Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
J Phys Chem B ; 128(9): 2134-2143, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393820

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is a critical lipid for cellular signaling. The specific phosphorylation of the inositol ring controls protein binding as well as clustering behavior. Two popular models to describe ion-mediated clustering of PIP2 are Martini3 (M3) and CHARMM36 (C36). Molecular dynamics simulations of PIP2-containing bilayers in solutions of potassium chloride, sodium chloride, and calcium chloride, and at two different resolutions are performed to understand the aggregation and the model parameters that drive it. The average M3 clusters of PIP2 in bilayers of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and PIP2 bilayers in the presence of K+, Na+, or Ca2+ contained 2.2, 2.6, and 6.4 times more PIP2 than C36 clusters, respectively. Indeed, the Ca2+-containing systems often formed a single large aggregate. Reparametrization of the M3 ion-phosphate Lennard-Jones interaction energies to reproduce experimental osmotic pressure of sodium dimethyl phosphate (DMP), K[DMP], and Ca[DMP]2 solutions, the same experimental target as C36, yielded comparably sized PIP2 clusters for the two models. Furthermore, C36 and the modified M3 predict similar saturation of the phosphate groups with increasing Ca2+, although the coarse-grained model does not capture the cooperativity between K+ and Ca2+. This characterization of the M3 behavior in the presence of monovalent and divalent ions lays a foundation to study cation/protein/PIP2 clustering.


Assuntos
Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Cátions , Sódio
2.
J Mol Biol ; 435(17): 168193, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406927

RESUMO

Dysferlin is a large membrane protein found most prominently in striated muscle. Loss of dysferlin activity is associated with reduced exocytosis, abnormal intracellular Ca2+ and the muscle diseases limb-girdle muscular dystrophy and Miyoshi myopathy. The cytosolic region of dysferlin consists of seven C2 domains with mutations in the C2A domain at the N-terminus resulting in pathology. Despite the importance of Ca2+ and membrane binding activities of the C2A domain for dysferlin function, the mechanism of the domain remains poorly characterized. In this study we find that the C2A domain preferentially binds membranes containing PI(4,5)P2 through an interaction mediated by residues Y23, K32, K33, and R77 on the concave face of the domain. We also found that subsequent to membrane binding, the C2A domain inserts residues on the Ca2+ binding loops into the membrane. Analysis of solution NMR measurements indicate that the domain inhabits two distinct structural states, with Ca2+ shifting the population between states towards a more rigid structure with greater affinity for PI(4,5)P2. Based on our results, we propose a mechanism where Ca2+ converts C2A from a structurally dynamic, low PI(4,5)P2 affinity state to a high affinity state that targets dysferlin to PI(4,5)P2 enriched membranes through interaction with Tyr23, K32, K33, and R77. Binding also involves changes in lipid packing and insertion by the third Ca2+ binding loop of the C2 domain into the membrane, which would contribute to dysferlin function in exocytosis and Ca2+ regulation.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , Disferlina , Proteínas de Membrana , Fosfatidilinositol 4,5-Difosfato , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/química , Disferlina/química , Disferlina/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Domínios C2 , Ligação Proteica , Fosfatidilinositol 4,5-Difosfato/química
3.
Langmuir ; 39(17): 5995-6005, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37086192

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important molecule located at the inner leaflet of cell membrane, where it serves as anchoring sites for a cohort of membrane-associated molecules and as a broad-reaching signaling intermediate. The lipid raft is thought as the major platform recruiting proteins for signal transduction and also known to mediate PIP2 accumulation across the membrane. While the significance of this cross-membrane coupling is increasingly appreciated, it remains unclear whether and how PIP2 senses the dynamic change of the ordered lipid domains over the packed hydrophobic core of the bilayer. Herein, by means of molecular dynamic simulation, we reveal that inner PIP2 molecules can sense the outer lipid domain via inter-leaflet coupling, and the coupling manner is dictated by the acyl chain length of sphingomyelin (SM) partitioned to the lipid domain. Shorter SM promotes membrane domain registration, whereby PIP2 accumulates beneath the domain across the membrane. In contrast, the anti-registration is thermodynamically preferred if the lipid domain has longer SM due to the hydrophobic mismatch between the corresponding acyl chains in SM and PIP2. In this case, PIP2 is expelled by the domain with a higher diffusivity. These results provide molecular insights into the regulatory mechanism of correlation between the outer lipid domain and inner PIP2, both of which are critical components for cell signal transduction.


