Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Anal Chem ; 96(15): 5976-5984, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38587278

RESUMO

Nanoparticles (NPs) are anticipated to be used for various biomedical applications in which their aggregation has been an important issue. However, concerns regarding slightly aggregated but apparently monodispersed NPs have been difficult to address because of a lack of appropriate evaluation methods. Here, we report centrifugal field-flow fractionation (CF3) as a powerful method for analyzing the slight aggregation of NPs, using antibody-modified gold NPs (Ab-AuNPs) prepared by a conventional protocol with centrifugal purification as a model. While common evaluation methods such as dynamic light scattering cannot detect significant signs of aggregation, CF3 successfully detects distinct peaks of slightly aggregated NPs, including dimers and trimers. Their impact on biological interactions was also demonstrated by a cellular uptake study: slightly aggregated Ab-AuNPs exhibited 1.8 times higher cellular uptake than monodispersed Ab-AuNPs. These results suggest the importance of aggregate evaluation via CF3 as well as the need for careful attention to the bioconjugation procedures for NPs.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas Metálicas , Ouro , Difusão Dinâmica da Luz , Transporte Biológico , Fracionamento por Campo e Fluxo/métodos
2.
J Chromatogr A ; 1724: 464927, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38677152

RESUMO

The thickness-tapered channel structure in flow field-flow fractionation (FlFFF), recently introduced by constructing a channel with a linear decrease in thickness along its length, demonstrated effectiveness in steric/hyperlayer separation of supramicron particles with improvements in separation speed, elution recovery, and an expanded dynamic size range of separation. In this study, we conducted a comparative analysis of the performance between the impact of field (or crossflow rate) programming or outflow rate programming for the separation of polystyrene latex standards (50 ∼ 800 nm) with a conventional channel having uniform thickness and a thickness-tapered channel without programming. Outlet flow rate and crossflow rate conditions were also varied. Although the particle size resolution of the tapered channel does not surpass that of field programming in uniform thickness channel, it achieves higher-speed separation without a significant loss of resolution and without the need for a complex flow controller system even at a low outflow rate condition. Furthermore, it yielded an improved resolution for particles close to the steric transition regime (400 ∼ 600 nm) in the normal mode of separation. Due to the continuous increase in mean flow velocity down the channel, the tapered channel exhibits flexibility in separating submicron-sized particles at high crossflow rate conditions or low outflow rate conditions, of which the latter can be advantageous when coupled with mass spectrometry in a miniaturized setup.


Assuntos
Fracionamento por Campo e Fluxo , Tamanho da Partícula , Poliestirenos , Fracionamento por Campo e Fluxo/métodos , Poliestirenos/química , Desenho de Equipamento
3.
Methods Mol Biol ; 2789: 31-34, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506988

RESUMO

Asymmetric-flow field-flow fractionation (AF4) is a valuable tool to separate and assess different size populations in nanotherapeutics. When coupled with both static light scattering and dynamic light scattering, it can be used to qualitatively assess protein binding to nanoparticles by comparing the shape factors for both non-plasma-incubated samples and plasma-incubated samples. The shape factor is defined as the ratio of the derived root mean square radius (by static light scattering) to the measured hydrodynamic radius (by dynamic light scattering). The shape factor gives an idea of where the center of mass lies in a nanoparticle, and any shift in the shape factor to larger values is indicative of a mass addition to the periphery of the nanoparticle and suggests the presence of protein binding. This protocol will discuss how to set up an experiment to assess protein binding in nanoparticles using AF4, multi-angle light scattering (MALS), and dynamic light scattering (DLS).


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Difusão Dinâmica da Luz , Ligação Proteica , Tamanho da Partícula , Fracionamento por Campo e Fluxo/métodos , Luz , Espalhamento de Radiação
4.
Methods Mol Biol ; 2789: 21-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38506987

RESUMO

Nanomaterials are inherently polydisperse. Traditional techniques, such as the widely used batch-mode dynamic light-scattering (DLS) analysis, are not ideal nor thoroughly descriptive enough to define the full complexity of these materials. Asymmetric-flow field-flow fractionation (AF4) with various in-line detectors, such as ultraviolet-visible (UV-vis), multi-angle light scattering (MALS), refractive index (RI), and DLS, is an alternative technique that can provide flow-mode analysis of not only size distribution but also shape, drug release/stability, and protein binding.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Difusão Dinâmica da Luz , Refratometria , Fracionamento por Campo e Fluxo/métodos , Luz , Tamanho da Partícula
5.
Int J Biol Macromol ; 261(Pt 2): 129942, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311131

