Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1422: 193-215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988882

RESUMO

Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.


Assuntos
Canais Iônicos , Fosfatidilinositóis , Canais Iônicos/metabolismo , Transporte Biológico , Fosfatidilinositóis/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Membrana Celular/metabolismo
2.
J Biol Chem ; 297(5): 101303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655614

RESUMO

As a central player in the canonical TGF-ß signaling pathway, Smad2 transmits the activation of TGF-ß receptors at the plasma membrane (PM) to transcriptional regulation in the nucleus. Although it has been well established that binding of TGF-ß to its receptors leads to the recruitment and activation of Smad2, the spatiotemporal mechanism by which Smad2 is recruited to the activated TGF-ß receptor complex and activated is not fully understood. Here we show that Smad2 selectively and tightly binds phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the PM. The PI(4,5)P2-binding site is located in the MH2 domain that is involved in interaction with the TGF-ß receptor I that transduces TGF-ß-receptor binding to downstream signaling proteins. Quantitative optical imaging analyses show that PM recruitment of Smad2 is triggered by its interaction with PI(4,5)P2 that is locally enriched near the activated TGF-ß receptor complex, leading to its binding to the TGF-ß receptor I. The PI(4,5)P2-binding activity of Smad2 is essential for the TGF-ß-stimulated phosphorylation, nuclear transport, and transcriptional activity of Smad2. Structural comparison of all Smad MH2 domains suggests that membrane lipids may also interact with other Smad proteins and regulate their function in diverse TGF-ß-mediated biological processes.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transporte Ativo do Núcleo Celular , Células HeLa , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Ligação Proteica , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética
3.
Biochim Biophys Acta Biomembr ; 1863(12): 183757, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478732

RESUMO

GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1-4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).


Assuntos
Proteínas de Transporte/genética , Transportador de Glucose Tipo 1/genética , Lipídeos/genética , Fosfatidilinositol 4,5-Difosfato/química , Transporte Biológico/genética , Proteínas de Transporte/química , Clatrina/química , Endocitose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 1/química , Humanos , Lipídeos/química , Fosfatidilinositol 4,5-Difosfato/genética , Transdução de Sinais
4.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33119550

RESUMO

The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k-/- muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k-/- myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k-/- muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.


Assuntos
Autofagia , Lisossomos/metabolismo , Doenças Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animais , Lisossomos/genética , Lisossomos/patologia , Camundongos , Camundongos Knockout , Doenças Musculares/genética , Doenças Musculares/patologia , Mioblastos Esqueléticos/patologia , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
5.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172190

RESUMO

Phosphoinositides play a crucial role in regulating many cellular functions, such as actin dynamics, signaling, intracellular trafficking, membrane dynamics, and cell-matrix adhesion. Central to this process is phosphatidylinositol bisphosphate (PIP2). The levels of PIP2 in the membrane are rapidly altered by the activity of phosphoinositide-directed kinases and phosphatases, and it binds to dozens of different intracellular proteins. Despite the vast literature dedicated to understanding the regulation of PIP2 in cells over past 30 years, much remains to be learned about its cellular functions. In this review, we focus on past and recent exciting results on different molecular mechanisms that regulate cellular functions by binding of specific proteins to PIP2 or by stabilizing phosphoinositide pools in different cellular compartments. Moreover, this review summarizes recent findings that implicate dysregulation of PIP2 in many diseases.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiologia , Membrana Celular/metabolismo , Doença/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Transdução de Sinais/fisiologia
6.
FASEB J ; 34(9): 12127-12146, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32686865

RESUMO

Alzheimer's disease (AD) is characterized by a chronic decline in cognitive function and is pathologically typified by cerebral deposition of amyloid-ß peptide (Aß). The production of Aß is mediated by sequential proteolysis of amyloid precursor protein (APP) by ß- and γ-secretases, and has been implicated as the essential determinant of AD pathology. Previous studies have demonstrated that the level of phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] in the membrane may potentially modulate Aß production. Given that PI(4,5)P2 is produced by type 1 phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), we sought to determine whether the level of PIP5K type Iα (PIP5K1A) can affect production of Aß by modulating the lipid composition of the membrane. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that overexpression of PIP5K1A results in significant enhancement of non-amyloidogenic APP processing and a concomitant suppression of the amyloidogenic pathway, leading to a marked decrease in secreted Aß. Consistently, cells overexpressing PIP5K1A exhibited a significant redistribution of APP-YFP from endosomal compartments to the cell surface. Our findings suggest that PIP5K1A may play a critical role in governing Aß production by modulating membrane distribution of APP, and as such, the pathway may be a valuable therapeutic target for AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ratos
7.
J Virol ; 94(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32376619

