Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 285(14): 2662-2678, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777624

RESUMO

Previous metabolic studies have demonstrated that leishmania parasites are able to synthesise proline from glutamic acid and threonine from aspartic acid. The first committed step in both biosynthetic pathways involves an amino acid kinase, either a glutamate 5-kinase (G5K; EC2.7.2.11) or an aspartokinase (EC2.7.2.4). Bioinformatic analysis of multiple leishmania genomes identifies a single amino acid-kinase gene (LdBPK 262740.1) variously annotated as either a putative glutamate or aspartate kinase. To establish the catalytic function of this Leishmania donovani gene product, we have determined the physical and kinetic properties of the recombinant enzyme purified from Escherichia coli. The findings indicate that the enzyme is a bona fide G5K with no activity as an aspartokinase. Tetrameric G5K displays kinetic behaviour similar to its bacterial orthologues and is allosterically regulated by proline, the end product of the pathway. The structure-activity relationships of proline analogues as inhibitors are broadly similar to the bacterial enzyme. However, unlike G5K from E. coli, leishmania G5K lacks a C-terminal PUA (pseudouridine synthase and archaeosine transglycosylase) domain and does not undergo higher oligomerisation in the presence of proline. Gene replacement studies are suggestive, but not conclusive that G5K is essential. ENZYMES: Glutamate 5-kinase (EC2.7.2.11); aspartokinase (EC2.7.2.4).


Assuntos
Ácido Glutâmico/metabolismo , Leishmania donovani/química , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Prolina/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Biocatálise , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Leishmania donovani/enzimologia , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Filogenia , Prolina/análogos & derivados , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
2.
J Ind Microbiol Biotechnol ; 44(2): 271-283, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28005186

RESUMO

N-acetyl-L-glutamate kinase (NAGK) catalyzes the second step of L-arginine biosynthesis and is inhibited by L-arginine in Corynebacterium crenatum. To ascertain the basis for the arginine sensitivity of CcNAGK, residue E19 which located at the entrance of the Arginine-ring was subjected to site-saturated mutagenesis and we successfully illustrated the inhibition-resistant mechanism. Typically, the E19Y mutant displayed the greatest deregulation of L-arginine feedback inhibition. An equally important strategy is to improve the catalytic activity and thermostability of CcNAGK. For further strain improvement, we used site-directed mutagenesis to identify mutations that improve CcNAGK. Results identified variants I74V, F91H and K234T display higher specific activity and thermostability. The L-arginine yield and productivity of the recombinant strain C. crenatum SYPA-EH3 (which possesses a combination of all four mutant sites, E19Y/I74V/F91H/K234T) reached 61.2 and 0.638 g/L/h, respectively, after 96 h in 5 L bioreactor fermentation, an increase of approximately 41.8% compared with the initial strain.


Assuntos
Arginina/metabolismo , Proteínas de Bactérias/genética , Corynebacterium/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Corynebacterium/metabolismo , Fermentação , Microbiologia Industrial , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Conformação Proteica
3.
Yeast ; 33(8): 355-63, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26833688

RESUMO

During fermentation processes, Saccharomyces cerevisiae cells are exposed to multiple stresses, including a high concentration of ethanol that represents toxicity through intracellular reactive oxygen species (ROS) generation. We previously reported that proline protected yeast cells from damage caused by various stresses, such as freezing and ethanol. As an anti-oxidant, proline is suggested to scavenge intracellular ROS. In this study, we examined the role of intracellular proline during ethanol treatment in S. cerevisiae strains that accumulate different concentrations of proline. When cultured in YPD medium, there was a significant accumulation of proline in the put1 mutant strain, which is deficient in proline oxidase, in the stationary phase. Expression of the mutant PRO1 gene, which encodes the γ-glutamyl kinase variant (Asp154Asn or Ile150Thr) with desensitization to feedback inhibition by proline in the put1 mutant strain, showed a prominent increase in proline content as compared with that of the wild-type strain. The oxidation level was clearly increased in wild-type cells after exposure to ethanol, indicating that the generation of ROS occurred. Interestingly, proline accumulation significantly reduces the ROS level and increases the survival rate of yeast cells in the stationary phase under ethanol stress conditions. However, there was not a clear correlation between proline content and survival rate in yeast cells. An appropriate level of intracellular proline in yeast might be important for its stress-protective effect. Hence, the engineering of proline metabolism could be promising for breeding stress-tolerant industrial yeast strains. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Etanol/farmacologia , Fermentação/efeitos dos fármacos , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Estresse Fisiológico , Morte Celular , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Prolina/genética , Prolina Oxidase/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Interdiscip Sci ; 8(4): 357-365, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26310620