RESUMO

Arabinoxylans, ß-glucans, and dextrins influence the brewing industry's filtration process and product quality. Despite their relevance, only a maximum concentration of ß-glucans is recommended. Nevertheless, filtration problems are still present, indicating that although the chemical concentration is essential, other parameters should be investigated. Molar mass and conformation are important polymer physical characteristics often neglected in this industry. Therefore, this research proposes an approach to physically characterize enzymatically isolated beer polysaccharides by asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detector. Based on the obtained molar masses, root-mean-square radius (rrms from MALS), and hydrodynamic radius (rhyd), conformational properties such as apparent density (ρapp) and rrms/rhyd can be calculated based on their molar mass and size. Consequently, the ρapp and rrms/rhyd behavior hints at the different structures within each polysaccharide. The rrms/rhyd 1.2 and high ρapp values on low molar mass dextrins (1-2·105 g/mol) indicate branches, while aggregated structures at high molar masses on arabinoxylans and ß-glucans (2·105 -6·106 g/mol) are due to an increase of ρapp and a rrms/rhyd (0.6-1). This methodology provides a new perspective to analyze starch and non-starch polysaccharides in cereal-based beverages since different physical characteristics could influence beer's filtration and sensory characteristics.


Assuntos
Fracionamento por Campo e Fluxo , beta-Glucanas , Grão Comestível , Dextrinas , Polissacarídeos , Amido/química , Fracionamento por Campo e Fluxo/métodos , Espalhamento de Radiação
6.
Arch Toxicol ; 98(3): 769-777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38221537

RESUMO

We established a size separation method for silica nanoparticles (SiNPs) measuring 10, 30, 50, 70, and 100 nm in diameter using asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry (AF4-ICP-MS), and evaluated the cytotoxicity of SiNPs in human hepatoma HepG2 cells. Analysis of the mixture sample revealed that nanoparticles of different sizes were eluted at approximately 2-min intervals, with no effect on each elution time or percentage recovery. Compared with larger SiNPs, smaller SiNPs exhibited high cytotoxicity when the volume of SiNPs exposed to the cells was the same. We measured SiNPs in culture medium and inside cells by AF4-ICP-MS and found that approximately 17% of SiNPs in the mixture of five differently sized particles were absorbed by the cells. Transmission electron microscopy revealed that 10 nm SiNPs formed aggregates and accumulated in the cells. Based on AF4-ICP-MS analysis, there is no clear difference in the particle volume absorbed by the cells among different sizes. Therefore, the high toxicity of small SiNPs can be explained by the fact that their large surface area relative to particle volume efficiently induces toxicological influences. Indeed, the large surface area of 10 nm SiNPs significantly contributed to the production of reactive oxygen species.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Humanos , Dióxido de Silício/toxicidade , Dióxido de Silício/química , Fracionamento por Campo e Fluxo/métodos , Células Hep G2 , Espectrometria de Massas/métodos , Nanopartículas/toxicidade , Nanopartículas/química , Tamanho da Partícula
7.
J Chromatogr A ; 1712: 464492, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37944435

RESUMO

Field-flow fractionation (FFF) with its several variants, has developed into a mature methodology. The scope of the FFF investigations has expanded, covering both a wide range of basic studies and especially a wide range of analytical applications. Special attention of this review is given to the achievements of FFF with reference to recent applications in the fractionation, isolation, and purification of biomacromolecules, and from which especially those of (in alphabetical order) bacteria, cells, extracellular vesicles, liposomes, lipoproteins, nucleic acids, and viruses and virus-like particles. In evaluating the major approaches and trends demonstrated since 2012, the most significant biomacromolecule applications are compiled in tables. It is also evident that asymmetrical flow field-flow fractionation is by far the most dominant technique in the studies. The industry has also shown current interest in FFF and adopted it in some sophisticated fields. FFF, in combination with appropriate detectors, handles biomacromolecules in open channel in a gentle way due to the lack of shear forces and unwanted interactions caused by the stationary phase present in chromatography. In addition, in isolation and purification of biomacromolecules quite high yields can be achieved under optimal conditions.


