Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 767
Filtrar
1.
Blood Adv ; 7(16): 4233-4246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36930803

RESUMO

Platelets use signal transduction pathways facilitated by class I phosphatidylinositol transfer proteins (PITPs). The 2 mammalian class I PITPs, PITPα and PITPß, are single PITP domain soluble proteins that are encoded by different genes and share 77% sequence identity, although their individual roles in mammalian biology remain uncharacterized. These proteins are believed to shuttle phosphatidylinositol and phosphatidylcholine between separate intracellular membrane compartments, thereby regulating phosphoinositide synthesis and second messenger formation. Previously, we observed that platelet-specific deletion of PITPα, the predominantly expressed murine PITP isoform, had no effect on hemostasis but impaired tumor metastasis formation and disrupted phosphoinositide signaling. Here, we found that mice lacking the less expressed PITPß in their platelets exhibited a similar phenotype. However, in contrast to PITPα-null platelet lysates, which have impaired lipid transfer activity, PITPß-null platelet lysates have essentially normal lipid transfer activity, although both isoforms contribute to phosphoinositide synthesis in vitro. Moreover, we found that platelet-specific deletion of both PITPs led to ex vivo platelet aggregation/secretion and spreading defects, impaired tail bleeding, and profound tumor dissemination. Our study also demonstrated that PITP isoforms are required to maintain endogenous phosphoinositide PtdInsP2 levels and agonist-stimulated second messenger formation. The data shown here demonstrate that the 2 isoforms are functionally overlapping and that a single isoform is able to maintain the homeostasis of platelets. However, both class I PITP isoforms contribute to phosphoinositide signaling in platelets through distinct biochemical mechanisms or different subcellular domains.


Assuntos
Plaquetas , Proteínas de Transferência de Fosfolipídeos , Animais , Camundongos , Tempo de Sangramento , Plaquetas/metabolismo , Deleção de Genes , Homeostase/genética , Camundongos Endogâmicos C57BL , Neoplasias/genética , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais/genética , Trombose/genética
2.
Mol Biol Cell ; 32(22): ae1, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34735266

RESUMO

As I look back to my scientific trajectory on the occasion of being the recipient of the E. B. Wilson Medal of the American Society for Cell Biology, I realize how much an early scientific experience had an impact on my research many years later. The major influence that the first scientific encounters can have in defining a scientist's path makes the choice of the training environment so important for a future career.


Assuntos
Escolha da Profissão , Fosfatidilinositóis/biossíntese , Pesquisa , Biologia Celular , Humanos , Fosfatidilinositóis/metabolismo
3.
Biochem J ; 478(9): 1749-1767, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33843991

RESUMO

Phospholipase D (PLD) is an enzyme useful for the enzymatic modification of phospholipids. In the presence of primary alcohols, the enzyme catalyses transphosphatidylation of the head group of phospholipid substrates to synthesise a modified phospholipid product. However, the enzyme is specific for primary alcohols and thus the limitation of the molecular size of the acceptor compounds has restricted the type of phospholipid species that can be synthesised. An engineered variant of PLD from Streptomyces antibioticus termed TNYR SaPLD was developed capable of synthesising 1-phosphatidylinositol with positional specificity of up to 98%. To gain a better understanding of the substrate binding features of the TNYR SaPLD, crystal structures have been determined for the free enzyme and its complexes with phosphate, phosphatidic acid and 1-inositol phosphate. Comparisons of these structures with the wild-type SaPLD show a larger binding site able to accommodate a bulkier secondary alcohol substrate as well as changes to the position of a flexible surface loop proposed to be involved in substrate recognition. The complex of the active TNYR SaPLD with 1-inositol phosphate reveals a covalent intermediate adduct with the ligand bound to H442 rather than to H168, the proposed nucleophile in the wild-type enzyme. This structural feature suggests that the enzyme exhibits plasticity of the catalytic mechanism different from what has been reported to date for PLDs. These structural studies provide insights into the underlying mechanism that governs the recognition of myo-inositol by TNYR SaPLD, and an important foundation for further studies of the catalytic mechanism.


