Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 195(1): 213-231, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38431282

RESUMO

In addition to providing the radiant energy that drives photosynthesis, sunlight carries signals that enable plants to grow, develop and adapt optimally to the prevailing environment. Here we trace the path of research that has led to our current understanding of the cellular and molecular mechanisms underlying the plant's capacity to perceive and transduce these signals into appropriate growth and developmental responses. Because a fully comprehensive review was not possible, we have restricted our coverage to the phytochrome and cryptochrome classes of photosensory receptors, while recognizing that the phototropin and UV classes also contribute importantly to the full scope of light-signal monitoring by the plant.


Assuntos
Criptocromos , Fitocromo , Plantas , Criptocromos/metabolismo , Criptocromos/genética , Fitocromo/metabolismo , Plantas/metabolismo , Plantas/efeitos da radiação , Luz , Transdução de Sinal Luminoso , Fenômenos Fisiológicos Vegetais , Transdução de Sinais , Fototropinas/metabolismo , Fototropinas/genética
2.
J Exp Bot ; 75(8): 2403-2416, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38189579

RESUMO

Many ferns thrive even in low-light niches such as under an angiosperm forest canopy. However, the shade adaptation strategy of ferns is not well understood. Phytochrome 3/neochrome (phy3/neo) is an unconventional photoreceptor, found in the fern Adiantum capillus-veneris, that controls both red and blue light-dependent phototropism and chloroplast photorelocation, which are considered to improve photosynthetic efficiency in ferns. Here we show that phy3/neo localizes not only at the plasma membrane but also in the nucleus. Since both phototropism and chloroplast photorelocation are mediated by membrane-associated phototropin photoreceptors, we speculated that nucleus-localized phy3/neo possesses a previously undescribed biological function. We reveal that phy3/neo directly interacts with Adiantum cryptochrome 3 (cry3) in the nucleus. Plant cryptochromes are blue light receptors that transcriptionally regulate photomorphogenesis; therefore, phy3/neo may function via cry3 to synchronize light-mediated development with phototropism and chloroplast photorelocation to promote fern growth under low-light conditions. Furthermore, we demonstrate that phy3/neo regulates the expression of the Cyclin-like gene AcCyc1 and promotes prothallium expansion growth. These findings provide insight into the shade adaptation strategy of ferns and suggest that phy3/neo plays a substantial role in the survival and growth of ferns during the tiny gametophytic stage under low-light conditions, such as those on the forest floor.


Assuntos
Gleiquênias , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fototropinas/genética , Gleiquênias/metabolismo , Células Germinativas Vegetais , Fototropismo/fisiologia , Criptocromos , Luz
3.
Proc Natl Acad Sci U S A ; 120(18): e2302185120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098057

RESUMO

Small RNAs (sRNAs) form complexes with Argonaute proteins and bind to transcripts with complementary sequences to repress gene expression. sRNA-mediated regulation is conserved in a diverse range of eukaryotes and is involved in the control of various physiological functions. sRNAs are present in the unicellular green alga Chlamydomonas reinhardtii, and genetic analyses revealed that the core sRNA biogenesis and action mechanisms are conserved with those of multicellular organisms. However, the roles of sRNAs in this organism remain largely unknown. Here, we report that Chlamydomonas sRNAs contribute to the induction of photoprotection. In this alga, photoprotection is mediated by LIGHT HARVESTING COMPLEX STRESS-RELATED 3 (LHCSR3), whose expression is induced by light signals through the blue-light receptor phototropin (PHOT). We demonstrate here that sRNA-defective mutants showed increased PHOT abundance leading to greater LHCSR3 expression. Disruption of the precursor for two sRNAs predicted to bind to the PHOT transcript also increased PHOT accumulation and LHCSR3 expression. The induction of LHCSR3 in the mutants was enhanced by light containing blue wavelengths, but not by red light, indicating that the sRNAs regulate the degree of photoprotection via regulation of PHOT expression. Our results suggest that sRNAs are involved not only in the regulation of photoprotection but also in biological phenomena regulated by PHOT signaling.


Assuntos
Chlamydomonas reinhardtii , Pequeno RNA não Traduzido , Chlamydomonas reinhardtii/metabolismo , Fototropinas/genética , Luz , Interferência de RNA , Pequeno RNA não Traduzido/metabolismo
4.
Plant J ; 114(2): 390-402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794876

RESUMO

Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fototropismo/genética , Fosforilação , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plantas Geneticamente Modificadas/genética , Luz , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Fosfoproteínas/metabolismo
5.
ACS Synth Biol ; 11(10): 3529-3533, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36180042

RESUMO

The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.


Assuntos
Proteínas Nucleares , Fototropinas , Animais , Fototropinas/genética , Fototropinas/metabolismo , Proteínas Nucleares/metabolismo , Membro 14 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Sinais de Exportação Nuclear/genética , Luz , Avena/genética , Avena/metabolismo , Oxigênio/metabolismo , Mamíferos/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955826

RESUMO

Photosensory proteins known as photoreceptors (PHRs) are crucial for delineating light environments in synchronization with other environmental cues and regulating their physiological variables in plants. However, this has not been well studied in the Brassica genus, which includes several important agricultural and horticultural crops. Herein, we identified five major PHR gene families-phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT), F-box containing flavin binding proteins (ZTL/FKF1/LKP2), and UV RESISTANCE LOCUS 8 (UVR8)-genomic scales and classified them into subfamilies based on their phylogenetic clustering with Arabidopsis homologues. The molecular evolution characteristics of Brassica PHR members indicated indirect expansion and lost one to six gene copies at subfamily levels. The segmental duplication was possibly the driving force of the evolution and amplification of Brassica PHRs. Gene replication retention and gene loss events of CRY, PHY, and PHOT members found in diploid progenitors were highly conserved in their tetraploid hybrids. However, hybridization events were attributed to quantitative changes in UVR8 and ZTL/FKF1/LKP2 members. All PHR members underwent purifying selection. In addition, the transcript expression profiles of PHR genes in different tissue and in response to exogenous ABA, and abiotic stress conditions suggested their multiple biological significance. This study is helpful in understanding the molecular evolution characteristics of Brassica PHRs and lays the foundation for their functional characterization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Proteínas F-Box , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Criptocromos/genética , Evolução Molecular , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Fototropinas/genética , Filogenia , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
J Integr Plant Biol ; 64(10): 1901-1915, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924740

RESUMO

Plant shoot phototropism is triggered by the formation of a light-driven auxin gradient leading to bending growth. The blue light receptor phototropin 1 (phot1) senses light direction, but how this leads to auxin gradient formation and growth regulation remains poorly understood. Previous studies have suggested phot1's role for regulated apoplastic acidification, but its relation to phototropin and hypocotyl phototropism is unclear. Herein, we show that blue light can cause phot1 to interact with and phosphorylate FERONIA (FER), a known cell growth regulator, and trigger downstream phototropic bending growth in Arabidopsis hypocotyls. fer mutants showed defects in phototropic growth, similar to phot1/2 mutant. FER also interacts with and phosphorylates phytochrome kinase substrates, the phot1 downstream substrates. The phot1-FER pathway acts upstream of apoplastic acidification and the auxin gradient formation in hypocotyl under lateral blue light, both of which are critical for phototropic bending growth in hypocotyls. Our study highlights a pivotal role of FER in the phot1-mediated phototropic cell growth regulation in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Hipocótilo/metabolismo , Fitocromo/metabolismo , Ácidos Indolacéticos/metabolismo , Luz
8.
Plant Cell ; 34(6): 2328-2342, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35285491

RESUMO

The Arabidopsis (Arabidopsis thaliana) leaf veins bundle-sheath cells (BSCs)-a selective barrier to water and solutes entering the mesophyll-increase the leaf radial hydraulic conductance (Kleaf) by acidifying the xylem sap by their plasma membrane H+-ATPase,  AHA2. Based on this and on the BSCs' expression of phototropins PHOT1 and PHOT2, and the known blue light (BL)-induced Kleaf increase, we hypothesized that, resembling the guard cells, BL perception by the BSCs' phots activates its H+-ATPase, which, consequently, upregulates Kleaf. Indeed, under BL, the Kleaf of the knockout mutant lines phot1-5, phot2-1, phot1-5 phot2-1, and aha2-4 was lower than that of the wild-type (WT). BSC-only-directed complementation of phot1-5 or aha2-4 by PHOT1 or AHA2, respectively, restored the BL-induced Kleaf increase. BSC-specific silencing of PHOT1 or PHOT2 prevented such Kleaf increase. A xylem-fed kinase inhibitor (tyrphostin 9) replicated this also in WT plants. White light-ineffective in the phot1-5 mutant-acidified the xylem sap (relative to darkness) in WT and in the PHOT1-complemented phot1-5. These results, supported by BL increase of BSC protoplasts' water permeability and cytosolic pH and their hyperpolarization by BL, identify the BSCs as a second phot-controlled water conductance element in leaves, in series with stomatal conductance. Through both, BL regulates the leaf water balance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fototropinas/genética , Fototropinas/metabolismo , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Água/metabolismo
9.
Plant Physiol ; 187(3): 1235-1249, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618121

RESUMO

One conserved feature among angiosperms is the development of flat thin leaves. This developmental pattern optimizes light capture and gas exchange. The blue light (BL) receptors phototropins are required for leaf flattening, with the null phot1phot2 mutant showing curled leaves in Arabidopsis (Arabidopsis thaliana). However, key aspects of their function in leaf development remain unknown. Here, we performed a detailed spatiotemporal characterization of phototropin function in Arabidopsis leaves. We found that phototropins perceive light direction in the blade, and, similar to their role in hypocotyls, they control the spatial pattern of auxin signaling, possibly modulating auxin transport, to ultimately regulate cell expansion. Phototropin signaling components in the leaf partially differ from hypocotyls. Moreover, the light response on the upper and lower sides of the leaf blade suggests a partially distinct requirement of phototropin signaling components on each side. In particular, NON PHOTOTROPIC HYPOCOTYL 3 showed an adaxial-specific function. In addition, we show a prominent role of PHYTOCHROME KINASE SUBSTRATE 3 in leaf flattening. Among auxin transporters, PIN-FORMED 3,4,7 and AUXIN RESISTANT 1 (AUX1)/LIKE AUXIN RESISTANT 1 (LAX1) are required for the response while ABCB19 has a regulatory role. Overall, our results show that directional BL perception by phototropins is a key aspect of leaf development, integrating endogenous and exogenous signals.


Assuntos
Arabidopsis/fisiologia , Ácidos Indolacéticos/metabolismo , Fototropinas/metabolismo , Fitocromo/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Luz , Fototropinas/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
10.
J Photochem Photobiol B ; 224: 112305, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34562831

RESUMO

Phototropin (phot) is a blue light photoreceptor in plants and possesses two photosensory light­oxygen-voltage (LOV1 and LOV2) domains with different photo-thermochemical properties. While liverworts contain a single copy of PHOT (e.g., MpPHOT in Marchantia polymorpha), many land plant species contain multicopy PHOT genes (e.g., AtPHOT1 and 2 in Arabidopsis thaliana) due to evolutionary gene duplication. The LOV domains of duplicated phot proteins have been studied in detail, but those of single-copy phot proteins remain to be characterized. As phot has not been duplicated in liverworts, we hypothesized that Mpphot may retain the ancestral function and photo-thermochemical properties. To learn more about the unduplicated phot proteins, we analyzed chloroplast relocation movement and the photo-thermochemical properties of LOV1 and LOV2 in Mpphot (Mpphot-LOV1 and Mpphot-LOV2, respectively). The function of Mpphot-LOV1, which induced a response to move chloroplasts to weak light (the accumulation response) in the absence of photoactive LOV2, differed from that of LOV1 of the duplicated phot proteins of A. thaliana (e.g., Atphot1-LOV1 preventing the accumulation response). On the other hand, the function of Mpphot-LOV2 was similar to that of LOV2 of the duplicated phots. The photo-thermochemical properties of Mpphot were a hybrid of those of the duplicated phots; the photochemical and thermochemical reactions of Mpphot were similar to those of the phot2- and phot1-type proteins, respectively. Our findings reveal conservation and diversification among LOV domains during phot duplication events in land plant evolution.


Assuntos
Evolução Biológica , Genes de Plantas , Marchantia/metabolismo , Fototropinas/fisiologia , Cloroplastos/metabolismo , Fototropinas/química , Fototropinas/genética
11.
Physiol Plant ; 173(3): 775-787, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102708

RESUMO

Changes in the subcellular localisation of chloroplasts help optimise photosynthetic activity under different environmental conditions. In many plants, this movement is mediated by the blue-light photoreceptor phototropin. A model organism with simple phototropin signalling that allows clear observation of chloroplasts would facilitate the study of chloroplast relocation movement. Here, we examined this process in the simple thalloid liverwort Apopellia endiviifolia. Transverse sections of the thallus tissue showed uniformly developed chloroplasts and no air chambers; these characteristics enable clear observation of chloroplasts and analysis of their movements under a fluorescence stereomicroscope. At 22°C, the chloroplasts moved to the anticlinal walls of cells next to the neighbouring cells in the dark (dark-positioning response), whereas they moved towards weak light (accumulation response) and away from strong light (avoidance response). When the temperature was reduced to 5°C, the chloroplasts moved away from weak light (cold-avoidance response). Hence, both light- and temperature-dependent chloroplast relocation movements occur in A. endiviifolia. Notably, the accumulation, avoidance and cold-avoidance responses were induced under blue-light but not under red-light. These results suggest that phototropin is responsible for chloroplast relocation movement in A. endiviifolia and that the characteristics are similar to those in the model liverwort Marchantia polymorpha. RNA sequencing and Southern blot analysis identified a single copy of the PHOTOTROPIN gene in A. endiviifolia, indicating that a simple phototropin signalling pathway functions in A. endiviifolia. We conclude that A. endiviifolia has great potential as a model system for elucidating the mechanisms of chloroplast relocation movement.


Assuntos
Cloroplastos , Marchantia , Luz , Movimento , Fototropinas/genética
12.
Plant J ; 106(3): 844-861, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608974

RESUMO

Phototropins, the UVA-blue light photoreceptors, endow plants to detect the direction of light and optimize photosynthesis by regulating positioning of chloroplasts and stomatal gas exchange. Little is known about their functions in other developmental responses. A tomato Non-phototropic seedling1 (Nps1) mutant, bearing an Arg495His substitution in the vicinity of LOV2 domain in phototropin1, dominant-negatively blocks phototropin1 responses. The fruits of Nps1 mutant were enriched in carotenoids, particularly lycopene, compared with its parent, Ailsa Craig. On the contrary, CRISPR/CAS9-edited loss of function phototropin1 mutants displayed subdued carotenoids compared with the parent. The enrichment of carotenoids in Nps1 fruits is genetically linked with the mutation and exerted in a dominant-negative fashion. Nps1 also altered volatile profiles with high levels of lycopene-derived 6-methyl 5-hepten2-one. The transcript levels of several MEP and carotenogenesis pathway genes were upregulated in Nps1. Nps1 fruits showed altered hormonal profiles with subdued ethylene emission and reduced respiration. Proteome profiles showed a causal link between higher carotenogenesis and increased levels of protein protection machinery, which may stabilize proteins contributing to MEP and carotenogenesis pathways. The enhancement of carotenoid content by Nps1 in a dominant-negative fashion offers a potential tool for high lycopene-bearing hybrid tomatoes.


Assuntos
Carotenoides/metabolismo , Frutas/genética , Fototropinas/genética , Solanum lycopersicum/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Frutas/metabolismo , Edição de Genes , Mutação com Perda de Função , Solanum lycopersicum/metabolismo , Redes e Vias Metabólicas/genética , Mutação/genética , Fototropinas/metabolismo
13.
Nat Commun ; 11(1): 5107, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037199

RESUMO

Engineered light-dependent switches provide uniquely powerful opportunities to investigate and control cell regulatory mechanisms. Existing tools offer high spatiotemporal resolution, reversibility and repeatability. Cellular optogenetics applications remain limited with diffusible targets as the response of the actuator is difficult to independently validate. Blue light levels commonly needed for actuation can be cytotoxic, precluding long-term experiments. We describe a simple approach overcoming these obstacles. Resonance energy transfer can be used to constitutively or dynamically modulate actuation sensitivity. This simultaneously offers on-line monitoring of light-dependent switching and precise quantification of activation-relaxation properties in intact living cells. Applying this approach to different LOV2-based switches reveals that flanking sequences can lead to relaxation times up to 11-fold faster than anticipated. In situ-measured parameter values guide the design of target-inhibiting actuation trains with minimal blue-light exposure, and context-based optimisation can increase sensitivity and experimental throughput a further 10-fold without loss of temporal precision.


Assuntos
Imagem Molecular/métodos , Optogenética/métodos , Fototropinas/metabolismo , Animais , Transferência de Energia , Feminino , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hipocampo/citologia , Humanos , Luz , Sistema de Sinalização das MAP Quinases , Masculino , Neurônios , Fototropinas/análise , Fototropinas/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
14.
ACS Chem Biol ; 15(10): 2752-2765, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32880430

RESUMO

Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 µs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.


Assuntos
Avena/química , Glutamina/química , Fototropinas/metabolismo , Desdobramento de Proteína/efeitos da radiação , Mononucleotídeo de Flavina/metabolismo , Ligação de Hidrogênio , Luz , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Optogenética , Fototropinas/genética , Fototropinas/efeitos da radiação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Multimerização Proteica/efeitos da radiação
15.
Am J Bot ; 107(9): 1309-1318, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32965027

RESUMO

PREMISE: The importance of chloroplast movement for plant growth in constant, controlled light and of nonphotochemical quenching (NPQ) in variable, natural light are known. Here we concurrently investigated growth and reproduction of several Arabidopsis thaliana mutants to assess the relative importance of photoprotection via chloroplast movement and NPQ. METHODS: Plants were grown outdoors (natural conditions) or in a growth chamber with variable light and chilling temperatures (controlled conditions). Phenotypic growth and reproductive variables were determined at set times before maturity in wild-type (WT) and phot1, phot2, phot1phot2 (e.g., impaired chloroplast movement, stomatal conductance, leaf flattening), chup1 (impaired chloroplast movement), and npq1 (reduced NPQ) plants. RESULTS: Mutants were most adversely affected in natural conditions, with phot1phot2 and chup1 most severely impacted. These mutants bolted later and produced fewer leaves and siliques, less leaf biomass, and fewer secondary inflorescences than WT. In controlled conditions, leaf traits of these mutants were unaffected, but phot1phot2 bolted later and produced fewer secondary inflorescences and siliques than WT. For most variables, there were significant interactions between growth conditions and plant genotype. Many variables were correlated, but those relationships changed with growth conditions and genotype. CONCLUSIONS: Phenotypic variables at the time of the harvest were strongly affected by growth conditions and genotype. In natural conditions, phot1phot2 and chup1 mutants were most adversely affected, demonstrating the importance of chloroplast movement. In controlled conditions, only phot1phot2 was consistently affected, also emphasizing the important, pleiotropic effects of phototropins. In both conditions, NPQ was less important.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos , Luz , Mutação , Fototropinas/genética , Folhas de Planta
16.
Plant Cell Rep ; 39(10): 1331-1343, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32661816

RESUMO

KEY MESSAGE: Brachypodium distachyon is a good model for studying chloropla st movements in the crop plants, wheat, rye and barley. The movements are activated only by blue light, similar to Arabidopsis. Chloroplast translocations are ubiquitous in photosynthetic organisms. On the one hand, they serve to optimize energy capture under limiting light, on the other hand, they minimize potential photodamage to the photosynthetic apparatus in excess light. In higher plants chloroplast movements are mediated by phototropins (phots), blue light receptors that also control other light acclimation responses. So far, Arabidopsis thaliana has been the main model for studying the mechanism of blue light signaling to chloroplast translocations in terrestrial plants. Here, we propose Brachypodium distachyon as a model in research into chloroplast movements in C3 cereals. Brachypodium chloroplasts respond to light in a similar way to those in Arabidopsis. The amino acid sequence of Brachypodium PHOT1 is 79.3% identical, and that of PHOT2 is 73.6% identical to the sequence of the corresponding phototropin in Arabidopsis. Both phototropin1 and 2 are expressed in Brachypodium, as shown using quantitative real-time PCR. Intriguingly, the light-expression pattern of BradiPHOT1 and BradiPHOT2 is the opposite of that for Arabidopsis phototropins, suggesting potential unique light signaling in C3 grasses. To investigate if Brachypodium is a good model for studying grass chloroplast movements we analyzed these movements in the leaves of three C3 crop grasses, namely wheat, rye and barley. Similarly to Brachypodium, chloroplasts only respond to blue light in all these species.


Assuntos
Brachypodium/metabolismo , Brachypodium/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Luz , Arabidopsis/metabolismo , Brachypodium/genética , Regulação da Expressão Gênica de Plantas , Movimento , Fototropinas/genética , Fototropinas/metabolismo , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação
17.
PLoS One ; 15(5): e0233302, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437457