Assuntos
Fracionamento Químico , Fracionamento por Campo e Fluxo , Fracionamento por Campo e Fluxo/métodos , Lipoproteínas , Cromatografia , Lipossomos
8.
Anal Chem ; 95(46): 16950-16957, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939234

RESUMO

Conventional antimicrobial susceptibility testing (AST) methods require 24-48 h to provide results, creating the need for a probabilistic antibiotic therapy that increases the risk of antibiotic resistance emergence. Consequently, the development of rapid AST methods has become a priority. Over the past decades, sedimentation field-flow fractionation (SdFFF) has demonstrated high sensitivity in early monitoring of induced biological events in eukaryotic cell populations. This proof-of-concept study aimed at investigating SdFFF for the rapid assessment of bacterial susceptibility to antibiotics. Three bacterial species were included (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) with two panels of antibiotics tailored to each bacterial species. The results demonstrate that SdFFF, when used in "Hyperlayer" elution mode, enables monitoring of antibiotic-induced morphological changes. The percentage variation of the retention factor (PΔR) was used to quantify the biological effect of antibiotics on bacteria with the establishment of a threshold value of 16.8% to differentiate susceptible and resistant strains. The results obtained with SdFFF were compared to that of the AST reference method, and a categorical agreement of 100% was observed. Overall, this study demonstrates the potential of SdFFF as a rapid method for the determination of antibiotic susceptibility or resistance since it is able to provide results within a shorter time frame than that needed for conventional methods (3-4 h vs 16-24 h, respectively), enabling earlier targeted antibiotic therapy. Further research and validation are necessary to establish the effectiveness and reliability of SdFFF in clinical settings.


Assuntos
Fracionamento por Campo e Fluxo , Fracionamento por Campo e Fluxo/métodos , Reprodutibilidade dos Testes , Antibacterianos/farmacologia , Bactérias , Klebsiella pneumoniae , Escherichia coli , Testes de Sensibilidade Microbiana
9.
Anal Chem ; 95(44): 16138-16143, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874938

RESUMO

The resolution of flow field-flow fractionation (flow FFF) depends primarily on the crossflow rate and its change over time. In this work, we demonstrate a method for modulation of the crossflow rate during separation that increases the peak-to-peak resolution of the resulting fractograms. In classical FFF methods, the crossflow rate is either maintained constant or decreased during the separation of the different species. In this work, higher resolution between peaks was achieved by a novel gradient method in which the crossflow is increased briefly during separation to allow stronger retention of the later eluting peaks. We first outline the theoretical basis by which improved separation is achieved. We confirm our hypothesis by quantifying the impact of increasing crossflow on the resolution between a monoclonal antibody monomer and its high-molecular-weight aggregate. We then demonstrate that this method is applicable to two different FFF methods (AF4 and HF5) and various pharmaceutically relevant samples (monoclonal antibodies and adeno-associated viruses). Finally, we hypothesize that increasing the force perpendicular to the laminar flow as described here is broadly applicable to all FFF methods and improves the quality of FFF-based separations.


Assuntos
Fracionamento por Campo e Fluxo , Fracionamento por Campo e Fluxo/métodos , Anticorpos Monoclonais , Peso Molecular , Gravitação
10.
Se Pu ; 41(8): 714-721, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37534559

RESUMO

Asymmetrical flow field-flow fractionation (AF4), a gentle tool for the separation and characterization of particles and macromolecules, has attracted increased interest in recent years owing to its broad dynamic size range and utilization of "open channel" voids in the packing or stationary phase. A steric transition phenomenon in which the sample elution mode change from the normal mode to the steric/hyperlayer mode occurs. Accurate characterization by AF4 requires the absence of steric transition, particularly when the sample has a broad size distribution, because the effect of the combination of different modes is difficult to interpret. In this study, the relative molecular mass (M), radius of gyration (Rg), and conformation of Gastrodia elata polysaccharides (GEPs) were characterized using AF4 coupled with online multi-angle light scattering (MALS) and differential refractive index (dRI) detection (AF4-MALS-dRI). Steric transition was observed during GEP separation by AF4 owing to the broad size distribution of the molecules. This phenomenon would result in the inaccurate characterization of the GEPs in terms of M and Rg because two GEP groups of different sizes may elute together. In this study, the effects of constant and exponentially decaying cross-flow rates, sample mass concentration, and spacer thickness on steric transition were systematically investigated. The results indicated that a high GEP mass concentration (i. e., 0.75 mg/mL) can lead to steric transition. The spacer thickness affected the resolution and retention time of the GEPs and changed the steric transition point (di). An exponentially decaying cross-flow rate not only adjusted the di of the polydisperse GEP samples but also improved the GEP resolution and shortened the analysis time. The influence of steric transition was solved under the following operating conditions: injected GEP mass concentration=0.5 mg/mL; injection volume=50 µL; spacer thickness=350 µm; detector flow rate=1.0 mL/min; and cross-flow rate exponentially decayed from 0.2 to 0.05 mL/min with a half-life of 2 min. Moreover, the influence of GEP origins and ultrasound treatment time on the M and Rg distributions and conformation of GEPs were investigated under the optimized operating conditions. The results showed that the M and Rg distributions of Yunnan and Sichuan GEPs decreased with increasing ultrasound time. When the ultrasound treatment time was 15 min, the Yunnan GEPs had a loosely hyperbranched chain conformation, whereas the Sichuan GEPs had a spherical conformation. When the ultrasound treatment time was increased to 30 or 60 min, the GEPs from both Yunnan and Sichuan had a hyperbranched chain conformation, indicating that ultrasound treatment resulted in GEP degradation. Under the same extraction conditions, GEPs from Yunnan had larger M and Rg values than those from Sichuan. AF4-MALS-dRI showed good repeatability for the characterization of GEPs under the optimized operating conditions. The relative standard deviations of Rg and M were 0.5% and 1.7%, respectively. The data presented in this study can be used as a starting point for in-depth studies on the structural bioactivity of GEPs.


Assuntos
Fracionamento por Campo e Fluxo , Gastrodia , China , Polissacarídeos , Fracionamento por Campo e Fluxo/métodos
11.
J Chromatogr A ; 1705: 464186, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37453175

RESUMO

High molar mass polyethylene oxide (HM-PEO) is commonly used to enhance the mechanical strength of solid oral opioid drug products to deter abuse. Because the properties of PEO depend on molar mass distribution, accurately determining the molar mass distribution is a necessary part of understanding PEO's role in abuse-deterrent formulations (ADF). In this study, an asymmetrical flow field-flow fractionation (AF4) analytical procedure was developed to characterize PEO polymers with nominal molar masses of 1, 4 or 7 MDa as well as those from in-house prepared placebo ADF. The placebo ADF were manufactured using direct compress or hot-melt-extrusion methods, and subjected to physical manipulation, such as heating and grinding before measurement by AF4 were performed. The molar mass distribution characterized by AF4 revealed that PEO was sensitive to thermal stress, exhibiting decreased molar mass with increased heat exposure. The optimized AF4 method was deemed suitable for characterizing HM-PEO, offering adequate dynamic separation range for PEO with molar mass from 100 kDa to approximately 10 MDa.


Assuntos
Formulações de Dissuasão de Abuso , Fracionamento por Campo e Fluxo , Polietilenoglicóis , Fracionamento por Campo e Fluxo/métodos , Comprimidos , Composição de Medicamentos
12.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375222

RESUMO

Gastrodia elata ("Tian Ma" in Chinese) is used as a food and medical ingredient in traditional Chinese medicine. In this study, to enhance the anti-breast cancer activity of Gastrodia elata polysaccharide (GEP), GEPs were modified via sulfidation (SGEP) and acetylation (AcGEP). The physicochemical properties (such as solubility and substitution degree) and structural information (such as molecular weight Mw and radius of gyration Rg) of GEP derivatives were determined by Fourier transformed infrared (FTIR) spectroscopy and asymmetrical flow field-flow fractionation (AF4) coupled online with multiangle light scattering (MALS) and differential refractive index (dRI) detectors (AF4-MALS-dRI). The effects of the structural modification of GEP on the proliferation, apoptosis, and cell cycle of MCF-7 cell were studied systematically. The ability of MCF-7 cell for the uptake of GEP was studied by laser scanning confocal microscopy (LSCM). The results suggested that the solubility and anti-breast cancer activity of GEP were enhanced and the average Rg and Mw of GEP decreased after chemical modification. The AF4-MALS-dRI results showed that the chemical modification process simultaneously caused the degradation and aggregation of GEPs. The LSCM results revealed that more SGEP can enter the MCF-7 cell interior compared with AcGEP. The results indicated that the structure of AcGEP could play a dominating role in antitumor activity. The data obtained in this work can be used as a starting point for investigating the structure-bioactivity of GEPs.