RESUMO

In the present study, we have identified ten compounds, namely dodecanol acid, myristic acid, neophytadiene, palmitic acid, heptadecanoic acid, linoleic acid, elaidic acid, 3-7-dimethyl acid, stearic acid and methyl eicos acid, of the methanolic extract of Apamarga Kshara by GC-MS analysis. Apamarga Kshara has been reported to be active against cervical erosion. Major causal organism for cervical erosion is Trichomonas vaginalis. However, there is a paucity of information about the mechanism of action and inhibitory effect of the biologically active natural compounds presented in A. Kshara against this organism (T. vaginalis). Therefore, present investigation was conducted to observe possible interactions of these compounds on T. vaginalis carbamate kinase using molecular docking software 'AutoDock 4.2.' Identification of the amino acid residues crucial for the interaction between T. vaginalis carbamate kinase and these natural compounds is of due scientific interest. The study will aid in efficacious and safe clinical use of the above-mentioned compounds.


Assuntos
Metanol/química , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Trichomonas vaginalis/enzimologia , Cromatografia Gasosa-Espectrometria de Massas
5.
Appl Microbiol Biotechnol ; 99(18): 7527-37, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25750030

RESUMO

N-acetyl glutamate kinase (NAGK) is a key enzyme in the synthesis of L-arginine that is inhibited by its end product L-arginine in Corynebacterium glutamicum (C. glutamicum). In this study, the potential binding sites of arginine and the residues essential for its inhibition were identified by homology modeling, inhibitor docking, and site-directed mutagenesis. The allosteric inhibition of NAGK was successfully alleviated by a mutation, as determined through analysis of mutant enzymes, which were overexpressed in vivo in C. glutamicum ATCC14067. Analysis of the mutant enzymes and docking analysis demonstrated that residue W23 positions an arginine molecule, and the interaction between arginine and residues L282, L283, and T284 may play an important role in the remote inhibitory process. Based on the results of the docking analysis of the effective mutants, we propose a linkage mechanism for the remote allosteric regulation of NAGK activity, in which residue R209 may play an essential role. In this study, the structure of the arginine-binding site of C. glutamicum NAGK (CgNAGK) was successfully predicted and the roles of the relevant residues were identified, providing new insight into the allosteric regulation of CgNAGK activity and a solid platform for the future construction of an optimized L-arginine producing strain.


Assuntos
Regulação Alostérica , Arginina/metabolismo , Corynebacterium glutamicum/enzimologia , Inibidores Enzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Sítios de Ligação , Análise Mutacional de DNA , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica
6.
J Biol Chem ; 289(15): 10502-10509, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24558036

RESUMO

Carbamate kinase from Giardia lamblia is an essential enzyme for the survival of the organism. The enzyme catalyzes the final step in the arginine dihydrolase pathway converting ADP and carbamoyl phosphate to ATP and carbamate. We previously reported that disulfiram, a drug used to treat chronic alcoholism, inhibits G. lamblia CK and kills G. lamblia trophozoites in vitro at submicromolar IC50 values. Here, we examine the structural basis for G. lamblia CK inhibition of disulfiram and its analog, thiram, their activities against both metronidazole-susceptible and metronidazole-resistant G. lamblia isolates, and their efficacy in a mouse model of giardiasis. The crystal structure of G. lamblia CK soaked with disulfiram revealed that the compound thiocarbamoylated Cys-242, a residue located at the edge of the active site. The modified Cys-242 prevents a conformational transition of a loop adjacent to the ADP/ATP binding site, which is required for the stacking of Tyr-245 side chain against the adenine moiety, an interaction seen in the structure of G. lamblia CK in complex with AMP-PNP. Mass spectrometry coupled with trypsin digestion confirmed the selective covalent thiocarbamoylation of Cys-242 in solution. The Giardia viability studies in the metronidazole-resistant strain and the G. lamblia CK irreversible inactivation mechanism show that the thiuram compounds can circumvent the resistance mechanism that renders metronidazole ineffectiveness in drug resistance cases of giardiasis. Together, the studies suggest that G. lamblia CK is an attractive drug target for development of novel antigiardial therapies and that disulfiram, an FDA-approved drug, is a promising candidate for drug repurposing.


