatura , Tilacoides/genética , Regulação para Cima/genética
19.
Biochem Biophys Res Commun ; 480(2): 228-233, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27746175

RESUMO

The non-bilayer forming lipids cardiolipin (CL) and phosphatidylethanolamine (PE) modulate membrane curvature, facilitate membrane fusion and affect the stability and function of membrane proteins. Yeast peroxisomal membranes contain significant amounts of CL and PE. We analysed the effect of CL deficiency and PE depletion on peroxisome biogenesis and proliferation in Saccharomyces cerevisiae. Our data indicate that deletion of CRD1, which encodes cardiolipin synthase, does not affect peroxisome biogenesis or abundance, both at peroxisome repressing (glucose) or inducing (oleate) growth conditions. Analysis of strains deficient in one of the three PE biosynthesis pathways (psd1, psd2 or the triple deletion strain eki1 cki1 dpl1) revealed that in all three strains peroxisome numbers were reduced upon growth of cells on oleic acid, whereas the psd1 strain also showed a reduction in peroxisome abundance upon growth on glucose. Because PE is an intermediate of the phosphatidylcholine (PC) biosynthesis pathway, PE depletion affects PC formation. PC however can be synthesized by an alternative pathway when choline is supplemented to the growth medium. Because the addition of choline resulted in suppression of the peroxisome phenotypes in phosphatidylserine decarboxylase mutant strains, we conclude that peroxisome biogenesis and proliferation are not crucially dependent on CL or PE.


Assuntos
Cardiolipinas/biossíntese , Peroxissomos/metabolismo , Fosfatidiletanolaminas/biossíntese , Saccharomyces cerevisiae/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Cardiolipinas/genética , Cardiolipinas/metabolismo , Colina/metabolismo , Colina/farmacologia , Meios de Cultura/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peroxissomos/genética , Fosfatidiletanolaminas/genética , Fosfatidiletanolaminas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
20.
J Biol Chem ; 291(30): 15727-39, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27235400

RESUMO

Eukaryotic organisms typically express multiple type IV P-type ATPases (P4-ATPases), which establish plasma membrane asymmetry by flipping specific phospholipids from the exofacial to the cytosolic leaflet. Saccharomyces cerevisiae, for example, expresses five P4-ATPases, including Neo1, Drs2, Dnf1, Dnf2, and Dnf3. Neo1 is thought to be a phospholipid flippase, although there is currently no experimental evidence that Neo1 catalyzes this activity or helps establish membrane asymmetry. Here, we use temperature-conditional alleles (neo1(ts)) to test whether Neo1 deficiency leads to loss of plasma membrane asymmetry. Wild-type (WT) yeast normally restrict most of the phosphatidylserine (PS) and phosphatidylethanolamine (PE) to the inner cytosolic leaflet of the plasma membrane. However, the neo1-1(ts) and neo1-2(ts) mutants display a loss of PS and PE asymmetry at permissive growth temperatures as measured by hypersensitivity to pore-forming toxins that target PS (papuamide A) or PE (duramycin) exposed in the extracellular leaflet. When shifted to a semi-permissive growth temperature, the neo1-1(ts) mutant became extremely hypersensitive to duramycin, although the sensitivity to papuamide A was unchanged, indicating preferential exposure of PE. This loss of asymmetry occurs despite the presence of other flippases that flip PS and/or PE. Even when overexpressed, Drs2 and Dnf1 were unable to correct the loss of asymmetry caused by neo1(ts) However, modest overexpression of Neo1 weakly suppressed loss of membrane asymmetry caused by drs2Δ with a more significant correction of PE asymmetry than PS. These results indicate that Neo1 plays an important role in establishing PS and PE plasma membrane asymmetry in budding yeast.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Bacteriocinas/farmacologia , Membrana Celular/genética , Depsipeptídeos/farmacologia , Proteínas de Membrana Transportadoras/genética , Peptídeos/farmacologia , Fosfatidiletanolaminas/genética , Fosfatidilserinas/genética , Proteínas de Transferência de Fosfolipídeos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...