Assuntos
Proteínas de Bactérias/química , Fosfatos/química , Ácidos Fosfatídicos/química , Fosfatidilinositóis/biossíntese , Fosfolipase D/química , Streptomyces antibioticus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Fosfatos/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositóis/química , Fosfolipase D/genética , Fosfolipase D/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces antibioticus/química , Especificidade por Substrato
4.
J Inherit Metab Dis ; 44(4): 809-825, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33594685

RESUMO

Over 80 human diseases have been attributed to defects in complex lipid metabolism. A majority of them have been reported recently in the setting of rapid advances in genomic technology and their increased use in clinical settings. Lipids are ubiquitous in human biology and play roles in many cellular and intercellular processes. While inborn errors in lipid metabolism can affect every organ system with many examples of genetic heterogeneity and pleiotropy, the clinical manifestations of many of these disorders can be explained based on the disruption of the metabolic pathway involved. In this review, we will discuss the physiological function of major pathways in complex lipid metabolism, including nonlysosomal sphingolipid metabolism, acylceramide metabolism, de novo phospholipid synthesis, phospholipid remodeling, phosphatidylinositol metabolism, mitochondrial cardiolipin synthesis and remodeling, and ether lipid metabolism as well as common clinical phenotypes associated with each.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Redes e Vias Metabólicas/fisiologia , Cardiolipinas/biossíntese , Cardiolipinas/química , Homeostase , Humanos , Lipídeos/biossíntese , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fenótipo , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/química , Fosfolipídeos/biossíntese , Fosfolipídeos/química , Esfingolipídeos/biossíntese , Esfingolipídeos/química
5.
Cell ; 184(1): 106-119.e14, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33333024

RESUMO

The Coronaviridae are a family of viruses that cause disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E), and glycosaminoglycans (for OC43). Additionally, we identified phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol kinases and cholesterol homeostasis reduced replication of all three coronaviruses. These findings offer important insights for the understanding of the coronavirus life cycle and the development of host-directed therapies.


Assuntos
COVID-19/genética , Infecções por Coronavirus/genética , Coronavirus/fisiologia , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Células A549 , Animais , Vias Biossintéticas/efeitos dos fármacos , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Colesterol/biossíntese , Colesterol/metabolismo , Análise por Conglomerados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Resfriado Comum/genética , Resfriado Comum/virologia , Coronavirus/classificação , Infecções por Coronavirus/virologia , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Camundongos , Fosfatidilinositóis/biossíntese , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral
6.
Commun Biol ; 3(1): 750, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303967

RESUMO

Phosphatidylinositol (PtdIns) serves as an integral component of eukaryotic membranes; however, its biosynthesis in apicomplexan parasites remains poorly understood. Here we show that Toxoplasma gondii-a common intracellular pathogen of humans and animals-can import and co-utilize myo-inositol with the endogenous CDP-diacylglycerol to synthesize PtdIns. Equally, the parasite harbors a functional PtdIns synthase (PIS) containing a catalytically-vital CDP-diacylglycerol phosphotransferase motif in the Golgi apparatus. Auxin-induced depletion of PIS abrogated the lytic cycle of T. gondii in human cells due to defects in cell division, gliding motility, invasion, and egress. Isotope labeling of the PIS mutant in conjunction with lipidomics demonstrated de novo synthesis of specific PtdIns species, while revealing the salvage of other lipid species from the host cell. Not least, the mutant showed decline in phosphatidylthreonine, and elevation of selected phosphatidylserine and phosphatidylglycerol species, indicating a rerouting of CDP-diacylglycerol and homeostatic inter-regulation of anionic phospholipids upon knockdown of PIS. In conclusion, strategic allocation of own and host-derived PtdIns species to gratify its metabolic demand features as a notable adaptive trait of T. gondii. Conceivably, the dependence of T. gondii on de novo lipid synthesis and scavenging can be exploited to develop new anti-infectives.


Assuntos
Fosfatidilinositóis/biossíntese , Toxoplasma/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Membrana Celular , Diglicerídeos de Citidina Difosfato/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Homeostase , Ácidos Indolacéticos , Inositol/metabolismo , Lipídeos , Mutação
7.
PLoS One ; 15(8): e0231364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804943

RESUMO

Phosphoinositides (PIPs) and their regulatory enzymes are key players in many cellular processes and are required for aspects of vertebrate development. Dysregulated PIP metabolism has been implicated in several human diseases, including a subset of skeletal myopathies that feature structural defects in the triad. The role of PIPs in skeletal muscle formation, and particularly triad biogenesis, has yet to be determined. CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) catalyzes the formation of phosphatidylinositol, which is the base of all PIP species. Loss of CDIPT should, in theory, result in the failure to produce PIPs, and thus provide a strategy for establishing the requirement for PIPs during embryogenesis. In this study, we generated cdipt mutant zebrafish and determined the impact on skeletal myogenesis. Analysis of cdipt mutant muscle revealed no apparent global effect on early muscle development. However, small but significant defects were observed in triad size, with T-tubule area, inter terminal cisternae distance and gap width being smaller in cdipt mutants. This was associated with a decrease in motor performance. Overall, these data suggest that myogenesis in zebrafish does not require de novo PIP synthesis but does implicate a role for CDIPT in triad formation.