Assuntos
Fosfatidilinositóis , Esfingomielinas , Humanos , Fosfatidilinositóis/análise , Fosfatidilinositóis/metabolismo , Membrana Celular/química , Simulação de Dinâmica Molecular , Microdomínios da Membrana/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
4.
Adv Exp Med Biol ; 1422: 61-85, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988877

RESUMO

Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.


Assuntos
Lipídeos de Membrana , Fosfatidilinositóis , Fosfatidilinositóis/metabolismo , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Colesterol/química , Biofísica , Bicamadas Lipídicas/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
5.
Adv Exp Med Biol ; 1422: 381-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988889

RESUMO

Besides its protective role in the maintenance of cell homeostasis, the plasma membrane is the site of exchanges between the cell interior and the extracellular medium. To circumvent the hydrophobic barrier formed by the acyl chains of the lipid bilayer, protein channels and transporters are key players in the exchange of small hydrophilic compounds such as ions or nutrients, but they hardly account for the transport of larger biological molecules. Exchange of proteins usually relies on membrane-fusion events between vesicles and the plasma membrane. In recent years, several alternative unconventional protein secretion (UPS) pathways across the plasma membrane have been characterised for a specific set of secreted substrates, some of them excluding any membrane-fusion events (Dimou and Nickel, Curr Biol 28:R406-R410, 2018). One of thesbe pathways, referred as type I UPS, relies on the direct translocation of the protein across the plasma membrane and not surprisingly, lipids are essential players in this process. In this chapter, we discuss the roles of phosphatidylinositol(4,5)bisphosphate (PI(4,5)P2) and cholesterol in unconventional pathways involving Engrailed-2 homeoprotein and fibroblast growth factor 2.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana Transportadoras , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Transporte Proteico , Proteínas de Membrana Transportadoras/metabolismo , Colesterol/metabolismo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo
6.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36809224

RESUMO

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Assuntos
Canal de Potássio KCNQ1 , Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Sítios de Ligação , Mutação , Membrana Celular/metabolismo
7.
J Colloid Interface Sci ; 629(Pt B): 785-795, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36195018

RESUMO

HYPOTHESIS: Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS: Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS: Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.


Assuntos
Fosfatidilinositol 4,5-Difosfato , Fosfatidilinositóis , Fosfatidilinositóis/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Inositol/metabolismo , Membrana Celular/metabolismo , Ligação Proteica
8.
Science ; 378(6616): eadd1268, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36227998

RESUMO

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.


Assuntos
Temperatura Baixa , Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato , Pirimidinonas , Canais de Cátion TRPM , Sensação Térmica , Animais , Camundongos , Microscopia Crioeletrônica , Ligantes , Mentol/química , Mentol/farmacologia , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacologia , Sensação Térmica/efeitos dos fármacos , Sensação Térmica/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Conformação Proteica , Pirimidinonas/química , Pirimidinonas/farmacologia
9.
Proc Natl Acad Sci U S A ; 119(38): e2208337119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36103579

RESUMO

Synchronous release at neuronal synapses is accomplished by a machinery that senses calcium influx and fuses the synaptic vesicle and plasma membranes to release neurotransmitters. Previous studies suggested the calcium sensor synaptotagmin (Syt) is a facilitator of vesicle docking and both a facilitator and inhibitor of fusion. On phospholipid monolayers, the Syt C2AB domain spontaneously oligomerized into rings that are disassembled by Ca2+, suggesting Syt rings may clamp fusion as membrane-separating "washers" until Ca2+-mediated disassembly triggers fusion and release [J. Wang et al., Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971 (2014)].). Here, we combined mathematical modeling with experiment to measure the mechanical properties of Syt rings and to test this mechanism. Consistent with experimental results, the model quantitatively recapitulates observed Syt ring-induced dome and volcano shapes on phospholipid monolayers and predicts rings are stabilized by anionic phospholipid bilayers or bulk solution with ATP. The selected ring conformation is highly sensitive to membrane composition and bulk ATP levels, a property that may regulate vesicle docking and fusion in ATP-rich synaptic terminals. We find the Syt molecules hosted by a synaptic vesicle oligomerize into a halo, unbound from the vesicle, but in proximity to sufficiently phosphatidylinositol 4,5-bisphosphate (PIP2)-rich plasma membrane (PM) domains, the PM-bound trans Syt ring conformation is preferred. Thus, the Syt halo serves as landing gear for spatially directed docking at PIP2-rich sites that define the active zones of exocytotic release, positioning the Syt ring to clamp fusion and await calcium. Our results suggest the Syt ring is both a Ca2+-sensitive fusion clamp and a high-fidelity sensor for directed docking.