RESUMO

HIV-1 assembly occurs principally at the plasma membrane (PM) of infected cells. Gag polyprotein precursors (Pr55Gag) are targeted to the PM, and their binding is mediated by the interaction of myristoylated matrix domain and a PM-specific phosphoinositide, the phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2]. The major synthesis pathway of PI(4,5)P2 involves the activity of phosphatidylinositol-4-phosphate 5-kinase family type 1 composed of three isoforms (PIP5K1α, PIP5K1ß, and PIP5K1γ). To examine whether the activity of a specific PIP5K1 isoform determines proper Pr55Gag localization at the PM, we compared the cellular behavior of Pr55Gag in the context of PIP5K1 inhibition using siRNAs that individually targeted each of the three isoforms in TZM-bl HeLa cells. We found that downregulation of PIP5K1α and PIP5K1γ strongly impaired the targeting of Pr55Gag to the PM with a rerouting of the polyprotein within intracellular compartments. The efficiency of Pr55Gag release was thus impaired through the silencing of these two isoforms, while PIP5K1ß is dispensable for Pr55Gag targeting to the PM. The PM mistargeting due to the silencing of PIP5K1α leads to Pr55Gag hydrolysis through lysosome and proteasome pathways, while the silencing of PIP5K1γ leads to Pr55Gag accumulation in late endosomes. Our findings demonstrated that, within the PIP5K1 family, only the PI(4,5)P2 pools produced by PIP5K1α and PIP5K1γ are involved in the Pr55Gag PM targeting process.IMPORTANCE PM specificity of Pr55Gag membrane binding is mediated through the interaction of PI(4,5)P2 with the matrix (MA) basic residues. It was shown that overexpression of a PI(4,5)P2-depleting enzyme strongly impaired PM localization of Pr55Gag However, cellular factors that control PI(4,5)P2 production required for Pr55Gag-PM targeting have not yet been characterized. In this study, by individually inhibiting PIP5K1 isoforms, we elucidated a correlation between PI(4,5)P2 metabolism pathways mediated by PIP5K1 isoforms and the targeting of Pr55Gag to the PM of TZM-bl HeLa cells. Confocal microscopy analyses of cells depleted from PIP5K1α and PIP5K1γ show a rerouting of Pr55Gag to various intracellular compartments. Notably, Pr55Gag is degraded by the proteasome and/or by the lysosomes in PIP5K1α-depleted cells, while Pr55Gag is targeted to endosomal vesicles in PIP5K1γ-depleted cells. Thus, our results highlight, for the first time, the roles of PIP5K1α and PIP5K1γ as determinants of Pr55Gag targeting to the PM.


Assuntos
Membrana Celular/metabolismo , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , HIV-1/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Precursores de Proteínas/metabolismo , Membrana Celular/genética , Membrana Celular/virologia , Endossomos/genética , Endossomos/metabolismo , Endossomos/virologia , HIV-1/genética , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/virologia , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Precursores de Proteínas/genética , Proteólise
8.
Int J Mol Sci ; 21(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936257