Assuntos
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Animais , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/biossíntese , Fosfatos de Inositol/metabolismo , Lipogênese , Desenvolvimento Muscular/genética , Músculos/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Sci Rep ; 10(1): 2013, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029818

RESUMO

Although a loss of healthy pollen grains induced by metabolic heat responses has been indicated to be a major cause of heat-induced spikelet sterility under global climate change, to date detailed information at pollen level has been lacking due to the technical limitations. In this study, we used picolitre pressure-probe-electrospray-ionization mass spectrometry (picoPPESI-MS) to directly determine the metabolites in heat-treated single mature pollen grains in two cultivars, heat-tolerant cultivar, N22 and heat-sensitive cultivar, Koshihikari. Heat-induced spikelet fertility in N22 and Koshihikari was 90.0% and 46.8%, respectively. While no treatment difference in in vitro pollen viability was observed in each cultivar, contrasting varietal differences in phosphatidylinositol (PI)(34:3) have been detected in mature pollen, together with other 106 metabolites. Greater PI content was detected in N22 pollen regardless of the treatment, but not for Koshihikari pollen. In contrast, there was little detection for phosphoinositide in the single mature pollen grains in both cultivars. Our findings indicate that picoPPESI-MS analysis can efficiently identify the metabolites in intact single pollen. Since PI is a precursor of phosphoinositide that induces multiple signaling for pollen germination and tube growth, the active synthesis of PI(34:3) prior to germination may be closely associated with sustaining spikelet fertility even at high temperatures.


Assuntos
Resposta ao Choque Térmico/fisiologia , Oryza/fisiologia , Fosfatidilinositóis/biossíntese , Pólen/metabolismo , Fertilidade/fisiologia , Germinação/fisiologia , Temperatura Alta/efeitos adversos , Metabolômica , Análise de Célula Única
9.
J Microbiol Biotechnol ; 29(3): 429-440, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30661321

RESUMO

Several studies have attempted to identify factors associated with longevity and maintenance of health in centenarians. In this study, we analyzed and compared the gut microbiota of centenarians in longevity villages with the elderly and adults in the same region and urbanized towns. Fecal samples were collected from centenarians, elderly, and young adults in longevity villages, and the gut microbiota sequences of elderly and young adults in urbanized towns of Korea were obtained from public databases. The relative abundance of Firmicutes was found to be considerably higher in subjects from longevity villages than those from urbanized towns, whereas Bacteroidetes was lower. Age-related rearrangement of gut microbiota was observed in centenarians, such as reduced proportions of Faecalibacterium and Prevotella, and increased proportion of Escherichia, along with higher abundances of Akkermansia, Clostridium, Collinsella, and uncultured Christensenellaceae. Gut microbiota of centenarians in rehabilitation hospital were also different to those residing at home. These differences could be due to differences in diet patterns and living environments. In addition, phosphatidylinositol signaling system, glycosphingolipid biosynthesis, and various types of N-glycan biosynthesis were predicted to be higher in the gut microbiota of centenarians (corrected p < 0.05). These three metabolic pathways of gut microbiota can be associated with the immune status and healthy gut environment of centenarians. Although further studies are necessary to validate the function of microbiota between groups, this study provides valuable information on centenarians' gut microbiota.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Microbioma Gastrointestinal , Longevidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/genética , Dieta , Meio Ambiente , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Glicoesfingolipídeos/biossíntese , Hospitais de Reabilitação , Humanos , Masculino , Refeições , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Fosfatidilinositóis/biossíntese , Filogenia , Polissacarídeos/biossíntese , Polissacarídeos/farmacologia , República da Coreia , Análise de Sequência de DNA
10.
Transl Psychiatry ; 8(1): 175, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30171184

RESUMO

Lithium is widely used to treat bipolar disorder, but its primary mechanism of action is uncertain. One proposal has been that lithium's ability to inhibit the enzyme inositol monophosphatase (IMPase) reduces the supply of recycled inositol used for membrane phosphoinositide (PIns) synthesis. This 28-year-old hypothesis is still widely debated, however, largely because total levels of PIns in brain or in cultured neurons do not decrease after lithium treatment. Here we use mature cultured cortical neurons to show that, although lithium has little effect on steady-state levels of either inositol or PIns, it markedly inhibits the rate of PIns synthesis. Moreover, we show that rapid synthesis of membrane PIns preferentially uses inositol newly imported from the extracellular space. Unexpectedly, we also find that the antidepressant drug fluoxetine (FLUO: Prozac) stimulates the rate of PIns synthesis. The convergence of both lithium and FLUO in regulating the rate of synthesis of PIns in opposite ways highlights PIns turnover in neurons as a potential new drug target, as well as for understanding mood control in BD. Our results also indicate new avenues for investigation of how neurons regulate their supply of inositol.


Assuntos
Fluoxetina/farmacologia , Inositol/metabolismo , Compostos de Lítio/farmacologia , Neurônios/efeitos dos fármacos , Fosfatidilinositóis/biossíntese , Animais , Antidepressivos de Segunda Geração/farmacologia , Antimaníacos/uso terapêutico , Transtorno Bipolar/tratamento farmacológico , Córtex Cerebral/patologia , Ratos , Ratos Sprague-Dawley
11.
Neurobiol Dis ; 118: 76-93, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30008368

RESUMO

Neuronal Kv7/KCNQ channels are voltage-gated potassium channels composed of Kv7.2/KCNQ2 and Kv7.3/KCNQ3 subunits. Enriched at the axonal membrane, they potently suppress neuronal excitability. De novo and inherited dominant mutations in Kv7.2 cause early onset epileptic encephalopathy characterized by drug resistant seizures and profound psychomotor delay. However, their precise pathogenic mechanisms remain elusive. Here, we investigated selected epileptic encephalopathy causing mutations in calmodulin (CaM)-binding helices A and B of Kv7.2. We discovered that R333W, K526N, and R532W mutations located peripheral to CaM contact sites decreased axonal surface expression of heteromeric channels although only R333W mutation reduced CaM binding to Kv7.2. These mutations also altered gating modulation by phosphatidylinositol 4,5-bisphosphate (PIP2), revealing novel PIP2 binding residues. While these mutations disrupted Kv7 function to suppress excitability, hyperexcitability was observed in neurons expressing Kv7.2-R532W that displayed severe impairment in voltage-dependent activation. The M518 V mutation at the CaM contact site in helix B caused most defects in Kv7 channels by severely reducing their CaM binding, K+ currents, and axonal surface expression. Interestingly, the M518 V mutation induced ubiquitination and accelerated proteasome-dependent degradation of Kv7.2, whereas the presence of Kv7.3 blocked this degradation. Furthermore, expression of Kv7.2-M518V increased neuronal death. Together, our results demonstrate that epileptic encephalopathy mutations in helices A and B of Kv7.2 cause abnormal Kv7 expression and function by disrupting Kv7.2 binding to CaM and/or modulation by PIP2. We propose that such multiple Kv7 channel defects could exert more severe impacts on neuronal excitability and health, and thus serve as pathogenic mechanisms underlying Kcnq2 epileptic encephalopathy.


Assuntos
Axônios/metabolismo , Encefalopatias/metabolismo , Epilepsia Generalizada/metabolismo , Canal de Potássio KCNQ2/biossíntese , Neurônios/metabolismo , Fosfatidilinositóis/biossíntese , Sequência de Aminoácidos , Animais , Axônios/patologia , Encefalopatias/genética , Encefalopatias/patologia , Epilepsia Generalizada/genética , Epilepsia Generalizada/patologia , Expressão Gênica , Células HEK293 , Humanos , Canal de Potássio KCNQ2/química , Canal de Potássio KCNQ2/genética , Neurônios/patologia , Fosfatidilinositóis/genética , Estrutura Secundária de Proteína , Ratos
12.
FEMS Yeast Res ; 18(7)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29945236