Assuntos
Dissulfiram/química , Inibidores Enzimáticos/química , Giardia lamblia/enzimologia , Giardíase/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Trifosfato de Adenosina/química , Animais , Antiprotozoários/química , Domínio Catalítico , Proliferação de Células , Cristalografia por Raios X , Cisteína/química , Resistência a Medicamentos , Feminino , Giardíase/enzimologia , Espectrometria de Massas , Metronidazol/química , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Trofozoítos/metabolismo , Tripsina/química
7.
Biochem Biophys Res Commun ; 420(3): 692-7, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22452987

RESUMO

The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Šresolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability.


Assuntos
Fosfotransferases (Aceptor do Grupo Carboxila)/química , Thermus thermophilus/enzimologia , Arginina/química , Arginina/farmacologia , Domínio Catalítico , Estabilidade Enzimática , Retroalimentação Fisiológica , Temperatura Alta , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
8.
Biochem Biophys Res Commun ; 387(4): 700-4, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19631611

RESUMO

The metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP. Using chloroplast protein extracts and PII affinity chromatography, NAGK interacted with PII only in the presence of ATP-Mg(2+), and this process was antagonized by 2-OG. These results reveal a complex metabolic control of the PII interaction with NAGK in the chloroplast stroma of higher plants.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Magnésio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Cloroplastos/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteínas PII Reguladoras de Nitrogênio/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores
9.
Oral Microbiol Immunol ; 24(4): 265-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19572886

RESUMO

INTRODUCTION: The arginine deiminase system (ADS) of oral bacteria is a major generator of alkali (ammonia) in dental plaque and is considered to have anticaries effects. However, many of the antimicrobial agents used in oral care products may reduce alkali production by the ADS. The objective of our work was to assess the sensitivity of the ADS of oral streptococci to commonly used antimicrobials, fluoride, triclosan and organic weak acids. METHODS: Streptococcus sanguinis NCTC 10904 and Streptococcus ratti FA-1 were grown in suspension cultures and mono-organism biofilms. ADS activity at pH values of 4, 5 and 6 was assessed, and the actions of the agents was determined in terms of reduced production of alkali from arginine, inhibition of ADS enzymes and changes in uptake of arginine. RESULTS: ADS activity was not greatly affected by pH changes between 4 and 6 and was greater per unit of biomass for cell suspensions than for biofilms. NaF was a poor inhibitor, while triclosan was highly effective with a 50% inhibitory dose for the two organisms between 0.03 and 0.05 and between 0.10 and 0.15 mm-h for suspension cells and biofilms, respectively. The weak acid indomethacin was nearly as potent at pH 4.0 as triclosan, while capric and lauric acids were less potent, especially for biofilms. The methyl ester of lauric acid was slightly stimulatory. The major targets for the inhibitors appeared to be transport systems for arginine uptake, although carbamate kinase was a secondary target. CONCLUSION: Triclosan, indomethacin, caprate and laurate can reduce ADS activity in dental plaque.


Assuntos
Anti-Infecciosos Locais/farmacologia , Placa Dentária/microbiologia , Hidrolases/antagonistas & inibidores , Indometacina/farmacologia , Streptococcus/efeitos dos fármacos , Streptococcus/enzimologia , Triclosan/farmacologia , Arginina/metabolismo , Biofilmes/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Cariostáticos/farmacologia , Ácidos Decanoicos/farmacologia , Placa Dentária/enzimologia , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/metabolismo , Lauratos/farmacologia , Ácidos Láuricos/farmacologia , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fluoreto de Sódio/farmacologia
10.
J Mol Biol ; 356(3): 695-713, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16376937

RESUMO

N-Acetylglutamate kinase (NAGK) catalyses the second step in the route of arginine biosynthesis. In many organisms this enzyme is inhibited by the final product of the route, arginine, and thus plays a central regulatory role. In addition, in photosynthetic organisms NAGK is the target of the nitrogen-signalling protein PII. The 3-D structure of homodimeric, arginine-insensitive, Escherichia coli NAGK, clarified substrate binding and catalysis but shed no light on arginine inhibition of NAGK. We now shed light on arginine inhibition by determining the crystal structures, at 2.75 A and 2.95 A resolution, of arginine-complexed Thermotoga maritima and arginine-free Pseudomonas aeruginosa NAGKs, respectively. Both enzymes are highly similar ring-like hexamers having a central orifice of approximately 30 A diameter. They are formed by linking three E.coli NAGK-like homodimers through the interlacing of an N-terminal mobile kinked alpha-helix, which is absent from E.coli NAGK. Arginine is bound in each subunit of T.maritima NAGK, flanking the interdimeric junction, in a site formed between the N helix and the C lobe of the subunit. This site is also present, in variable conformations, in P.aeruginosa NAGK, but is missing from E.coli NAGK. Arginine, by gluing the C lobe of each subunit to the inter-dimeric junction, may stabilize an enlarged active centre conformation, hampering catalysis. Acetylglutamate counters arginine inhibition by promoting active centre closure. The hexameric architecture justifies the observed sigmoidal arginine inhibition kinetics with a high Hill coefficient (N approximately 4), and appears essential for arginine inhibition and for NAGK-PII complex formation, since this complex may involve binding of NAGK and PII with their 3-fold axes aligned. The NAGK structures allow identification of diagnostic sequence signatures for arginine inhibition. These signatures are found also in the homologous arginine-inhibited enzyme NAG synthase. The findings on NAGK shed light on the structure, function and arginine inhibition of this synthase, for which a hexameric model is constructed.


Assuntos
Arginina/biossíntese , Arginina/química , Proteínas de Bactérias/química , Retroalimentação Fisiológica/fisiologia , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Pseudomonas aeruginosa/enzimologia , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Dados de Sequência Molecular , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Acta Crystallogr D Biol Crystallogr ; 58(Pt 6 Pt 2): 1045-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12037312

RESUMO

N-Acetyl-L-glutamate kinase (NAGK) catalyzes the second step in the pathway of arginine biosynthesis in microorganisms and plants. In many species, it is the pathway-controlling enzyme and is subject to feedback inhibition by arginine. The gene for the best characterized arginine-inhibitable NAGK, that from Pseudomonas aeruginosa, has been cloned in a pET22 plasmid and overexpressed in Escherichia coli. The enzyme was purified in three steps to 95% purity and was shown by cross-linking to form dimers. It was crystallized by the hanging-drop vapour-diffusion method at 277 K in the presence of ADP, Mg and N-acetyl-L-glutamate. The crystallization solution contained 0.1 M sodium cacodylate pH 6.5, 150-170 mM magnesium acetate and 13% polyethylene glycol 8000. Prismatic crystals of maximum dimension approximately 0.5 mm diffract to 2.75 A resolution and belong to space group P1 (unit-cell parameters a = 71.86, b = 98.78, c = 162.9 A, alpha = 91.49, beta = 92.03, gamma = 107.56 degrees ). Packing density considerations agree with 6-18 NAGK monomers in the asymmetric unit, with a corresponding solvent content of 79-36%. Self-rotation function calculations confirm the space group and suggest the presence of 3-7 dimers in the unit cell.


Assuntos
Arginina/biossíntese , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Pseudomonas aeruginosa/enzimologia , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Retroalimentação Fisiológica , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/isolamento & purificação , Conformação Proteica , Proteínas Recombinantes/química
12.
Biotechnol Bioeng ; 67(1): 1-11, 2000 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-10581430

RESUMO

Two metabolic engineering tools, namely gene inactivation and gene overexpression, were employed to examine the effects of two genetic modifications on the fermentation characteristics of Clostridium acetobutylicum. Inactivation of the butyrate kinase gene (buk) was examined using strain PJC4BK, while the combined effect of buk inactivation and overexpression of the aad gene-encoding the alcohol aldehyde dehydrogense (AAD) used in butanol formation-was examined using strain PJC4BK(pTAAD). The two strains were characterized in controlled pH > or = 5.0 fermentations, and by a recently enhanced method of metabolic flux analysis. Strain PJC4BK was previously genetically characterized, and fermentation experiments at pH > or = 5.5 demonstrated good, but not exceptional, solvent-production capabilities. Here, we show that this strain is a solvent superproducer in pH > or = 5.0 fermentations producing 225 mM (16.7 g/L) of butanol, 76 mM of acetone (4.4 g/L), and 57 mM (2.6 g/L) of ethanol. Strain PJC4BK(pTAAD) produced similar amounts of butanol and acetone but 98 mM (4.5 g/L) of ethanol. Both strains overcame the 180 mM (13 g/L) butanol toxicity limit, without any selection for butanol tolerance. Work with strain PJC4BK(pTAAD) is the first reported use of dual antibiotic selection in C. acetobutylicum. One antibiotic was used for selection of strain PJC4BK while the second antibiotic selected for the pTAAD presence. Overexpression of aad from pTAAD resulted in increased ethanol production but did not increase butanol titers, thus indicating that AAD did not limit butanol production under these fermentation conditions. Metabolic flux analysis showed a decrease in butyrate formation fluxes by up to 75% and an increase in acetate formation fluxes of up to 100% during early growth. The mean specific butanol and ethanol formation fluxes increased significantly in these recombinant strains, up to 300% and 400%, respectively. Onset of solvent production occurred during the exponential-growth phase when the culture optical density was very low and when total and undissociated butyric acid levels were <1 mM. Butyrate levels were low throughout all fermentations, never exceeding 20 mM. Thus, threshold butyrate concentrations are not necessary for solvent production in these stains, suggesting the need for a new phenomenological model to explain solvent formation.


Assuntos
Clostridium/enzimologia , Clostridium/genética , Mutação , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , 1-Butanol/antagonistas & inibidores , Sequência de Bases , Primers do DNA/genética , Escherichia coli/genética , Fermentação , Genes Bacterianos , Engenharia Genética , Modelos Biológicos , Solventes/metabolismo
13.
Oral Microbiol Immunol ; 14(4): 244-9, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10551169

RESUMO

Parabens were found to be potent inhibitors of alkali production from arginine by oral streptococci such as Streptococcus rattus, Streptococcus sanguis and Streptococcus gordonii. For example, 2 mumol butylparaben per ml completely and irreversibly inhibited arginolysis by intact cells of S. rattus FA-1 and was lethal for the organism. In contrast, butylparaben was not a very effective inhibitor of ureolysis by intact cells of Streptococcus salivarius 57.I, although it did kill the cells. Butylparaben irreversibly inhibited the cytoplasmic enzymes arginine deiminase, carbamate kinase and urease in permeabilized cells or isolated form. However, inhibition of arginolysis by intact cells appeared to be due primarily to irreversible inhibition of transport systems for arginine uptake, because butylparaben added to intact cells did not reduce levels of arginine deiminase when the cells were subsequently permeabilized after washing. The insensitivity of ureolysis by intact cells to butylparaben can be related to the known high permeability of cell membranes to urea and the cytoplasmic location of urease. The potency of butylparaben as an inhibitior of arginolysis or glycolysis and as a lethal agent was found to be greater at acid pH that at neutral or alkaline pH.


Assuntos
Conservantes de Alimentos/farmacologia , Parabenos/farmacologia , Streptococcus/efeitos dos fármacos , Streptococcus/metabolismo , Arginina/metabolismo , Biofilmes/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Citoplasma/enzimologia , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Hidrolases/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Ureia/metabolismo , Urease/antagonistas & inibidores
14.
Eur J Biochem ; 253(1): 280-91, 1998 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-9578487

RESUMO

Carbamate kinase (CK) catalyzes the reversible reaction NH2COO- + ATP <--> NHCOOPO3(2-) + ADP, serving to synthesize ATP from carbamoyl phosphate in those microorganisms that derive energy from anaerobic arginine degradation via the arginine dihydrolase pathway. We report here the cloning and sequencing of the CK gene from Enterococcus faecalis and Enterococcus faecium and we demonstrate that the amino acid sequence of CK is identical in the two species. The enzyme, expressed and isolated from Escherichia coli using simple purification procedures, was used to generate crystals suitable for X-ray studies and to investigate the utilization by CK of bicarbonate and other carbamate analogs. CK had a bicarbonate-dependent ATPase activity and, therefore, is able to synthesize carboxyphosphate, an unstable compound that is an intermediate in the reactions catalyzed by carbamoyl-phosphate synthetase (CPS) and by biotin carboxylase. Other functional similarities with CPS include the utilization of acetate by CK with a similarly high Km and the similar Km values of CK for carbamate and of CPS for bicarbonate. Enterococcal CK was inhibited by adenosine(5')pentaphospho(5')adenosine (Ap5A) and Ap6A and, less powerfully, by Ap4A, whereas Ap3A is essentially non-inhibitory. Thus, inhibition by Ap5A seems not to be a valid criterion to differentiate between CK and CPS, for the two enzymes can be inhibited by Ap5A. All these results support the relatedness of CK and CPS. Finally, we used limited proteolysis: (a) to localize the epitopes for monoclonal antibodies obtained against CK; (b) to demonstrate the importance of the C-terminus for enzyme activity; and (c) to show that Arg158 is highly exposed and may be essential for activity. Comparison of the sequence of CK with known protein sequences demonstrates considerable similarity of CK with bacterial N-acetylglutamate kinases, strongly suggesting that these two enzymes may share a similar structure and the same catalytic mechanism.


Assuntos
Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Enterococcus faecium/enzimologia , Enterococcus faecium/genética , Genes Bacterianos , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Bacteriano/genética , Escherichia coli/genética , Expressão Gênica , Imunoquímica , Cinética , Dados de Sequência Molecular , Fosforilação , Fosfotransferases (Aceptor do Grupo Carboxila)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Reação em Cadeia da Polimerase , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...