RESUMO

Bradykinin (BK), a hormone inducing pain and inflammation, is known to inhibit potassium M-currents (IM) and to increase the excitability of the superior cervical ganglion (SCG) neurons by activating the Ca2+-calmodulin pathway. M-current is also reduced by muscarinic agonists through the depletion of membrane phosphatidylinositol 4,5-biphosphate (PIP2). Similarly, the activation of muscarinic receptors inhibits the current through two-pore domain potassium channels (K2P) of the "Tandem of pore-domains in a Weakly Inward rectifying K+ channel (TWIK)-related channels" (TREK) subfamily by reducing PIP2 in mouse SCG neurons (mSCG). The aim of this work was to test and characterize the modulation of TREK channels by bradykinin. We used the perforated-patch technique to investigate riluzole (RIL) activated currents in voltage- and current-clamp experiments. RIL is a drug used in the palliative treatment of amyotrophic lateral sclerosis and, in addition to blocking voltage-dependent sodium channels, it also selectively activates the K2P channels of the TREK subfamily. A cell-attached patch-clamp was also used to investigate TREK-2 single channel currents. We report here that BK reduces spike frequency adaptation (SFA), inhibits the riluzole-activated current (IRIL), which flows mainly through TREK-2 channels, by about 45%, and reduces the open probability of identified single TREK-2 channels in cultured mSCG cells. The effect of BK on IRIL was precluded by the bradykinin receptor (B2R) antagonist HOE-140 (d-Arg-[Hyp3, Thi5, d-Tic7, Oic8]BK) but also by diC8PIP2 which prevents PIP2 depletion when phospholipase C (PLC) is activated. On the contrary, antagonizing inositol triphosphate receptors (IP3R) using 2-aminoethoxydiphenylborane (2-APB) or inhibiting protein kinase C (PKC) with bisindolylmaleimide did not affect the inhibition of IRIL by BK. In conclusion, bradykinin inhibits TREK-2 channels through the activation of B2Rs resulting in PIP2 depletion, much like we have demonstrated for muscarinic agonists. This mechanism implies that TREK channels must be relevant for the capture of information about pain and visceral inflammation.


Assuntos
Bradicinina/metabolismo , Neurônios/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Sistema Nervoso Simpático/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Bradicinina/administração & dosagem , Bradicinina/análogos & derivados , Bradicinina/genética , Bradicinina/farmacologia , Células Cultivadas , Humanos , Camundongos , Agonistas Muscarínicos/farmacologia , Neurônios/patologia , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/genética , Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Receptores Muscarínicos/genética , Riluzol/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Gânglio Cervical Superior/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Fosfolipases Tipo C
9.
J Biol Chem ; 294(46): 17354-17370, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31591270

RESUMO

Arf GAP with Src homology 3 domain, ankyrin repeat, and pleckstrin homology (PH) domain 1 (ASAP1) is a multidomain GTPase-activating protein (GAP) for ADP-ribosylation factor (ARF)-type GTPases. ASAP1 affects integrin adhesions, the actin cytoskeleton, and invasion and metastasis of cancer cells. ASAP1's cellular function depends on its highly-regulated and robust ARF GAP activity, requiring both the PH and the ARF GAP domains of ASAP1, and is modulated by phosphatidylinositol 4,5-bisphosphate (PIP2). The mechanistic basis of PIP2-stimulated GAP activity is incompletely understood. Here, we investigated whether PIP2 controls binding of the N-terminal extension of ARF1 to ASAP1's PH domain and thereby regulates its GAP activity. Using [Δ17]ARF1, lacking the N terminus, we found that PIP2 has little effect on ASAP1's activity. A soluble PIP2 analog, dioctanoyl-PIP2 (diC8PIP2), stimulated GAP activity on an N terminus-containing variant, [L8K]ARF1, but only marginally affected activity on [Δ17]ARF1. A peptide comprising residues 2-17 of ARF1 ([2-17]ARF1) inhibited GAP activity, and PIP2-dependently bound to a protein containing the PH domain and a 17-amino acid-long interdomain linker immediately N-terminal to the first ß-strand of the PH domain. Point mutations in either the linker or the C-terminal α-helix of the PH domain decreased [2-17]ARF1 binding and GAP activity. Mutations that reduced ARF1 N-terminal binding to the PH domain also reduced the effect of ASAP1 on cellular actin remodeling. Mutations in the ARF N terminus that reduced binding also reduced GAP activity. We conclude that PIP2 regulates binding of ASAP1's PH domain to the ARF1 N terminus, which may partially regulate GAP activity.


Assuntos
Fator 1 de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fator 1 de Ribosilação do ADP/química , Fatores de Ribosilação do ADP/química , Actinas/química , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Humanos , Neoplasias/genética , Fosfatidilinositol 4,5-Difosfato/química , Domínios de Homologia à Plecstrina/genética , Mutação Puntual/genética , Ligação Proteica/genética
10.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31402097

RESUMO

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Assuntos
Proteínas de Transporte/metabolismo , Fosfatidilinositol 4,5-Difosfato/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Cell Rep ; 27(7): 1991-2001.e5, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091439

