Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38392920

RESUMO

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Assuntos
Antocianinas , Proteínas de Arabidopsis , Criptocromos , Regulação da Expressão Gênica de Plantas , Luz , Populus , Madeira , Populus/genética , Populus/metabolismo , Populus/crescimento & desenvolvimento , Criptocromos/metabolismo , Criptocromos/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Madeira/metabolismo , Madeira/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Xilema/metabolismo , Xilema/genética , Xilema/crescimento & desenvolvimento , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Luz Azul
2.
New Phytol ; 236(5): 1824-1837, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36089828

RESUMO

Light regulates the subcellular localization of plant photoreceptors, a key step in light signaling. Ultraviolet-B radiation (UV-B) induces the plant photoreceptor UV RESISTANCE LOCUS 8 (UVR8) nuclear accumulation, where it regulates photomorphogenesis. However, the molecular mechanism for the UV-B-regulated UVR8 nuclear localization dynamics is unknown. With fluorescence recovery after photobleaching (FRAP), cell fractionation followed by immunoblotting and co-immunoprecipitation (Co-IP) assays we tested the function of UVR8-interacting proteins including CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 in the regulation of UVR8 nuclear dynamics in Arabidopsis thaliana. We showed that UV-B-induced rapid UVR8 nuclear translocation is independent of COP1, which previously was shown to be required for UV-B-induced UVR8 nuclear accumulation. Instead, we provide evidence that the UV-B-induced UVR8 homodimer-to-monomer photo-switch and the concurrent size reduction of UVR8 enables its monomer nuclear translocation, most likely via free diffusion. Nuclear COP1 interacts with UV-B-activated UVR8 monomer, thereby promoting UVR8 nuclear retention. Conversely, RUP1and RUP2, whose expressions are induced by UV-B, inhibit UVR8 nuclear retention via attenuating the UVR8-COP1 interaction, allowing UVR8 to exit the nucleus. Collectively, our data suggest that UV-B-induced monomerization of UVR8 promotes its nuclear translocation via free diffusion. In the nucleus, COP1 binding promotes UVR8 monomer nuclear retention, which is counterbalanced by the major negative regulators RUP1 and RUP2.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Fotorreceptores de Plantas/metabolismo , Raios Ultravioleta , Ubiquitina-Proteína Ligases/metabolismo , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 73(21): 7126-7138, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-35640572

RESUMO

The red phytochrome and blue cryptochrome plant photoreceptors play essential roles in promoting genome-wide changes in nuclear and chloroplastic gene expression for photomorphogenesis, plastid development, and greening. While their importance in anterograde signalling has been long recognized, the molecular mechanisms involved remain under active investigation. More recently, the intertwining of the light signalling cascades with the retrograde signals for the optimization of chloroplast functions has been acknowledged. Advances in the field support the participation of phytochromes, cryptochromes, and key light-modulated transcription factors, including HY5 and the PIFs, in the regulation of chloroplastic biochemical pathways that produce retrograde signals, including the tetrapyrroles and the chloroplastic MEP-isoprenoids. Interestingly, in a feedback loop, the photoreceptors and their signalling components are targets themselves of these retrograde signals, aimed at optimizing photomorphogenesis to the status of the chloroplasts, with GUN proteins functioning at the convergence points. High light and shade are also conditions where the photoreceptors tune growth responses to chloroplast functions. Interestingly, photoreceptors and retrograde signals also converge in the modulation of dual-localized proteins (chloroplastic/nuclear) including WHIRLY and HEMERA/pTAC12, whose functions are required for the optimization of photosynthetic activities in changing environments and are proposed to act themselves as retrograde signals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Luz , Cloroplastos/metabolismo , Fitocromo/metabolismo , Criptocromos/metabolismo , Comunicação , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 23(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35163658

RESUMO

Continuous and ubiquitous expression of foreign genes sometimes results in harmful effects on the growth, development and metabolic activities of plants. Tissue-specific promoters help to overcome this disadvantage, but do not allow one to precisely control transgene expression over time. Thus, inducible transgene expression systems have obvious benefits. In plants, transcriptional regulation is usually driven by chemical agents under the control of chemically-inducible promoters. These systems are diverse, but usually contain two elements, the chimeric transcription factor and the reporter gene. The commonly used chemically-induced expression systems are tetracycline-, steroid-, insecticide-, copper-, and ethanol-regulated. Unlike chemical-inducible systems, optogenetic tools enable spatiotemporal, quantitative and reversible control over transgene expression with light, overcoming limitations of chemically-inducible systems. This review updates and summarizes optogenetic and chemical induction methods of transgene expression used in basic plant research and discusses their potential in field applications.