Assuntos
Vesículas Sinápticas , Sinaptotagmina I , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química
10.
J Biol Chem ; 298(8): 102264, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35843309

RESUMO

TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl- channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside-out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4' position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.


Assuntos
Fosfatos , Fosfatidilinositol 4,5-Difosfato , Animais , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Xenopus laevis/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(25): e2202295119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696574

RESUMO

Caveolae are small plasma membrane invaginations, important for control of membrane tension, signaling cascades, and lipid sorting. The caveola coat protein Cavin1 is essential for shaping such high curvature membrane structures. Yet, a mechanistic understanding of how Cavin1 assembles at the membrane interface is lacking. Here, we used model membranes combined with biophysical dissection and computational modeling to show that Cavin1 inserts into membranes. We establish that initial phosphatidylinositol (4, 5) bisphosphate [PI(4,5)P2]-dependent membrane adsorption of the trimeric helical region 1 (HR1) of Cavin1 mediates the subsequent partial separation and membrane insertion of the individual helices. Insertion kinetics of HR1 is further enhanced by the presence of flanking negatively charged disordered regions, which was found important for the coassembly of Cavin1 with Caveolin1 in living cells. We propose that this intricate mechanism potentiates membrane curvature generation and facilitates dynamic rounds of assembly and disassembly of Cavin1 at the membrane.


Assuntos
Cavéolas , Proteínas de Ligação a RNA , Cavéolas/química , Caveolina 1/química , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Domínios Proteicos , Transporte Proteico , Proteínas de Ligação a RNA/química , Transdução de Sinais
12.
Nano Lett ; 22(3): 1449-1455, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34855407

RESUMO

A mechanism for full-length synaptotagmin-1 (syt-1) to interact with anionic bilayers and to promote fusion in the presence of SNAREs is proposed. Colloidal probe force spectroscopy in conjunction with tethered particle motion monitoring showed that in the absence of Ca2+ the binding of syt-1 to membranes depends on the presence and content of PI(4,5)P2. Addition of Ca2+ switches the interaction forces from weak to strong, eventually exceeding the cohesion of the C2A domain of syt-1 leading to partial unfolding of the protein. Fusion of single unilamellar vesicles equipped with syt-1 and synaptobrevin 2 with planar pore-spanning target membranes containing PS and PI(4,5)P2 shows an almost complete suppression of stalled intermediate fusion states and an accelerated fusion kinetics in the presence of Ca2+, which is further enhanced upon addition of ATP.


Assuntos
Cálcio , Fosfatidilinositol 4,5-Difosfato , Proteínas SNARE , Sinaptotagmina I , Cálcio/química , Cálcio/metabolismo , Cinética , Fusão de Membrana , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Desdobramento de Proteína , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
13.
Biochim Biophys Acta Biomembr ; 1863(12): 183757, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478732

RESUMO

GLUT1 is a major glucose facilitator expressed ubiquitously among tissues. Upregulation of its expression plays an important role in the development of many types of cancer and metabolic diseases. Thioredoxin-interacting protein (TXNIP) is an α-arrestin that acts as an adaptor for GLUT1 in clathrin-mediated endocytosis. It regulates cellular glucose uptake in response to both intracellular and extracellular signals via its control on GLUT1-4. In order to understand the interaction between GLUT1 and TXNIP, we generated GLUT1 lipid nanodiscs and carried out isothermal titration calorimetry and single-particle electron microscopy experiments. We found that GLUT1 lipid nanodiscs and TXNIP interact in a 1:1 ratio and that this interaction requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2).


Assuntos
Proteínas de Transporte/genética , Transportador de Glucose Tipo 1/genética , Lipídeos/genética , Fosfatidilinositol 4,5-Difosfato/química , Transporte Biológico/genética , Proteínas de Transporte/química , Clatrina/química , Endocitose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 1/química , Humanos , Lipídeos/química , Fosfatidilinositol 4,5-Difosfato/genética , Transdução de Sinais
14.
Phys Chem Chem Phys ; 23(29): 15784-15795, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34286758

RESUMO

G protein-gated inwardly rectifying potassium (GIRK) channels play essential roles in electrical signaling in neurons and muscle cells. Nonequilibrium environments provide crucial driving forces behind many cellular events. Here, we apply the antiparallel alignment double bilayer model to study GIRK2 in response to the time-dependent membrane potential. Using molecular dynamics and umbrella sampling, we examined the time-dependent environmental impact on the ion conduction, energy basis, and primary motions of GIRK2 in different complex states with phosphatidylinositol-4,5-bisphosphate (PIP2) and G-protein ßγ subunits (Gßγ). The antiparallel alignment double bilayer model enables us to study the transport performance in inward and outward K+ and mixed K+ and Na+. We obtained the recoverable discharge process of GIRK2 complexed with both PIP2 and Gßγ, compared with occasional conduction under PIP2-only regulation. Calculations of potential of mean force suggest different regulation by the helix bundle crossing (HBC) gate and G-loop gate regarding different complex states and under a membrane potential. In a nonequilibrium environment, distinct functional rocking motions of GIRK2 were identified under strengthened correlations between the transmembrane helices and downstream cytoplasmic domains with binding of PIP2, cations, and Gßγ. The findings suggest the potential domain motions and dynamics associated with a nonequilibrium environment and highlight the application of the antiparallel alignment double bilayer model to investigate factors in an asymmetric environment.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/química , Cátions/química , Subunidades beta da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/química , Potenciais da Membrana , Simulação de Dinâmica Molecular , Fosfatidilinositol 4,5-Difosfato/química , Potássio/química , Conformação Proteica , Sódio/química , Termodinâmica
15.
Nat Commun ; 12(1): 3938, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168117

RESUMO

The membrane is an integral component of the G protein-coupled receptor signaling machinery. Here we demonstrate that lipids regulate the signaling efficacy and selectivity of the ghrelin receptor GHSR through specific interactions and bulk effects. We find that PIP2 shifts the conformational equilibrium of GHSR away from its inactive state, favoring basal and agonist-induced G protein activation. This occurs because of a preferential binding of PIP2 to specific intracellular sites in the receptor active state. Another lipid, GM3, also binds GHSR and favors G protein activation, but mostly in a ghrelin-dependent manner. Finally, we find that not only selective interactions but also the thickness of the bilayer reshapes the conformational repertoire of GHSR, with direct consequences on G protein selectivity. Taken together, this data illuminates the multifaceted role of the membrane components as allosteric modulators of how ghrelin signal could be propagated.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores de Grelina/química , Receptores de Grelina/metabolismo , Regulação Alostérica , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína/genética , Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M3)/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipídeos/química , Mutação , Fosfatidilinositol 4,5-Difosfato/química , Conformação Proteica , Receptores de Grelina/genética , Transdução de Sinais
16.
Structure ; 29(10): 1200-1213.e2, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34081910

RESUMO

C2 domains facilitate protein interactions with lipid bilayers in either a Ca2+-dependent or -independent manner. We used molecular dynamics (MD) simulations to explore six Ca2+-independent C2 domains, from KIBRA, PI3KC2α, RIM2, PTEN, SHIP2, and Smurf2. In coarse-grained MD simulations these C2 domains formed transient interactions with zwitterionic bilayers, compared with longer-lived interactions with anionic bilayers containing phosphatidylinositol bisphosphate (PIP2). Type I C2 domains bound non-canonically via the front, back, or side of the ß sandwich, whereas type II C2 domains bound canonically, via the top loops. C2 domains interacted strongly with membranes containing PIP2, causing bound anionic lipids to cluster around the protein. Binding modes were refined via atomistic simulations. For PTEN and SHIP2, CG simulations of their phosphatase plus C2 domains with PIP2-containing bilayers were also performed, and the roles of the two domains in membrane localization compared. These studies establish a simulation protocol for membrane-recognition proteins.


Assuntos
Bicamadas Lipídicas/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Sítios de Ligação , Cálcio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Bicamadas Lipídicas/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Ligação Proteica , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rab3 de Ligação ao GTP/química , Proteínas rab3 de Ligação ao GTP/metabolismo
17.
ACS Synth Biol ; 10(3): 542-551, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689308

RESUMO

OptoPB is an optogenetic tool engineered by fusion of the phosphoinositide (PI)-binding polybasic domain of Rit1 (Rit-PB) to a photoreactive light-oxygen-voltage (LOV) domain. OptoPB selectively and reversibly binds the plasma membrane (PM) under blue light excitation, and in the dark, it releases back to the cytoplasm. However, the molecular mechanism of optical regulation and lipid recognition is still unclear. Here using nuclear magnetic resonance (NMR) spectroscopy, liposome pulldown assay, and surface plasmon resonance (SPR), we find that OptoPB binds to membrane mimetics containing di- or triphosphorylated phosphatidylinositols, particularly phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), an acidic phospholipid predominantly located in the eukaryotic PM. In the dark, steric hindrance prevented this protein-membrane interaction, while 470 nm blue light illumination activated it. NMR titration and site-directed mutagenesis revealed that both cationic and hydrophobic Rit-PB residues are essential to the membrane interaction, indicating that OptoPB binds the membrane via a specific PI(4,5)P2-dependent mechanism.