RESUMO

Insulin stimulates the conversion of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) to phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), which mediates downstream cellular responses. PI(4,5)P2 is produced by phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks) and by phosphatidylinositol-5-phosphate 4-kinases (PIP4Ks). Here, we show that the loss of PIP4Ks (PIP4K2A, PIP4K2B, and PIP4K2C) in vitro results in a paradoxical increase in PI(4,5)P2 and a concomitant increase in insulin-stimulated production of PI(3,4,5)P3. The reintroduction of either wild-type or kinase-dead mutants of the PIP4Ks restored cellular PI(4,5)P2 levels and insulin stimulation of the PI3K pathway, suggesting a catalytic-independent role of PIP4Ks in regulating PI(4,5)P2 levels. These effects are explained by an increase in PIP5K activity upon the deletion of PIP4Ks, which normally suppresses PIP5K activity through a direct binding interaction mediated by the N-terminal motif VMLΦPDD of PIP4K. Our work uncovers an allosteric function of PIP4Ks in suppressing PIP5K-mediated PI(4,5)P2 synthesis and insulin-dependent conversion to PI(3,4,5)P3 and suggests that the pharmacological depletion of PIP4K enzymes could represent a strategy for enhancing insulin signaling.


Assuntos
Insulina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Animais , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
12.
J Cell Biol ; 218(7): 2198-2214, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118240

RESUMO

The tumor suppressor PTEN dephosphorylates PtdIns(3,4,5)P3 into PtdIns(4,5)P2 Here, we make the unexpected discovery that in Drosophila melanogaster PTEN reduces PtdIns(4,5)P2 levels on endosomes, independently of its phosphatase activity. This new PTEN function requires the enzymatic action of dPLCXD, an atypical phospholipase C. Importantly, we discovered that this novel PTEN/dPLCXD pathway can compensate for depletion of dOCRL, a PtdIns(4,5)P2 phosphatase. Mutation of OCRL1, the human orthologue of dOCRL, causes oculocerebrorenal Lowe syndrome, a rare multisystemic genetic disease. Both OCRL1 and dOCRL loss have been shown to promote accumulation of PtdIns(4,5)P2 on endosomes and cytokinesis defects. Here, we show that PTEN or dPLCXD overexpression prevents these defects. In addition, we found that chemical activation of this pathway restores normal cytokinesis in human Lowe syndrome cells and rescues OCRL phenotypes in a zebrafish Lowe syndrome model. Our findings identify a novel PTEN/dPLCXD pathway that controls PtdIns(4,5)P2 levels on endosomes. They also point to a potential new strategy for the treatment of Lowe syndrome.


Assuntos
Proteínas de Drosophila/genética , Síndrome Oculocerebrorrenal/genética , PTEN Fosfo-Hidrolase/genética , Monoéster Fosfórico Hidrolases/genética , Fosfolipases Tipo C/genética , Animais , Citocinese/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Endossomos/genética , Endossomos/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/patologia , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
13.
Sci Signal ; 12(578)2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015291

RESUMO

Neurofibromatosis type 2 is an inherited, neoplastic disease associated with schwannomas, meningiomas, and ependymomas and that is caused by inactivation of the tumor suppressor gene NF2 The NF2 gene product, Merlin, has no intrinsic catalytic activity; its tumor suppressor function is mediated through the proteins with which it interacts. We used proximity biotinylation followed by mass spectrometry and direct binding assays to identify proteins that associated with wild-type and various mutant forms of Merlin in immortalized Schwann cells. We defined a set of 52 proteins in close proximity to wild-type Merlin. Most of the Merlin-proximal proteins were components of cell junctional signaling complexes, suggesting that additional potential interaction partners may exist in adherens junctions, tight junctions, and focal adhesions. With mutant forms of Merlin that cannot bind to phosphatidylinositol 4,5-bisphosphate (PIP2) or that constitutively adopt a closed conformation, we confirmed a critical role for PIP2 binding in Merlin function and identified a large cohort of proteins that specifically interacted with Merlin in the closed conformation. Among these proteins, we identified a previously unreported Merlin-binding protein, apoptosis-stimulated p53 protein 2 (ASPP2, also called Tp53bp2), that bound to closed-conformation Merlin predominately through the FERM domain. Our results demonstrate that Merlin is a component of cell junctional mechanosensing complexes and defines a specific set of proteins through which it acts.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Junções Intercelulares/metabolismo , Mecanotransdução Celular , Células de Schwann/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Biotinilação , Linhagem Celular Transformada , Humanos , Junções Intercelulares/genética , Camundongos , Neurofibromatose 2/genética , Neurofibromatose 2/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios Proteicos , Proteínas Supressoras de Tumor/genética
14.
J Biol Chem ; 294(14): 5632-5642, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30705091