RESUMO

Candida albicans N-acetylglucosaminylphosphatidylinositol de-N-acetylase (CaGpi12) recognises N-acetylglucosaminylphosphatidylinositol (GlcNAc-PI) from Saccharomyces cerevisiae and is able to complement ScGPI12 function. Both N- and C-terminal ends of CaGpi12 are important for its function. CaGpi12 was biochemically characterised using rough endoplasmic reticulum microsomes prepared from BWP17 strain of C. albicans. CaGpi12 is optimally active at 30°C and pH 7.5. It is a metal-dependent enzyme that is stimulated by divalent cations but shows no preference for Zn2+ unlike the mammalian homologue. It irreversibly loses activity upon incubation with a metal chelator. Two conserved motifs, HPDDE and HXXH, are both important for its function in the cell. CaGPI12 is essential for growth and viability of C. albicans. Its loss causes reduction of GlcNAc-PI de-N-acetylase activity, cell wall defects and filamentation defects. The filamentation defects could be specifically correlated to an upregulation of the HOG1 pathway.


Assuntos
Acetilesterase/metabolismo , Acetilglucosamina/análogos & derivados , Candida albicans/enzimologia , Proteínas Fúngicas/metabolismo , Fosfatidilinositóis/biossíntese , Acetilesterase/química , Acetilesterase/genética , Acetilglucosamina/biossíntese , Motivos de Aminoácidos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/metabolismo , Catálise , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Hifas/enzimologia , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Metais/química , Viabilidade Microbiana , Microssomos/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Temperatura
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1355-1367, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27826050

RESUMO

Phosphatidyl-myo-inositol mannosides (PIMs) are glycolipids of unique chemical structure found in the inner and outer membranes of the cell envelope of all Mycobacterium species. The PIM family of glycolipids comprises phosphatidyl-myo-inositol mono-, di-, tri-, tetra-, penta-, and hexamannosides with different degrees of acylation. PIMs are considered not only essential structural components of the cell envelope but also the precursors of lipomannan and lipoarabinomannan, two major lipoglycans implicated in host-pathogen interactions. Since the description of the complete chemical structure of PIMs, major efforts have been committed to defining the molecular bases of its biosynthetic pathway. The structural characterization of the integral membrane phosphatidyl-myo-inositol phosphate synthase (PIPS), and that of three enzymes working at the protein-membrane interface, the phosphatidyl-myo-inositol mannosyltransferases A and B, and the acyltransferase PatA, established the basis of the early steps of the PIM pathway at the molecular level. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Lipogênese , Mycobacterium/metabolismo , Fosfatidilinositóis/biossíntese , Aciltransferases/química , Aciltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Manosiltransferases/química , Manosiltransferases/metabolismo , Modelos Moleculares , Fosfatidilinositóis/química , Conformação Proteica , Relação Estrutura-Atividade , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
14.
Mol Biol Cell ; 27(14): 2317-30, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27193303

RESUMO

Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatidilinositóis/biossíntese , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
15.
J Biosci Bioeng ; 122(3): 276-82, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27009527

RESUMO

The purpose of this study was to improve the efficiency of enzymatic synthesis of phosphatidylinositol (PI) from phosphatidylcholine (PC) and myo-inositol in a phospholipase D (PLD)-mediated transphosphatidylation. A conventional biphasic reaction system consisting of ethyl acetate and an aqueous buffer afforded PI with a yield of 14 mol%. In contrast, the reaction performed in the presence of high concentration (0.8-4.3 M) of NaCl in the aqueous phase showed improved PI yield in a NaCl concentration-dependent manner. At 4.3 M NaCl, PI yield of as much as 35 mol% was achieved. The increase in the PI yield offered by other tested salts varied; however, we observed that some salts caused inactivation of the enzyme when used at high concentrations. Although NaCl at high concentration increased the apparent hydrolytic activity on aggregated PC, it decreased the activity towards monomeric PC, indicating that high concentration of salt intrinsically inhibits the enzyme. Binding assays revealed that PLD re-localized from the aqueous phase to the solvent-buffer interface, where the enzymatic reaction takes place, in the presence of both, the salt and PC. Hence, we concluded that improvement of the PI synthesis in the presence of salt occurs mainly due to the accumulation of the enzyme at the interface by strengthening the hydrophobic interactions, by which the apparent activation outweighs the salt-induced inhibitory effect. Using this improved system, several PI with defined structures, namely sn-1, 2-dioleoyl-PI, sn-1-palmitoyl-2-oleoyl-PI, and sn-1-stearoyl-2-arachidonoyl-PI, were successfully synthesized with overall yields of 25-37%, and PI isomeric purities of 91-96%.


Assuntos
Fosfatidilinositóis/biossíntese , Fosfolipase D/metabolismo , Cloreto de Sódio/farmacologia , Soluções Tampão , Interações Hidrofóbicas e Hidrofílicas , Inositol/metabolismo , Fosfatidilcolinas/metabolismo , Solventes
16.
Nat Commun ; 7: 10906, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26965057

RESUMO

The biosynthesis of phospholipids and glycolipids are critical pathways for virtually all cell membranes. PatA is an essential membrane associated acyltransferase involved in the biosynthesis of mycobacterial phosphatidyl-myo-inositol mannosides (PIMs). The enzyme transfers a palmitoyl moiety from palmitoyl-CoA to the 6-position of the mannose ring linked to 2-position of inositol in PIM1/PIM2. We report here the crystal structures of PatA from Mycobacterium smegmatis in the presence of its naturally occurring acyl donor palmitate and a nonhydrolyzable palmitoyl-CoA analog. The structures reveal an α/ß architecture, with the acyl chain deeply buried into a hydrophobic pocket that runs perpendicular to a long groove where the active site is located. Enzyme catalysis is mediated by an unprecedented charge relay system, which markedly diverges from the canonical HX4D motif. Our studies establish the mechanistic basis of substrate/membrane recognition and catalysis for an important family of acyltransferases, providing exciting possibilities for inhibitor design.


Assuntos
Aciltransferases/metabolismo , Mycobacterium smegmatis/metabolismo , Aciltransferases/química , Catálise , Domínio Catalítico , Membrana Celular/metabolismo , Cristalografia por Raios X , Manosídeos/biossíntese , Mycobacterium smegmatis/química , Palmitatos/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilinositóis/biossíntese , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
Methods Mol Biol ; 1376: 239-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552689

RESUMO

Phosphatidylinositol (PI) is a phospholipid molecule required for the generation of seven different phosphoinositide lipids which have a diverse range of signaling and trafficking functions. The precise mechanism of phosphatidylinositol supply during receptor activated signaling and the cellular compartmentation of the synthetic process are still incompletely understood and remain controversial despite several decades of research in this area. The synthesis of phosphatidylinositol requires the activity of an enzyme called phosphatidylinositol synthase, also known as CDIPT, which catalyzes a reversible headgroup exchange reaction on its substrate liponucleotide CDP-diacylglycerol resulting in the incorporation of inositol to generate phosphatidylinositol and the release of CMP. This protocol describes a method for locating PI synthase activity in isolated, intact biological membranes and vesicles.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositóis/biossíntese , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/metabolismo , Catálise , Ensaios Enzimáticos/métodos , Especificidade por Substrato
18.
Mol Biol Cell ; 27(1): 90-107, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26510499

RESUMO

Mutation of the inositol 5-phosphatase OCRL1 causes Lowe syndrome and Dent-2 disease. Loss of OCRL1 function perturbs several cellular processes, including membrane traffic, but the underlying mechanisms remain poorly defined. Here we show that OCRL1 is part of the membrane-trafficking machinery operating at the trans-Golgi network (TGN)/endosome interface. OCRL1 interacts via IPIP27A with the F-BAR protein pacsin 2. OCRL1 and IPIP27A localize to mannose 6-phosphate receptor (MPR)-containing trafficking intermediates, and loss of either protein leads to defective MPR carrier biogenesis at the TGN and endosomes. OCRL1 5-phosphatase activity, which is membrane curvature sensitive, is stimulated by IPIP27A-mediated engagement of OCRL1 with pacsin 2 and promotes scission of MPR-containing carriers. Our data indicate a role for OCRL1, via IPIP27A, in regulating the formation of pacsin 2-dependent trafficking intermediates and reveal a mechanism for coupling PtdIns(4,5)P2 hydrolysis with carrier biogenesis on endomembranes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Células COS , Endocitose , Endossomos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células HEK293 , Células HeLa , Humanos , Inositol Polifosfato 5-Fosfatases , Nefrolitíase/genética , Nefrolitíase/metabolismo , Nefrolitíase/patologia , Proteínas do Tecido Nervoso/metabolismo , Síndrome Oculocerebrorrenal/genética , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/patologia , Fosfatidilinositóis/biossíntese , Fosfatidilinositóis/metabolismo , Transporte Proteico , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/metabolismo
19.
Biochim Biophys Acta ; 1851(12): 1566-76, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26417903

RESUMO

The acylglycerophosphate acyltransferase/lysophosphatidic acid acyltransferase (AGPAT/LPAAT) family is a group of homologous acyl-CoA-dependent lysophospholipid acyltransferases. We performed studies to better understand the subcellular localization, activity, and in vivo function of AGPAT4/LPAATδ, which we found is expressed in multiple mouse brain regions. Endogenous brain AGPAT4 and AGPAT4 overexpressed in HEK293 or Sf9 insect cells localizes to mitochondria and is resident on the outer mitochondrial membrane. Further fractionation showed that AGPAT4 is present specifically in the mitochondria and not in the mitochondria-associated endoplasmic reticulum membrane (i.e. MAM). Lysates from Sf9 cells infected with baculoviral Agpat4 were tested with eight lysophospholipid species but showed an increased activity only with lysophosphatidic acid as an acyl acceptor. Analysis of Sf9 phospholipid species, however, indicated a significant 72% increase in phosphatidylinositol (PI) content. We examined the content of major phospholipid species in brains of Agpat4(-/-) mice and found also a >50% decrease in total levels of PI relative to wildtype mice, as well as significant decreases in phosphatidylcholine (PC) and phosphatidylethanolamine (PE), but no significant differences in phosphatidylserine, phosphatidylglycerol, cardiolipin, or phosphatidic acid (PA). A compensatory upregulation of Agpats 1, 2, 3, 5, and 9 may help to explain the lack of difference in PA. Our findings indicate that AGPAT4 is a mitochondrial AGPAT/LPAAT that specifically supports synthesis of brain PI, PC, and PE. This understanding may help to explain apparent redundancies in the AGPAT/LPAAT family.


Assuntos
Encéfalo/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/biossíntese , Proteínas Mitocondriais/biossíntese , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Fosfatidilinositóis/biossíntese , Animais , Encéfalo/citologia , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicerol-3-Fosfato O-Aciltransferase/genética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosfatidilcolinas/genética , Fosfatidiletanolaminas/genética , Fosfatidilinositóis/genética
20.
Biochim Biophys Acta ; 1851(11): 1428-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303578

RESUMO

The phospholipid (PL) requirement in fish is revealed by enhanced performance when larvae are provided PL-enriched diets. To elucidate the molecular mechanism underlying PL requirement in Atlantic salmon, Salmo salar, were fed a minimal PL diet and tissue samples from major lipid metabolic sites were dissected from fry and parr. In silico analysis and cloning techniques demonstrated that salmon possess a full set of enzymes for the endogenous production of PL. The gene expression data indicated that major PL biosynthetic genes of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and phosphatidylinositol (PtdIns) display lower expression in intestine during the early developmental stage (fry). This is consistent with the hypothesis that the intestine of salmon is immature at the early developmental stage with limited capacity for endogenous PL biosynthesis. The results also indicate that intact PtdCho, PtdEtn and PtdIns are required in the diet at this stage. PtdCho and sphingomyelin constitute the predominant PL in chylomicrons, involved in the transport of dietary lipids from the intestine to the rest of the body. As sphingomyelin can be produced from PtdCho in intestine of fry, our findings suggest that supplementation of dietary PtdCho alone during early developmental stages of Atlantic salmon would be sufficient to promote chylomicron formation. This would support efficient transport of dietary lipids, including PL precursors, from the intestine to the liver where biosynthesis of PtdEtn, PtdSer, and PtdIns is not compromised as in intestine facilitating efficient utilisation of dietary energy and the endogenous production of membrane PL for the rapidly growing and developing animal.


Assuntos
CDPdiacilglicerol-Serina O-Fosfatidiltransferase/metabolismo , Gorduras na Dieta/metabolismo , Proteínas de Peixes/metabolismo , Salmo salar/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Quilomícrons/biossíntese , Gorduras na Dieta/administração & dosagem , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Mucosa Intestinal/metabolismo , Intestinos/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Anotação de Sequência Molecular , Dados de Sequência Molecular , Fosfatidilcolinas/biossíntese , Fosfatidiletanolaminas/biossíntese , Fosfatidilinositóis/biossíntese , Salmo salar/genética , Salmo salar/crescimento & desenvolvimento , Alinhamento de Sequência , Esfingomielinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...