Assuntos
Lipossomos/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Luz , Espectroscopia de Ressonância Magnética , Proteínas Monoméricas de Ligação ao GTP/química , Optogenética , Peptídeos/química , Peptídeos/genética , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica/efeitos da radiação , Ressonância de Plasmônio de Superfície
18.
Life Sci Alliance ; 4(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33574036

RESUMO

DOCK8 is a Cdc42-specific guanine-nucleotide exchange factor that is essential for development and functions of various subsets of leukocytes in innate and acquired immune responses. Although DOCK8 plays a critical role in spatial control of Cdc42 activity during interstitial leukocyte migration, the mechanism remains unclear. We show that the DOCK homology region (DHR)-1 domain of DOCK8 binds specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and is required for its recruitment to the plasma membrane. Structural and biochemical analyses reveal that DOCK8 DHR-1 domain consists of a C2 domain-like core with loops creating the upper surface pocket, where three basic residues are located for stereospecific recognition of phosphoinositides. Substitution of the two basic residues, K576 and R581, with alanine abolished PI(4,5)P2 binding in vitro, ablated the ability of DOCK8 to activate Cdc42 and support leukocyte migration in three-dimensional collagen gels. Dendritic cells carrying the mutation exhibited defective interstitial migration in vivo. Thus, our study uncovers a critical role of DOCK8 in coupling PI(4,5)P2 signaling with Cdc42 activation for immune regulation.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunomodulação , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Domínios PDZ , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
19.
Annu Rev Biochem ; 90: 681-707, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33441034

RESUMO

Located at the inner leaflet of the plasma membrane (PM), phosphatidyl-inositol 4,5-bisphosphate [PI(4,5)P2] composes only 1-2 mol% of total PM lipids. With its synthesis and turnover both spatially and temporally regulated, PI(4,5)P2 recruits and interacts with hundreds of cellular proteins to support a broad spectrum of cellular functions. Several factors contribute to the versatile and dynamic distribution of PI(4,5)P2 in membranes. Physiological multivalent cations such as Ca2+ and Mg2+ can bridge between PI(4,5)P2 headgroups, forming nanoscopic PI(4,5)P2-cation clusters. The distinct lipid environment surrounding PI(4,5)P2 affects the degree of PI(4,5)P2 clustering. In addition, diverse cellular proteins interacting with PI(4,5)P2 can further regulate PI(4,5)P2 lateral distribution and accessibility. This review summarizes the current understanding of PI(4,5)P2 behavior in both cells and model membranes, with emphasis on both multivalent cation- and protein-induced PI(4,5)P2 clustering. Understanding the nature of spatially separated pools of PI(4,5)P2 is fundamental to cell biology.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Replicação Viral/fisiologia , Animais , Membrana Celular/metabolismo , Humanos , Micelas , Fosfatidilinositol 4,5-Difosfato/química , Proteínas Virais/metabolismo
20.
Methods Mol Biol ; 2251: 121-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481235

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is an enzyme that converts phosphatidylinositol 4-phosphate [PI4P] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. PIP5K plays a key role in the regulation of vesicular transport, cytoskeleton reorganization, and cell division. In general, to investigate an enzymatic activity of PIP5K, the amount of incorporated [P32] ATP into PI(4,5)P2 fraction is measured in in vitro reconstitution experiments. However, tools to monitor dynamic changes in its activity in real time have been lacking. Recently, we have developed a novel PIP5K assay using fluorescence spectroscopy. Compared to conventional methods in which lipids extraction steps are needed, our method is easy and quick to perform and enables a real-time analysis. This chapter provides a protocol to set up and perform the novel PIP5K assay we have recently established.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/análise , Fosfotransferases (Aceptor do Grupo Álcool)/química , Espectrometria de Fluorescência/métodos , Animais , Humanos , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositol 4,5-Difosfato/química , Fosfatos de Fosfatidilinositol/análise , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/análise , Fosfatidilinositóis/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...