RESUMO

The human dopamine transporter (hDAT) regulates the level of the neurotransmitter dopamine (DA) in the synaptic cleft and recycles DA for storage in the presynaptic vesicular pool. Many neurotransmitter transporters exist as oligomers, but the physiological role of oligomerization remains unclear; for example, it has been speculated to be a prerequisite for amphetamine-induced release and protein trafficking. Previous studies point to an oligomeric quaternary structure of hDAT; however, the exact stoichiometry and the fraction of co-existing oligomeric states are not known. Here, we used single-molecule brightness analysis to quantify the degree of oligomerization of heterologously expressed hDAT fused to monomeric GFP (mGFP-hDAT) in Chinese hamster ovary (CHO) cells. We observed that monomers and dimers of mGFP-hDAT co-exist and that higher-order molecular complexes of mGFP-hDAT are absent at the plasma membrane. The mGFP-hDAT dimers were stable over several minutes, and the fraction of dimers was independent of the mGFP-hDAT surface density. Furthermore, neither oxidation nor depletion of cholesterol had any effect on the fraction of dimers. Unlike for the human serotonin transporter (hSERT), in which direct binding of phosphatidylinositol 4,5-bisphosphate (PIP2) stabilized the oligomers, the stability of mGFP-hDAT dimers was PIP2 independent.


Assuntos
Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerização Proteica , Animais , Células CHO , Membrana Celular/genética , Colesterol/genética , Colesterol/metabolismo , Cricetulus , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética
15.
Plant J ; 99(4): 610-625, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30604455

RESUMO

Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] serves as a subcellular signal on the plasma membrane, mediating various cell-polarized phenomena including polar cell growth. Here, we investigated the involvement of Arabidopsis thaliana PCaP2, a plant-unique plasma membrane protein with phosphoinositide-binding activity, in PtdIns(4,5)P2 signaling for root hair tip growth. The long-root-hair phenotype of the pcap2 knockdown mutant was found to stem from its higher average root hair elongation rate compared with the wild type and to counteract the low average rate caused by a defect in the PtdIns(4,5)P2 -producing enzyme gene PIP5K3. On the plasma membrane of elongating root hairs, the PCaP2 promoter-driven PCaP2-green fluorescent protein (GFP), which complemented the pcap2 mutant phenotype, overlapped with the PtdIns(4,5)P2 marker 2xCHERRY-2xPHPLC in the subapical region, but not at the apex, suggesting that PCaP2 attenuates root hair elongation via PtdIns(4,5)P2 signaling on the subapical plasma membrane. Consistent with this, a GFP fusion with the PCaP2 phosphoinositide-binding domain PCaP2N23 , root hair-specific overexpression of which caused a low average root hair elongation rate, localized more intense to the subapical plasma membrane than to the apical plasma membrane similar to PCaP2-GFP. Inducibly overexpressed PCaP2-GFP, but not its derivative lacking the PCaP2N23 domain, replaced 2xCHERRY-2xPHPLC on the plasma membrane in root meristematic epidermal cells, and suppressed FM4-64 internalization in elongating root hairs. Moreover, inducibly overexpressed PCaP2 arrested an endocytic process of PIN2-GFP recycling. Based on these results, we conclude that PCaP2 functions as a negative modulator of PtdIns(4,5)P2 signaling on the subapical plasma membrane probably through competitive binding to PtdIns(4,5)P2 and attenuates root hair elongation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia
16.
Adv Biol Regul ; 71: 111-117, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30249540

RESUMO

Nuclear phosphoinositides are recognized as regulators of many nuclear processes including chromatin remodeling, splicing, transcription, DNA repair and epigenetics. These processes are spatially organized in different nuclear compartments. Phase separation is involved in the formation of various nuclear compartments and molecular condensates separated from surrounding environment. The surface of such structures spatiotemporally coordinates formation of protein complexes. PI(4,5)P2 (PIP2) integration into phase-separated structures might provide an additional step in their spatial diversification by attracting certain proteins with affinity to PIP2. Our laboratory has recently identified novel membrane-free PIP2-containing structures, so called Nuclear Lipid Islets (NLIs). We provide an evidence that these structures are evolutionary conserved in different organisms. We hypothesize that NLIs serve as a scaffolding platform which facilitates the formation of transcription factories, thus participating in the formation of nuclear architecture competent for transcription. In this review we speculate on a possible role of NLIs in the integration of various processes linked to RNAPII transcription, chromatin remodeling, actin-myosin interaction, alternative splicing and lamin structures.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Cromatina/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética
17.
J Cell Physiol ; 233(10): 6377-6385, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29667735