RESUMO

When exposed to fluctuating light intensity, chloroplasts move towards weak light (accumulation response), and away from strong light (avoidance response). In addition, cold treatment (5°C) induces the avoidance response even under weak-light conditions (cold-avoidance response). These three responses are mediated by the phototropin (phot), which is a blue-light photoreceptor and has also been reported to act as a thermosensory protein that perceives temperature variation. Our previous report indicated that cold-induced changes in phot biochemical activity initiate the cold-avoidance response. In this study, we further explored the induction mechanism of the cold-avoidance response in the liverwort Marchantia polymorpha and examined the relationship between changes in the amount of phot and the induction of the cold-avoidance response. The switch between the accumulation and avoidance responses occurs at a so-called 'transitional' light intensity. Our physiological experiments revealed that a cold-mediated decrease in the transitional light intensity leads to the induction of the cold-avoidance response. While artificial overexpression of phot decreased the transitional light intensity as much as cold treatment did, the amount of endogenous phot was not increased by cold treatment in wild-type M. polymorpha. Taken together, these findings show that the cold-avoidance response is initiated by a cold-mediated reduction of the transitional light intensity, independent of the amount of endogenous phot. This study provides a clue to understanding the mechanism underlying the switch in direction of chloroplast relocation in response to light and temperature.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Fototropinas/metabolismo , Cloroplastos/ultraestrutura , Temperatura Baixa , Genes de Plantas , Luz , Marchantia/genética , Marchantia/metabolismo , Marchantia/efeitos da radiação , Movimento/efeitos da radiação , Fototropinas/genética , Fototropismo , Plantas Geneticamente Modificadas , Regulação para Cima
18.
Nat Commun ; 11(1): 788, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034150

RESUMO

Protein tyrosine phosphatases regulate a myriad of essential subcellular signaling events, yet they remain difficult to study in their native biophysical context. Here we develop a minimally disruptive optical approach to control protein tyrosine phosphatase 1B (PTP1B)-an important regulator of receptor tyrosine kinases and a therapeutic target for the treatment of diabetes, obesity, and cancer-and we use that approach to probe the intracellular function of this enzyme. Our conservative architecture for photocontrol, which consists of a protein-based light switch fused to an allosteric regulatory element, preserves the native structure, activity, and subcellular localization of PTP1B, affords changes in activity that match those elicited by post-translational modifications inside the cell, and permits experimental analyses of the molecular basis of optical modulation. Findings indicate, most strikingly, that small changes in the activity of PTP1B can cause large shifts in the phosphorylation states of its regulatory targets.


Assuntos
Optogenética/métodos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo , Regulação Alostérica , Animais , Técnicas Biossensoriais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Fosforilação , Fototropinas/genética , Fototropinas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Receptor de Insulina/metabolismo , Proteínas Recombinantes/genética
19.
J Phys Chem B ; 123(51): 10939-10950, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31790257

RESUMO

Phototropin (phot) is a blue light sensor involved in the light responses of several species from green algae to higher plants. Phot consists of two photoreceptive domains (LOV1 and LOV2) and a Ser/Thr kinase domain. These domains are connected by a hinge and a linker domain. So far, studies on the photochemical reaction dynamics of phot have been limited to short fragments, and the reactions of intact phot have not been well elucidated. Here, the photoreactions of full-length phot and of several mutants from Chlamydomonas reinhardtii (Cr) were investigated by the transient grating and circular dichroism (CD) methods. Full-length Cr phot is in monomeric form in both dark and light states and shows conformational changes upon photoexcitation. When LOV1 is excited, the hinge helix unfolds with a time constant of 77 ms. Upon excitation of LOV2, the linker helix unfolds initially followed by a tertiary structural change of the kinase domain with a time constant of 91 ms. The quantum yield of conformational change after adduct formation of LOV2 is much smaller than that of LOV1, indicating that reactive and nonreactive forms exist. The conformational changes associated with the excitations of LOV1 and LOV2 occur independently and additively, even when they are excited simultaneously. Hence, the role of LOV1 is not to enhance the kinase activity in addition to LOV2 function; we suggest LOV1 has different functions such as regulation of intermolecular interactions.


Assuntos
Proteínas de Algas/química , Chlamydomonas reinhardtii/química , Fototropinas/química , Proteínas de Algas/genética , Domínio Catalítico , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/efeitos da radiação , Cromatografia em Gel , Dicroísmo Circular , Criptocromos/química , Criptocromos/genética , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Luz , Modelos Moleculares , Mutação , Processos Fotoquímicos , Fototropinas/genética , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética
20.
Genes (Basel) ; 10(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554292

RESUMO

'KDML105' rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the 'KDML105' rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and 'KDML105' transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in 'KDML105', suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in 'KDML105'. These results suggested respiration was more inhibited in 'KDML105' than in CSSL18, and this may contribute to the higher salt susceptibility of 'KDML105' rice. Moreover, the DEGs between 'KDML105' and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.


Assuntos
Cromossomos de Plantas , Oryza/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Fototropinas/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...