Assuntos
Regulação da Expressão Gênica de Plantas , Optogenética , Plantas/genética , Pesquisa , Transgenes , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Plantas Geneticamente Modificadas
5.
Nat Plants ; 7(10): 1397-1408, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34650267

RESUMO

Cryptochromes (CRYs) are photoreceptors that mediate light regulation of the circadian clock in plants and animals. Here we show that CRYs mediate blue-light regulation of N6-methyladenosine (m6A) modification of more than 10% of messenger RNAs in the Arabidopsis transcriptome, especially those regulated by the circadian clock. CRY2 interacts with three subunits of the METTL3/14-type N6-methyladenosine RNA methyltransferase (m6A writer): MTA, MTB and FIP37. Photo-excited CRY2 undergoes liquid-liquid phase separation (LLPS) to co-condense m6A writer proteins in vivo, without obviously altering the affinity between CRY2 and the writer proteins. mta and cry1cry2 mutants share common defects of a lengthened circadian period, reduced m6A RNA methylation and accelerated degradation of mRNA encoding the core component of the molecular oscillator circadian clock associated 1 (CCA1). These results argue for a photoregulatory mechanism by which light-induced phase separation of CRYs modulates m6A writer activity, mRNA methylation and abundance, and the circadian rhythms in plants.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Relógios Circadianos/genética , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Adenosina/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação
6.
Nat Commun ; 12(1): 3593, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135337

RESUMO

Photoreceptors are conserved in green algae to land plants and regulate various developmental stages. In the ocean, blue light penetrates deeper than red light, and blue-light sensing is key to adapting to marine environments. Here, a search for blue-light photoreceptors in the marine metagenome uncover a chimeric gene composed of a phytochrome and a cryptochrome (Dualchrome1, DUC1) in a prasinophyte, Pycnococcus provasolii. DUC1 detects light within the orange/far-red and blue spectra, and acts as a dual photoreceptor. Analyses of its genome reveal the possible mechanisms of light adaptation. Genes for the light-harvesting complex (LHC) are duplicated and transcriptionally regulated under monochromatic orange/blue light, suggesting P. provasolii has acquired environmental adaptability to a wide range of light spectra and intensities.


Assuntos
Clorófitas/metabolismo , Oceanos e Mares , Fotorreceptores de Plantas/metabolismo , Fitoplâncton/metabolismo , Adaptação Fisiológica/genética , Núcleo Celular/metabolismo , Clorófitas/classificação , Clorófitas/genética , Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Luz , Metagenoma , Fotorreceptores de Plantas/genética , Filogenia , Fitocromo/genética , Fitocromo/metabolismo , Fitoplâncton/classificação , Fitoplâncton/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica/efeitos da radiação
7.
Plant Cell Environ ; 44(10): 3246-3256, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181245

RESUMO

Inflorescence movements in response to natural gradients of sunlight are frequently observed in the plant kingdom and are suggested to contribute to reproductive success. Although the physiological and molecular bases of light-mediated tropisms in vegetative organs have been thoroughly investigated, the mechanisms that control inflorescence orientation in response to light gradients under natural conditions are not well understood. In this work, we have used a combination of laboratory and field experiments to investigate light-mediated re-orientation of Arabidopsis thaliana inflorescences. We show that inflorescence phototropism is promoted by photons in the UV and blue spectral range (≤500 nm) and depends on multiple photoreceptor families. Experiments under controlled conditions show that UVR8 is the main photoreceptor mediating the phototropic response to narrowband UV-B radiation, and phototropins and cryptochromes control the response to narrowband blue light. Interestingly, whereas phototropins mediate bending in response to low irradiances of blue, cryptochromes are the principal photoreceptors acting at high irradiances. Moreover, phototropins negatively regulate the action of cryptochromes at high irradiances of blue light. Experiments under natural field conditions demonstrate that cryptochromes are the principal photoreceptors acting in the promotion of the heliotropic response of inflorescences under full sunlight.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/genética , Citocromos/genética , Fotorreceptores de Plantas/genética , Fototropismo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Citocromos/metabolismo , Fotorreceptores de Plantas/metabolismo
8.
Nat Commun ; 12(1): 2155, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846325

RESUMO

Cryptochromes (CRYs) are photoreceptors or components of the molecular clock in various evolutionary lineages, and they are commonly regulated by polyubiquitination and proteolysis. Multiple E3 ubiquitin ligases regulate CRYs in animal models, and previous genetics study also suggest existence of multiple E3 ubiquitin ligases for plant CRYs. However, only one E3 ligase, Cul4COP1/SPAs, has been reported for plant CRYs so far. Here we show that Cul3LRBs is the second E3 ligase of CRY2 in Arabidopsis. We demonstrate the blue light-specific and CRY-dependent activity of LRBs (Light-Response Bric-a-Brack/Tramtrack/Broad 1, 2 & 3) in blue-light regulation of hypocotyl elongation. LRBs physically interact with photoexcited and phosphorylated CRY2, at the CCE domain of CRY2, to facilitate polyubiquitination and degradation of CRY2 in response to blue light. We propose that Cul4COP1/SPAs and Cul3LRBs E3 ligases interact with CRY2 via different structure elements to regulate the abundance of CRY2 photoreceptor under different light conditions, facilitating optimal photoresponses of plants grown in nature.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Criptocromos/metabolismo , Fotorreceptores de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Células HEK293 , Humanos , Luz , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos da radiação , Poliubiquitina/metabolismo , Ligação Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Plântula/efeitos da radiação , Ubiquitinação/efeitos da radiação
9.
Plant Physiol ; 186(2): 1220-1239, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33693822

RESUMO

Plants are plastic organisms that optimize growth in response to a changing environment. This adaptive capability is regulated by external cues, including light, which provides vital information about the habitat. Phytochrome photoreceptors detect far-red light, indicative of nearby vegetation, and elicit the adaptive shade-avoidance syndrome (SAS), which is critical for plant survival. Plants exhibiting SAS are typically more elongated, with distinctive, small, narrow leaf blades. By applying SAS-inducing end-of-day far-red (EoD FR) treatments at different times during Arabidopsis (Arabidopsis thaliana) leaf 3 development, we have shown that SAS restricts leaf blade size through two distinct cellular strategies. Early SAS induction limits cell division, while later exposure limits cell expansion. This flexible strategy enables phytochromes to maintain control of leaf size through the proliferative and expansion phases of leaf growth. mRNAseq time course data, accessible through a community resource, coupled to a bioinformatics pipeline, identified pathways that underlie these dramatic changes in leaf growth. Phytochrome regulates a suite of major development pathways that control cell division, expansion, and cell fate. Further, phytochromes control cell proliferation through synchronous regulation of the cell cycle, DNA replication, DNA repair, and cytokinesis, and play an important role in sustaining ribosome biogenesis and translation throughout leaf development.


Assuntos
Proteínas de Arabidopsis/efeitos da radiação , Arabidopsis/fisiologia , Fitocromo/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Luz , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
11.
Plant Sci ; 303: 110766, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487351

RESUMO

UV RESISTANCE LOCUS 8 (UVR8) is a photoreceptor that regulates UV-B photomorphogenesis in plants. UV-B photon perception promotes UVR8 homodimer dissociation into monomer, which is reverted to homodimer post UV-B, forming a complete photocycle. UVR8 monomer interacts with CONSTITUTIVELY PHOTOMORPHOGENEIC 1 (COP1) to initiate UV-B signaling. The function and mechanism of Arabidopsis UVR8 (AtUVR8) are extensively investigated, however, little is known about UVR8 and its signaling mechanisms in other plant species. Tomato is a widely used model plant for horticulture research. In this report we tested whether an ortholog of AtUVR8 in Tomato (SIUVR8) can complement Arabidopsis uvr8 mutant and whether the above-mentioned key signaling mechanisms of UVR8 are conserved. Heterologous expressed SIUVR8 in an Arabidopsis uvr8 null mutant rescued the uvr8 mutant in the tested UV-B responses including hypocotyl elongation, UV-B target gene expression and anthocyanin accumulation, demonstrating that the SIUVR8 is a putative UV-B photoreceptor. Moreover, in response to UV-B, SIUVR8 forms a protein complex with Arabidopsis COP1 in plants, suggesting conserved signaling mechanism. SIUVR8 exhibits similar photocycle as AtUVR8 in plants, which highlights conserved photoreceptor activation and inactivation mechanisms.


Assuntos
Fotorreceptores de Plantas/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Antocianinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Sequência Conservada/genética , Luz , Solanum lycopersicum/metabolismo , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia
12.
Mol Plant ; 14(1): 61-76, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276158

RESUMO

Plants detect and respond to the proximity of competitors using light signals perceived by photoreceptor proteins. A low ratio of red to far-red radiation (R:FR ratio) is a key signal of competition that is sensed by the photoreceptor phytochrome B (phyB). Low R:FR ratios increase the synthesis of growth-related hormones, including auxin and gibberellins, promoting stem elongation and other shade-avoidance responses. Other photoreceptors that help plants to optimize their developmental configuration and resource allocation patterns in the canopy include blue light photoreceptors, such as cryptochromes and phototropins, and UV receptors, such as UVR8. All photoreceptors act by directly or indirectly controlling the activity of two major regulatory nodes for growth and development: the COP1/SPA ubiquitin E3 ligase complex and the PIF transcription factors. phyB is also an important modulator of hormonal pathways that regulate plant defense against herbivores and pathogens, including the jasmonic acid signaling pathway. In this Perspective, we discuss recent advances on the studies of the mechanisms that link photoreceptors with growth and defense. Understanding these mechanisms is important to provide a functional platform for breeding programs aimed at improving plant productivity, stress tolerance, and crop health in species of agronomic interest, and to manipulate the light environments in protected agriculture.


Assuntos
Agricultura , Fotorreceptores de Plantas/metabolismo , Desenvolvimento Vegetal , Imunidade Vegetal , Produtos Agrícolas/fisiologia , Transdução de Sinal Luminoso
13.
Nat Commun ; 11(1): 4316, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859932

RESUMO

Plants utilize a UV-B (280 to 315 nm) photoreceptor UVR8 (UV RESISTANCE LOCUS 8) to sense environmental UV levels and regulate gene expression to avoid harmful UV effects. Uniquely, UVR8 uses intrinsic tryptophan for UV-B perception with a homodimer structure containing 26 structural tryptophan residues. However, besides 8 tryptophans at the dimer interface to form two critical pyramid perception centers, the other 18 tryptophans' functional role is unknown. Here, using ultrafast fluorescence spectroscopy, computational methods and extensive mutations, we find that all 18 tryptophans form light-harvesting networks and funnel their excitation energy to the pyramid centers to enhance light-perception efficiency. We determine the timescales of all elementary tryptophan-to-tryptophan energy-transfer steps in picoseconds to nanoseconds, in excellent agreement with quantum computational calculations, and finally reveal a significant leap in light-perception quantum efficiency from 35% to 73%. This photoreceptor is the first system discovered so far, to be best of our knowledge, using natural amino-acid tryptophans to form networks for both light harvesting and light perception.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Transferência de Energia , Fluorescência , Cinética , Luz , Modelos Moleculares , Mutação , Conformação Proteica , Multimerização Proteica , Triptofano/metabolismo , Raios Ultravioleta
14.
J Mol Biol ; 432(7): 1880-1900, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32105734

RESUMO

Control of cellular events by optogenetic tools is a powerful approach to manipulate cellular functions in a minimally invasive manner. A common problem posed by the application of optogenetic tools is to tune the activity range to be physiologically relevant. Here, we characterized a photoreceptor of the light-oxygen-voltage (LOV) domain family of Phaeodactylum tricornutum aureochrome 1a (AuLOV) as a tool for increasing protein stability under blue light conditions in budding yeast. Structural studies of AuLOVwt, the variants AuLOVM254, and AuLOVW349 revealed alternative dimer association modes for the dark state, which differ from previously reported AuLOV dark-state structures. Rational design of AuLOV-dimer interface mutations resulted in an optimized optogenetic tool that we fused to the photoactivatable adenylyl cyclase from Beggiatoa sp. This synergistic light-regulation approach using two photoreceptors resulted in an optimized, photoactivatable adenylyl cyclase with a cyclic adenosine monophosphate production activity that matches the physiological range of Saccharomyces cerevisiae. Overall, we enlarged the optogenetic toolbox for yeast and demonstrated the importance of fine-tuning the optogenetic tool activity for successful application in cells.


Assuntos
Diatomáceas/metabolismo , Luz , Optogenética , Oxigênio/metabolismo , Fotorreceptores de Plantas/química , Fatores de Transcrição/química , Diatomáceas/efeitos da radiação , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Conformação Proteica , Domínios Proteicos , Estabilidade Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(6): 3261-3269, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988133

RESUMO

Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown "trans factors" modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Relógios Circadianos/genética , Fotossíntese/genética , Ativação Transcricional/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant J ; 102(2): 276-298, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31778231

RESUMO

In photosynthetic organisms many processes are light dependent and sensing of light requires light-sensitive proteins. The supposed eyespot photoreceptor protein Babo1 (formerly Vop1) has previously been classified as an opsin due to the capacity for binding retinal. Here, we analyze Babo1 and provide evidence that it is no opsin. Due to the localization at the basal bodies, the former Vop1 and Cop1/2 proteins were renamed V.c. Babo1 and C.r. Babo1. We reveal a large family of more than 60 Babo1-related proteins from a wide range of species. The detailed subcellular localization of fluorescence-tagged Babo1 shows that it accumulates at the basal apparatus. More precisely, it is located predominantly at the basal bodies and to a lesser extent at the four strands of rootlet microtubules. We trace Babo1 during basal body separation and cell division. Dynamic structural rearrangements of Babo1 particularly occur right before the first cell division. In four-celled embryos Babo1 was exclusively found at the oldest basal bodies of the embryo and on the corresponding d-roots. The unequal distribution of Babo1 in four-celled embryos could be an integral part of a geometrical system in early embryogenesis, which establishes the anterior-posterior polarity and influences the spatial arrangement of all embryonic structures and characteristics. Due to its retinal-binding capacity, Babo1 could also be responsible for the unequal distribution of retinoids, knowing that such concentration gradients of retinoids can be essential for the correct patterning during embryogenesis of more complex organisms. Thus, our findings push the Babo1 research in another direction.


Assuntos
Proteínas de Algas/metabolismo , Divisão Celular , Volvox/genética , Proteínas de Algas/genética , Corpos Basais/metabolismo , Corpos Basais/ultraestrutura , Genes Reporter , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Filogenia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Volvox/metabolismo , Volvox/ultraestrutura
17.
Biochem Biophys Res Commun ; 522(1): 177-183, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31757427

RESUMO

UV RESISTANCE LOCUS 8 (UVR8) is a UV-B photoreceptor that regulates various aspects of plant photomorphogenesis. Physiological functions of UVR8 have been extensively investigated in Arabidopsis. However, functions of Tomato UVR8 (SlUVR8) are largely unknown. To analyze physiological functions of SlUVR8, we generated sluvr8 knock-out mutant lines with CRISPR-CAS9 gene editing approach. At seedling stage, SlUVR8 regulates hypocotyl elongation and anthocyanin accumulation under UV-B. Moreover, SlUVR8 regulates acclimation to low dose UV-B and promotes tolerance to elevated UV-B stress. These results revealed pivotal roles of SlUVR8 in the regulation of Tomato seedling development and UV-B stress tolerance. The manipulation of photoreceptor SlUVR8 may represent a powerful tool to improve Tomato plant performance in nature where high dose UV-B is present.


Assuntos
Fotorreceptores de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Raios Ultravioleta/efeitos adversos , Antocianinas/metabolismo , Solanum lycopersicum/efeitos da radiação , Plântula/efeitos da radiação , Estresse Fisiológico/efeitos da radiação
18.
Plant Cell ; 31(10): 2510-2524, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409629

RESUMO

Plant photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although gene expression is modulated by photoreceptors at various levels, the regulatory mechanism at the pre-mRNA splicing step remains unclear. Alternative splicing, a widespread mechanism in eukaryotes that generates two or more mRNAs from the same pre-mRNA, is largely controlled by splicing regulators, which recruit spliceosomal components to initiate pre-mRNA splicing. The red/far-red light photoreceptor phytochrome participates in light-mediated splicing regulation, but the detailed mechanism remains unclear. Here, using protein-protein interaction analysis, we demonstrate that in the moss Physcomitrella patens, phytochrome4 physically interacts with the splicing regulator heterogeneous nuclear ribonucleoprotein H1 (PphnRNP-H1) in the nucleus, a process dependent on red light. We show that PphnRNP-H1 is involved in red light-mediated phototropic responses in P. patens and that it binds with higher affinity to the splicing factor pre-mRNA-processing factor39-1 (PpPRP39-1) in the presence of red light-activated phytochromes. Furthermore, PpPRP39-1 associates with the core component of U1 small nuclear RNP in P. patens Genome-wide analyses demonstrated the involvement of both PphnRNP-H1 and PpPRP39-1 in light-mediated splicing regulation. Our results suggest that phytochromes target the early step of spliceosome assembly via a cascade of protein-protein interactions to control pre-mRNA splicing and photomorphogenic responses.


Assuntos
Processamento Alternativo/efeitos da radiação , Bryopsida/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Fotorreceptores de Plantas/metabolismo , Fitocromo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Processamento Alternativo/genética , Bryopsida/genética , Bryopsida/efeitos da radiação , Ontologia Genética , Estudo de Associação Genômica Ampla , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/genética , Luz , Fitocromo/efeitos da radiação , Ligação Proteica/efeitos da radiação , Mapeamento de Interação de Proteínas , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Spliceossomos/metabolismo
19.
EMBO J ; 38(18): e102140, 2019 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-31304983

RESUMO

Plants sense different parts of the sun's light spectrum using distinct photoreceptors, which signal through the E3 ubiquitin ligase COP1. Here, we analyze why many COP1-interacting transcription factors and photoreceptors harbor sequence-divergent Val-Pro (VP) motifs that bind COP1 with different binding affinities. Crystal structures of the VP motifs of the UV-B photoreceptor UVR8 and the transcription factor HY5 in complex with COP1, quantitative binding assays, and reverse genetic experiments together suggest that UVR8 and HY5 compete for COP1. Photoactivation of UVR8 leads to high-affinity cooperative binding of its VP motif and its photosensing core to COP1, preventing COP1 binding to its substrate HY5. UVR8-VP motif chimeras suggest that UV-B signaling specificity resides in the UVR8 photoreceptor core. Different COP1-VP peptide motif complexes highlight sequence fingerprints required for COP1 targeting. The blue-light photoreceptors CRY1 and CRY2 also compete with transcription factors for COP1 binding using similar VP motifs. Thus, our work reveals that different photoreceptors and their signaling components compete for COP1 via a conserved mechanism to control different light signaling cascades.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fotorreceptores de Plantas/química , Fotorreceptores de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Sítios de Ligação , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Células Sf9 , Transdução de Sinais , Ubiquitina-Proteína Ligases/química
20.
Proc Natl Acad Sci U S A ; 116(25): 12550-12557, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160455

RESUMO

The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin's sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.


Assuntos
Arabidopsis/metabolismo , Biomassa , Fotorreceptores de Plantas/metabolismo , Fototropinas/metabolismo , Engenharia de Proteínas , Cloroplastos/metabolismo , Luz , Mutagênese , Fotorreceptores de Plantas/genética , Fotossíntese , Fototropinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...