RESUMO

Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2 , PIP2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Ativação do Canal Iônico/genética , Proteínas de Membrana/genética , Fosfatases de Fosfoinositídeos/genética , Canais Iônicos Sensíveis a Ácido/genética , Animais , Exocitose/genética , Humanos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 4,5-Difosfato/genética , Domínios Proteicos/genética
18.
Neuron ; 98(2): 335-349.e7, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29606581

RESUMO

Rapid and efficient synaptic vesicle fusion requires a pool of primed vesicles, the nearby tethering of Ca2+ channels, and the presence of the phospholipid PIP2 in the target membrane. Although the presynaptic active zone mediates the first two requirements, it is unclear how fusion is targeted to membranes with high PIP2 content. Here we find that the C2B domain of the active zone scaffold RIM is critical for action potential-triggered fusion. Remarkably, the known RIM functions in vesicle priming and Ca2+ influx do not require RIM C2B domains. Instead, biophysical experiments reveal that RIM C2 domains, which lack Ca2+ binding, specifically bind to PIP2. Mutational analyses establish that PIP2 binding to RIM C2B and its tethering to the other RIM domains are crucial for efficient exocytosis. We propose that RIM C2B domains are constitutive PIP2-binding modules that couple mechanisms for vesicle priming and Ca2+ channel tethering to PIP2-containing target membranes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Fosfatidilinositol 4,5-Difosfato/genética , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 584-594, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524543

RESUMO

Mammalian phosphoglycolate phosphatase (PGP, also known as AUM or glycerol-3-phosphate phosphatase) is a small molecule-directed phosphatase important for metabolite repair and lipid metabolism. Although PGP was first characterized as an enzyme involved in epidermal growth factor (EGF) signaling, PGP protein substrates have remained elusive. Here we show that PGP depletion facilitates fatty acid flux through the intracellular triacylglycerol/fatty acid cycle, and that phosphatidylinositol-4,5-bisphosphate (PIP2), produced in a side branch of this cycle, is critical for the impact of PGP activity on EGF-induced signaling. Loss of endogenous PGP expression amplified both EGF-induced EGF receptor autophosphorylation and Src-dependent tyrosine phosphorylation of phospholipase C-γ1 (PLCγ1). Furthermore, EGF enhanced the formation of circular dorsal ruffles in PGP-depleted cells via Src/PLCγ1/protein kinase C (PKC)-dependent signaling to the cytoskeleton. Inhibition of adipose triglyceride lipase normalized the increased PIP2 content, reduced EGF-dependent PLCγ1 hyperphosphorylation, and decreased the elevated dorsal ruffle formation of PGP-depleted cells. Our data explain how PGP exerts control over EGF-induced cellular protein tyrosine phosphorylation, and reveal an unexpected influence of triacylglycerol turnover on growth factor signaling.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Triglicerídeos/metabolismo , Linhagem Celular , Fator de Crescimento Epidérmico/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Monoéster Fosfórico Hidrolases/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Triglicerídeos/genética
20.
FEBS Lett ; 592(6): 962-972, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427502

RESUMO

In many eukaryotic signalling cascades, receptor-mediated phospholipase C (PLC) activity triggers phosphatidylinositol-4,5-bisphosphate (PIP2 ) hydrolysis, leading to information transfer. Coupled with PLC activation is a sequence of reactions spread across multiple compartments which resynthesize PIP2 , a process essential for supporting sustained PLC signalling. The biochemical strategies coordinating these reactions and, in particular, whether this is a closed cycle with no net addition or loss of metabolites, are poorly understood. Using mathematical models, we find that most closed PIP2 cycles cannot explain experimentally observed changes in key metabolic intermediates in particular mutants. Thus, we propose that the PIP2 cycle likely includes at least one metabolic source and one sink whose net activity results in the experimentally observed regulation of this key signalling pathway.


Assuntos
Proteínas de Drosophila/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Fosfatidilinositol 4,5-Difosfato/genética , Fosfolipases Tipo C/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA