Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 23(20): e202200285, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35943842

RESUMO

Phosphonates are produced across all domains of life and used widely in medicine and agriculture. Biosynthesis almost universally originates from the enzyme phosphoenolpyruvate mutase (Ppm), EC 5.4.2.9, which catalyzes O-P bond cleavage in phosphoenolpyruvate (PEP) and forms a high energy C-P bond in phosphonopyruvate (PnPy). Mechanistic scrutiny of this unusual intramolecular O-to-C phosphoryl transfer began with the discovery of Ppm in 1988 and concluded in 2008 with computational evidence supporting a concerted phosphoryl transfer via a dissociative metaphosphate-like transition state. This mechanism deviates from the standard 'in-line attack' paradigm for enzymatic phosphoryl transfer that typically involves a phosphoryl-enzyme intermediate, but definitive evidence is sparse. Here we review the experimental evidence leading to our current mechanistic understanding and highlight the roles of previously underappreciated conserved active site residues. We then identify remaining opportunities to evaluate overlooked residues and unexamined substrates/inhibitors.


Assuntos
Organofosfonatos , Fosfotransferases (Fosfomutases) , Fosfoenolpiruvato/química , Fosfotransferases (Fosfomutases)/química , Catálise
2.
Mol Genet Metab ; 134(4): 344-352, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34863624

RESUMO

Phosphomannomutase 2 deficiency, PMM2-CDG, is the most frequent disorder of protein N-glycosylation. It is an autosomal recessive disease with a broad clinical and biochemical phenotype. Trying to predict the impact of novel variants is often a challenge due to the high number of variants and the difficulty to establish solid genotype-phenotype correlations. A potential useful strategy is to use computational chemistry calculations as a tool from which relevant information on the structural impact of novel variants may be deduced. Here we present our analyses based on four well-known PMM2 deleterious variants (p.(Leu32Arg), p.(Asp65Tyr), p.(Phe119Leu), p.(Arg141His)) and the polymorphic p.(Glu197Ala) for which we have predicted the effect on protein stability. Our work predicts the effect of different amino acid residues on the conformation and stability of PMM2. These computational simulations are, therefore, an extremely useful methodology which, in combination with routinely used in silico methods of pathogenicity prediction, may help to reveal the structural impact of novel variants at the protein level, potentially leading to a better understanding of target biological molecules.


Assuntos
Mutação de Sentido Incorreto , Fosfotransferases (Fosfomutases)/genética , Simulação de Dinâmica Molecular , Fosfotransferases (Fosfomutases)/química , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
3.
Genes (Basel) ; 12(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828263

RESUMO

PMM2-CDG is a rare disease, causing hypoglycosylation of multiple proteins, hence preventing full functionality. So far, no direct genotype-phenotype correlations have been identified. We carried out a retrospective cohort study on 26 PMM2-CDG patients. We collected the identified genotype, as well as continuous variables indicating the disease severity (based on Nijmegen Pediatric CDG Rating Score or NPCRS) and dichotomous variables reflecting the patients' phenotype. The phenotypic effects of patients' genotype were studied using non-parametric and Chi-Square tests. Seventeen different pathogenic variants have been studied. Variants with zero enzyme activity had no significant impact on the Nijmegen score. Pathogenic variants involving the stabilization/folding domain have a significantly lower total NPCRS (p = 0.017): presence of the p.Cys241Ser mutation had a significantly lower subscore 1,3 and NPCRS (p = 0.04) and thus result in a less severe phenotype. On the other hand, variants involving the dimerization domain, p.Pro113Leu and p.Phe119Leu, resulted in a significantly higher NPCRS score (p = 0.002), which indicates a worse clinical course. These concepts give a better insight in the phenotypic prognosis of PMM2-CDG, according to their molecular base.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Estudos de Associação Genética , Fosfotransferases (Fosfomutases)/deficiência , Adolescente , Adulto , Bélgica/epidemiologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/epidemiologia , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Fenótipo , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/genética , Estrutura Secundária de Proteína/genética , Estudos Retrospectivos , Índice de Gravidade de Doença , Estados Unidos/epidemiologia , Adulto Jovem
4.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061496

RESUMO

Type I disorders of glycosylation (CDG), the most frequent of which is phosphomannomutase 2 (PMM2-CDG), are a group of diseases causing the incomplete N-glycosylation of proteins. PMM2-CDG is an autosomal recessive disease with a large phenotypic spectrum, and is associated with mutations in the PMM2 gene. The biochemical analysis of mutants does not allow a precise genotype⁻phenotype correlation for PMM2-CDG. PMM2 is very tolerant to missense and loss of function mutations, suggesting that a partial deficiency of activity might be beneficial under certain circumstances. The patient phenotype might be influenced by variants in other genes associated with the type I disorders of glycosylation in the general population.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Mutação , Fosfotransferases (Fosfomutases)/genética , Estudos de Associação Genética , Glicosilação , Humanos , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Fosfotransferases (Fosfomutases)/química , Conformação Proteica
5.
Biochemistry ; 57(25): 3480-3492, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29695157

RESUMO

The human phosphomannomutases PMM1 and PMM2 catalyze the interconversion of hexose 6-phosphates and hexose 1-phosphates. The two isoforms share 66% sequence identity and have kinetic properties similar to those of mutases in vitro but differ in their functional roles in vivo. Though the physiological role of PMM2 is catalysis of the mutase reaction that provides the mannose 1-phosphate (Man-1-P) essential for protein glycosylation, PMM1 is thought to provide a phosphohydrolase activity in the presence of inosine monophosphate (IMP), converting glucose 1,6-bisphosphate (Glu-1,6-P2) to glucose 6-phosphate (Glu-6-P), rescuing glycolysis during brain ischemia. To uncover the structural basis of how IMP binding converts PMM1 from a mutase to a phosphatase, the 1.93 Å resolution structure of PMM1 complexed with IMP was determined. The structure reveals IMP bound at the substrate recruitment site, thus inhibiting the mutase activity while simultaneously activating a phosphatase activity (IMP Kact = 1.5 µM) resulting from the hydrolysis of the phospho-enzyme. The bound structure and site-directed mutagenesis confirm that the long-range electrostatic interactions provided by Arg180 and Arg183 conserved in PMM1 are the major contributors to IMP binding, and their oblation removes phosphatase but not mutase activity. These residues are not present in the PMM2 isoform, which consequently lacks significant phosphatase activity in the presence of IMP. T2 relaxation nuclear magnetic resonance and small angle X-ray scattering together support the hypothesis that binding of IMP to PMM1 favors an enzyme conformation that is catalytically competent for water attack at the phosphoaspartyl intermediate. Such a mechanism may be generalizable to other enzymes that act through covalent intermediates.


Assuntos
Inosina Monofosfato/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Isquemia Encefálica/metabolismo , Cristalografia por Raios X , Glicólise , Humanos , Modelos Moleculares , Fosfotransferases (Fosfomutases)/química , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato
6.
Int J Mol Sci ; 19(2)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29470411

RESUMO

Stroke-like episodes (SLE) occur in phosphomannomutase deficiency (PMM2-CDG), and may complicate the course of channelopathies related to Familial Hemiplegic Migraine (FHM) caused by mutations in CACNA1A (encoding CaV2.1 channel). The underlying pathomechanisms are unknown. We analyze clinical variables to detect risk factors for SLE in a series of 43 PMM2-CDG patients. We explore the hypothesis of abnormal CaV2.1 function due to aberrant N-glycosylation as a potential novel pathomechanism of SLE and ataxia in PMM2-CDG by using whole-cell patch-clamp, N-glycosylation blockade and mutagenesis. Nine SLE were identified. Neuroimages showed no signs of stroke. Comparison of characteristics between SLE positive versus negative patients' group showed no differences. Acute and chronic phenotypes of patients with PMM2-CDG or CACNA1A channelopathies show similarities. Hypoglycosylation of both CaV2.1 subunits (α1A and α2α) induced gain-of-function effects on channel gating that mirrored those reported for pathogenic CACNA1A mutations linked to FHM and ataxia. Unoccupied N-glycosylation site N283 at α1A contributes to a gain-of-function by lessening CaV2.1 inactivation. Hypoglycosylation of the α2δ subunit also participates in the gain-of-function effect by promoting voltage-dependent opening of the CaV2.1 channel. CaV2.1 hypoglycosylation may cause ataxia and SLEs in PMM2-CDG patients. Aberrant CaV2.1 N-glycosylation as a novel pathomechanism in PMM2-CDG opens new therapeutic possibilities.


Assuntos
Doenças Cerebelares/complicações , Canalopatias/complicações , Fosfotransferases (Fosfomutases)/deficiência , Acidente Vascular Cerebral/complicações , Adolescente , Sequência de Aminoácidos , Canais de Cálcio/genética , Doenças Cerebelares/diagnóstico por imagem , Canalopatias/diagnóstico por imagem , Criança , Pré-Escolar , Eletroencefalografia , Feminino , Glicosilação , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Mutação/genética , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Tunicamicina/farmacologia
7.
PLoS One ; 12(12): e0189629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261720

RESUMO

The most frequent disorder of glycosylation, PMM2-CDG, is caused by a deficiency of phosphomannomutase activity. In humans two paralogous enzymes exist, both of them require mannose 1,6-bis-phosphate or glucose 1,6-bis-phosphate as activators, but only phospho-mannomutase1 hydrolyzes bis-phosphate hexoses. Mutations in the gene encoding phosphomannomutase2 are responsible for PMM2-CDG. Although not directly causative of the disease, the role of the paralogous enzyme in the disease should be clarified. Phosphomannomutase1 could have a beneficial effect, contributing to mannose 6-phosphate isomerization, or a detrimental effect, hydrolyzing the bis-phosphate hexose activator. A pivotal role in regulating mannose-1phosphate production and ultimately protein glycosylation might be played by inosine monophosphate that enhances the phosphatase activity of phosphomannomutase1. In this paper we analyzed human phosphomannomutases by conventional enzymatic assays as well as by novel techniques such as 31P-NMR and thermal shift assay. We characterized a triple mutant of phospomannomutase1 that retains mutase and phosphatase activity, but is unable to bind inosine monophosphate.


Assuntos
Defeitos Congênitos da Glicosilação/enzimologia , Defeitos Congênitos da Glicosilação/genética , Inosina Monofosfato/farmacologia , Mutação/genética , Fosfotransferases (Fosfomutases)/deficiência , Sequência de Aminoácidos , Difosfonatos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ensaios Enzimáticos , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/genética , Alinhamento de Sequência , Temperatura
8.
Top Curr Chem (Cham) ; 375(2): 36, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28299727

RESUMO

The phosphoryl group, PO3-, is the dynamic structural unit in the biological chemistry of phosphorus. Its transfer from a donor to an acceptor atom, with oxygen much more prevalent than nitrogen, carbon, or sulfur, is at the core of a great majority of enzyme-catalyzed reactions involving phosphate esters, anhydrides, amidates, and phosphorothioates. The serendipitous discovery that the phosphoryl group could be labeled by "nuclear mutation," by substitution of PO3- by MgF3- or AlF4-, has underpinned the application of metal fluoride (MF x ) complexes to mimic transition states for enzymatic phosphoryl transfer reactions, with sufficient stability for experimental analysis. Protein crystallography in the solid state and 19F NMR in solution have enabled direct observation of ternary and quaternary protein complexes embracing MF x transition state models with precision. These studies have underpinned a radically new mechanistic approach to enzyme catalysis for a huge range of phosphoryl transfer processes, as varied as kinases, phosphatases, phosphomutases, and phosphohydrolases. The results, without exception, have endorsed trigonal bipyramidal geometry (tbp) for concerted, "in-line" stereochemistry of phosphoryl transfer. QM computations have established the validity of tbp MF x complexes as reliable models for true transition states, delivering similar bond lengths, coordination to essential metal ions, and virtually identical hydrogen bond networks. The emergence of protein control of reactant orbital overlap between bond-forming species within enzyme transition states is a new challenging theme for wider exploration.


Assuntos
Fluoretos/metabolismo , Fosfinas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Fosfotransferases/metabolismo , Compostos de Alumínio/química , Compostos de Alumínio/metabolismo , Fluoretos/química , Compostos de Magnésio/química , Compostos de Magnésio/metabolismo , Estrutura Molecular , Fosfinas/química , Monoéster Fosfórico Hidrolases/química , Fosfotransferases/química , Fosfotransferases (Fosfomutases)/química
9.
Hum Mutat ; 38(2): 160-168, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27774737

RESUMO

The congenital disorder of glycosylation (CDG) due to phosphomannomutase 2 deficiency (PMM2-CDG), the most common N-glycosylation disorder, is a multisystem disease for which no effective treatment is available. The recent functional characterization of disease-causing mutations described in patients with PMM2-CDG led to the idea of a therapeutic strategy involving pharmacological chaperones (PC) to rescue PMM2 loss-of-function mutations. The present work describes the high-throughput screening, by differential scanning fluorimetry, of 10,000 low-molecular-weight compounds from a commercial library, to search for possible PCs for the enzyme PMM2. This exercise identified eight compounds that increased the thermal stability of PMM2. Of these, four compounds functioned as potential PCs that significantly increased the stability of several destabilizing and oligomerization mutants and also increased PMM activity in a disease model of cells overexpressing PMM2 mutations. Structural analysis revealed one of these compounds to provide an excellent starting point for chemical optimization since it passed tests based on a number of pharmacochemical quality filters. The present results provide the first proof-of-concept of a possible treatment for PMM2-CDG and describe a promising chemical structure as a starting point for the development of new therapeutic agents for this severe orphan disease.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fosfotransferases (Fosfomutases)/genética , Alelos , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Descoberta de Drogas , Ativação Enzimática , Fibroblastos/metabolismo , Genótipo , Ensaios de Triagem em Larga Escala , Humanos , Mutação com Perda de Função , Terapia de Alvo Molecular , Mutação , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/isolamento & purificação , Estabilidade Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
10.
Microbiol Res ; 181: 8-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26640047

RESUMO

Several members of the Acinetobacter spp. produce exobiopolymer (EBP) of considerable biotechnological interest. In a previous study, we reported phosphate removal capacity of EBP produced by Acinetobacter haemolyticus. Insertional mutagenesis was attempted to develop EBP-overproducing strains of A. haemolyticus and mutant MG606 was isolated. In order to understand the underlying mechanism of overproduction, the EBP overproducing mutant MG606 was analyzed and compared with the wild type counterpart for its key EBP synthetic enzymes. The EBP produced by MG606 mutant was 650 mg/L compared to 220 mg/L in its wild type counterpart. Significantly high (p<0.05) levels of phosphoglucomutase/phosphomannomutase (PGM/PMM) in MG606 mutant was noted, whereas activities of other enzymes responsible for EBP synthesis showed no significant change (p>0.05). The up-regulation of PGM/PMM expression in mutant was further confirmed by real time reverse transcriptase (RT)-PCR of PGM/PMM transcripts. The optimal conditions for PGM/PMM activity were found to be 35 °C and pH 7.5; PGM/PMM activity was inhibited by ions such as lithium, zinc, nickel. Further, incubation of cells with a PGM inhibitor (lithium) resulted in a concentration-dependent decrease in EBP production further confirming the role of PGM/PMM overexpression in enhanced EBP production by the mutant. Overall the results of our study indicate a key role of PGM/PMM in enhanced EBP production, as evident from enhanced enzyme activity, increased PGM/PMM transcripts and reduction in EBP synthesis by a PGM inhibitor. We envisage a potential exploitation of the insights so obtained to effectively engineer strains of Acinetobacter for overproducing phosphate binding EBP.


Assuntos
Acinetobacter/enzimologia , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Regulação para Cima , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Eletroforese em Gel de Poliacrilamida , Mutagênese Insercional , Fosfoglucomutase/química , Fosfoglucomutase/genética , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/genética , DNA Polimerase Dirigida por RNA , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato , Ativação Transcricional
11.
Hum Mutat ; 36(9): 851-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26014514

RESUMO

Congenital disorder of glycosylation type Ia (PMM2-CDG), the most common form of CDG, is caused by mutations in the PMM2 gene that reduce phosphomannomutase 2 (PMM2) activity. No curative treatment is available. The present work describes the functional analysis of nine human PMM2 mutant proteins frequently found in PMM2-CDG patients and also two murine Pmm2 mutations carried by the unique PMM2-CDG mouse model described to overcome embryonic lethality. The effects of the mutations on PMM2/Pmm2 stability, oligomerization, and enzyme activity were explored in an optimized bacterial system. The mutant proteins were associated with an enzymatic activity of up to 47.3% as compared with wild type (WT). Stability analysis performed using differential scanning fluorimetry and a bacterial transcription-translation-coupled system allowed the identification of several destabilizing mutations (p.V44A, p.D65Y, p.R123Q, p.R141H, p.R162W, p.F207S, p.T237M, p.C241S). Exclusion chromatography identified one mutation, p.P113L, that affected dimer interaction. Expression analysis of the p.V44A, p.D65Y, p.R162W, and p.T237M mutations in a eukaryotic expression system under permissive folding conditions showed the possibility of recovering their associated PMM2 activity. Together, the results suggest that some loss-of-function mutations detected in PMM2-CDG patients could be destabilizing, and therefore PMM2 activity could be, in certain cases, rescuable via the use of synergetic proteostasis modulators and/or chaperones.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Mutação , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Dobramento de Proteína , Animais , Ativação Enzimática/genética , Estabilidade Enzimática/genética , Fibroblastos , Expressão Gênica , Humanos , Camundongos , Fosfotransferases (Fosfomutases)/química , Multimerização Proteica , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
Biophys J ; 108(2): 325-37, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25606681

RESUMO

Phosphorylation can modulate the activities of enzymes. The phosphoryl donor in the catalytic cleft of α-D-phosphohexomutases is transiently dephosphorylated while the reaction intermediate completes a 180° reorientation within the cleft. The phosphorylated form of 52 kDa bacterial phosphomannomutase/phosphoglucomutase is less accessible to dye or protease, more stable to chemical denaturation, and widely stabilized against NMR-detected hydrogen exchange across the core of domain 3 to juxtaposed domain 4 (each by ≥ 1.3 kcal/mol) and parts of domains 1 and 2. However, phosphorylation accelerates hydrogen exchange in specific regions of domains 1 and 2, including a metal-binding residue in the active site. Electrostatic field lines reveal attraction across the catalytic cleft between phosphorylated Ser-108 and domain 4, but repulsion when Ser-108 is dephosphorylated. Molecular dynamics (MD) simulated the dephosphorylated form to be expanded due to enhanced rotational freedom of domain 4. The contacts and fluctuations of the MD trajectories enabled correct simulation of more than 80% of sites that undergo either protection or deprotection from hydrogen exchange due to phosphorylation. Electrostatic attraction in the phosphorylated enzyme accounts for 1) domain 4 drawing closer to domains 1 and 3; 2) decreased accessibility; and 3) increased stability within these domains. The electrostriction due to phosphorylation may help capture substrate, whereas the opening of the cleft upon transient dephosphorylation allows rotation of the intermediate. The long-range effects of phosphorylation on hydrogen exchange parallel reports on protein kinases, suggesting a conceptual link among these multidomain, phosphoryl transfer enzymes.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Fosfoglucomutase/química , Fosfotransferases (Fosfomutases)/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Estabilidade Enzimática , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Fosfoglucomutase/metabolismo , Fosforilação , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Eletricidade Estática
13.
J Biol Chem ; 289(50): 34900-10, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25324542

RESUMO

The most common glycosylation disorder is caused by mutations in the gene encoding phosphomannomutase2, producing a disease still without a cure. Phosphomannomutase2, a homodimer in which each chain is composed of two domains, requires a bisphosphate sugar (either mannose or glucose) as activator, opening a possible drug design path for therapeutic purposes. The crystal structure of human phosphomannomutase2, however, lacks bound substrate and a key active site loop. To speed up drug discovery, we present here the first structural model of a bisphosphate substrate bound to human phosphomannomutase2. Taking advantage of recent developments in all-atom simulation techniques in combination with limited and site-directed proteolysis, we demonstrated that α-glucose 1,6-bisphosphate can adopt two low energy orientations as required for catalysis. Upon ligand binding, the two domains come close, making the protein more compact, in analogy to the enzyme in the crystals from Leishmania mexicana. Moreover, proteolysis was also carried out on two common mutants, R141H and F119L. It was an unexpected finding that the mutant most frequently found in patients, R141H, although inactive, does bind α-glucose 1,6-bisphosphate and changes conformation.


Assuntos
Erros Inatos do Metabolismo/enzimologia , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Sequência de Aminoácidos , Animais , Glucose-6-Fosfato/análogos & derivados , Glucose-6-Fosfato/metabolismo , Glicosilação , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeo Hidrolases/metabolismo , Fosfotransferases (Fosfomutases)/genética , Ligação Proteica , Conformação Proteica , Desdobramento de Proteína , Proteólise , Temperatura
14.
J Biol Chem ; 289(8): 4674-82, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24403075

RESUMO

The enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) from Pseudomonas aeruginosa catalyzes an intramolecular phosphoryl transfer across its phosphosugar substrates, which are precursors in the synthesis of exoproducts involved in bacterial virulence. Previous structural studies of PMM/PGM have established a key role for conformational change in its multistep reaction, which requires a dramatic 180° reorientation of the intermediate within the active site. Here hydrogen-deuterium exchange by mass spectrometry and small angle x-ray scattering were used to probe the conformational flexibility of different forms of PMM/PGM in solution, including its active, phosphorylated state and the unphosphorylated state that occurs transiently during the catalytic cycle. In addition, the effects of ligand binding were assessed through use of a substrate analog. We found that both phosphorylation and binding of ligand produce significant effects on deuterium incorporation. Phosphorylation of the conserved catalytic serine has broad effects on residues in multiple domains and is supported by small angle x-ray scattering data showing that the unphosphorylated enzyme is less compact in solution. The effects of ligand binding are generally manifested near the active site cleft and at a domain interface that is a site of conformational change. These results suggest that dephosphorylation of the enzyme may play two critical functional roles: a direct role in the chemical step of phosphoryl transfer and secondly through propagation of structural flexibility. We propose a model whereby increased enzyme flexibility facilitates the reorientation of the reaction intermediate, coupling changes in structural dynamics with the unique catalytic mechanism of this enzyme.


Assuntos
Biocatálise , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Ligantes , Espectrometria de Massas , Modelos Moleculares , Fosfoglucomutase/química , Fosforilação , Fosfotransferases (Fosfomutases)/química , Maleabilidade , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Fatores de Tempo
15.
Bioinformatics ; 30(2): 274-81, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23828785

RESUMO

MOTIVATION: Homology search methods are dominated by the central paradigm that sequence similarity is a proxy for common ancestry and, by extension, functional similarity. For determining sequence similarity in proteins, most widely used methods use models of sequence evolution and compare amino-acid strings in search for conserved linear stretches. Probabilistic models or sequence profiles capture the position-specific variation in an alignment of homologous sequences and can identify conserved motifs or domains. While profile-based search methods are generally more accurate than simple sequence comparison methods, they tend to be computationally more demanding. In recent years, several methods have emerged that perform protein similarity searches based on domain composition. However, few methods have considered the linear arrangements of domains when conducting similarity searches, despite strong evidence that domain order can harbour considerable functional and evolutionary signal. RESULTS: Here, we introduce an alignment scheme that uses a classical dynamic programming approach to the global alignment of domains. We illustrate that representing proteins as strings of domains (domain arrangements) and comparing these strings globally allows for a both fast and sensitive homology search. Further, we demonstrate that the presented methods complement existing methods by finding similar proteins missed by popular amino-acid-based comparison methods. AVAILABILITY: An implementation of the presented algorithms, a web-based interface as well as a command-line program for batch searching against the UniProt database can be found at http://rads.uni-muenster.de. Furthermore, we provide a JAVA API for programmatic access to domain-string­based search methods.


Assuntos
Algoritmos , Biologia Computacional , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , Software , Proteínas Ativadoras de GTPase/química , Modelos Estatísticos , Fosfotransferases (Fosfomutases)/química , Curva ROC , Saccharomyces cerevisiae
16.
Biomol NMR Assign ; 8(2): 329-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893395

RESUMO

A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.


Assuntos
Evolução Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Modelos Moleculares , Estrutura Terciária de Proteína
17.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 2008-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24100319

RESUMO

The first structure of a bacterial α-phosphoglucomutase with an overall fold similar to eukaryotic phosphomannomutases is reported. Unlike most α-phosphoglucomutases within the α-D-phosphohexomutase superfamily, it belongs to subclass IIb of the haloacid dehalogenase superfamily (HADSF). It catalyzes the reversible conversion of α-glucose 1-phosphate to glucose 6-phosphate. The crystal structure of α-phosphoglucomutase from Lactococcus lactis (APGM) was determined at 1.5 Šresolution and contains a sulfate and a glycerol bound at the enzyme active site that partially mimic the substrate. A dimeric form of APGM is present in the crystal and in solution, an arrangement that may be functionally relevant. The catalytic mechanism of APGM and its strict specificity towards α-glucose 1-phosphate are discussed.


Assuntos
Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Fosfotransferases (Fosfomutases)/química , Proteínas de Bactérias/genética , Domínio Catalítico/genética , Cristalografia por Raios X , Glucose-6-Fosfato/química , Glucose-6-Fosfato/genética , Glucofosfatos/química , Glucofosfatos/genética , Hidrolases/química , Hidrolases/classificação , Hidrolases/genética , Lactococcus lactis/genética , Mimetismo Molecular/genética , Família Multigênica , Fosfotransferases (Fosfomutases)/classificação , Fosfotransferases (Fosfomutases)/genética , Ligação Proteica/genética , Especificidade por Substrato/genética
18.
Biosci Rep ; 33(5)2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23844980

RESUMO

Aspergillus fumigatus is the causative agent of IA (invasive aspergillosis) in immunocompromised patients. It possesses a cell wall composed of chitin, glucan and galactomannan, polymeric carbohydrates synthesized by processive glycosyltransferases from intracellular sugar nucleotide donors. Here we demonstrate that A. fumigatus possesses an active AfAGM1 (A. fumigatus N-acetylphosphoglucosamine mutase), a key enzyme in the biosynthesis of UDP (uridine diphosphate)-GlcNAc (N-acetylglucosamine), the nucleotide sugar donor for chitin synthesis. A conditional agm1 mutant revealed the gene to be essential. Reduced expression of agm1 resulted in retarded cell growth and altered cell wall ultrastructure and composition. The crystal structure of AfAGM1 revealed an amino acid change in the active site compared with the human enzyme, which could be exploitable in the design of selective inhibitors. AfAGM1 inhibitors were discovered by high-throughput screening, inhibiting the enzyme with IC50s in the low µM range. Together, these data provide a platform for the future development of AfAGM1 inhibitors with antifungal activity.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/química , Fosfotransferases (Fosfomutases)/química , Antifúngicos/química , Aspergillus fumigatus/ultraestrutura , Domínio Catalítico , Parede Celular/enzimologia , Cristalografia por Raios X , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Humanos , Concentração Inibidora 50 , Cinética , Magnésio , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Modelos Moleculares , Fosfotransferases (Fosfomutases)/antagonistas & inibidores , Fosfotransferases (Fosfomutases)/genética , Estrutura Secundária de Proteína
19.
Biotechnol Lett ; 35(8): 1265-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23546942

RESUMO

Several strains of the genus Sphingomonas produce sphingans, extracellular polysaccharides used as thickeners, emulsifiers and gelling agents. The pgmG gene from Sphingomonas sanxanigenens, which encodes a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, was cloned and sequenced. The predicted amino acid sequence of the PgmG protein possessed 460 amino acids and a calculated molecular mass of 49.8 kDa, and it was 80 % identical to PGM/PMM from S. elodea. We overexpressed pgmG in Escherichia coli, and the purified protein displayed a K m of 0.2 mM and a V max of 1.3 µmol min(-1) mg(-1) with glucose 1-phosphate as substrate. The catalytic efficiency (K cat/K m) of PgmG was about 15-fold higher for glucose 1-phosphate than for mannose 1-phosphate. Overexpression of pgmG in S. sanxanigenens resulted in a 17 ± 0.3 % increase in sphingan production to ~12.5 g l(-1).


Assuntos
Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Sphingomonas/enzimologia , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Escherichia coli/genética , Expressão Gênica , Cinética , Dados de Sequência Molecular , Peso Molecular , Fosfoglucomutase/química , Fosfoglucomutase/isolamento & purificação , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/isolamento & purificação , Polissacarídeos Bacterianos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Sphingomonas/metabolismo
20.
FEBS J ; 280(11): 2622-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23517223

RESUMO

UNLABELLED: Enzymes in the α-d-phosphohexomutase superfamily catalyze the conversion of 1-phosphosugars to their 6-phospho counterparts. Their phosphoryl transfer reaction has long been proposed to require general acid-base catalysts, but candidate residues for these key roles have not been identified. In this study, we show through mutagenesis and kinetic studies that a histidine (His329) in the active site is critical for enzyme activity in a well-studied member of the superfamily, phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa. Crystallographic characterization of an H329A mutant protein showed no significant changes from the wild-type enzyme, excluding structural disruption as the source of its compromised activity. Mutation of the structurally analogous lysine residue in a related protein, phosphoglucomutase from Salmonella typhimurium, also results in significant catalytic impairment. Analyses of protein-ligand complexes of the P. aeruginosa enzyme show that His329 is appropriately positioned to abstract a proton from the O1/O6 hydroxyl of the phosphosugar substrates, and thus may serve as the general base in the reaction. Histidine is strongly conserved at this position in many proteins in the superfamily, and lysine is also often conserved at a structurally corresponding position, particularly in the phosphoglucomutase enzyme sub-group. These studies shed light on the mechanism of this important enzyme superfamily, and may facilitate the design of mechanism-based inhibitors. DATABASE: Structural data have been deposited in the Protein Data Bank with accession number 4IL8.


Assuntos
Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfoglucomutase/genética , Fosfotransferases (Fosfomutases)/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...