Assuntos
Fracionamento por Campo e Fluxo , Gastrodia , Neoplasias , Humanos , Gastrodia/química , Polissacarídeos/farmacologia , Medicina Tradicional Chinesa , Fracionamento por Campo e Fluxo/métodos
13.
Anal Chem ; 95(19): 7487-7494, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37146101

RESUMO

We report an online analytical platform based on the coupling of asymmetrical flow field-flow fractionation (AF4) and native mass spectrometry (nMS) in parallel with UV-absorbance, multi-angle light scattering (MALS), and differential-refractive-index (UV-MALS-dRI) detectors to elucidate labile higher-order structures (HOS) of protein biotherapeutics. The technical aspects of coupling AF4 with nMS and the UV-MALS-dRI multi-detection system are discussed. The "slot-outlet" technique was used to reduce sample dilution and split the AF4 effluent between the MS and UV-MALS-dRI detectors. The stability, HOS, and dissociation pathways of the tetrameric biotherapeutic enzyme (anticancer agent) l-asparaginase (ASNase) were studied. ASNase is a 140 kDa homo-tetramer, but the presence of intact octamers and degradation products with lower molecular weights was indicated by AF4-MALS/nMS. Exposing ASNase to 10 mM NaOH disturbed the equilibrium between the different non-covalent species and led to HOS dissociation. Correlation of the information obtained by AF4-MALS (liquid phase) and AF4-nMS (gas phase) revealed the formation of monomeric, tetrameric, and pentameric species. High-resolution MS revealed deamidation of the main intact tetramer upon exposure of ASNase to high pH (NaOH and ammonium bicarbonate). The particular information retrieved from ASNase with the developed platform in a single run demonstrates that the newly developed platform can be highly useful for aggregation and stability studies of protein biopharmaceuticals.


Assuntos
Fracionamento por Campo e Fluxo , Proteínas , Hidróxido de Sódio , Espectrometria de Massas , Refratometria , Asparaginase , Fracionamento por Campo e Fluxo/métodos
14.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241911

RESUMO

Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas , Nanoestruturas , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Polímeros , Fracionamento por Campo e Fluxo/métodos , Tamanho da Partícula
15.
Methods Mol Biol ; 2668: 99-108, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37140792

RESUMO

Immunoaffinity chromatography (IAC) with selective antibodies immobilized on polymeric monolithic disk columns enables selective isolation of biomacromolecules from human plasma, while asymmetrical flow field-flow fractionation (AsFlFFF or AF4) can be used for further fractionation of relevant subpopulations of biomacromolecules (e.g., small dense low-density lipoproteins, exomeres, and exosomes) from the isolates. Here we describe how the isolation and fractionation of subpopulations of extracellular vesicles can be achieved without the presence of lipoproteins using on-line coupled IAC-AsFlFFF. With the developed methodology, it is possible to have fast, reliable, and reproducible automated isolation and fractionation of challenging biomacromolecules from human plasma with a high purity and high yields of subpopulations.


Assuntos
Exossomos , Vesículas Extracelulares , Fracionamento por Campo e Fluxo , Humanos , Exossomos/química , Lipoproteínas/análise , Lipoproteínas LDL , Fracionamento por Campo e Fluxo/métodos
16.
Langmuir ; 39(22): 7557-7565, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37225422

RESUMO

Semiconductor nanocrystals or quantum dots (QDs) have gained significant attention in biomedical research as versatile probes for imaging, sensing, and therapies. However, the interactions between proteins and QDs, which are crucial for their use in biological applications, are not yet fully understood. Asymmetric flow field-flow fractionation (AF4) is a promising method for analyzing the interactions of proteins with QDs. This technique uses a combination of hydrodynamic and centrifugal forces to separate and fractionate particles based on their size and shape. By coupling AF4 with other techniques, such as fluorescence spectroscopy and multi-angle light scattering, it is possible to determine the binding affinity and stoichiometry of protein-QD interactions. Herein, this approach has been utilized to determine the interaction between fetal bovine serum (FBS) and silicon quantum dots (SiQDs). Unlike metal-containing conventional QDs, SiQDs are highly biocompatible and photostable in nature, making them attractive for a wide range of biomedical applications. In this study, AF4 has provided crucial information on the size and shape of the FBS/SiQD complexes, their elution profile, and their interaction with serum components in real time. The differential scanning microcalorimetric technique has also been employed to monitor the thermodynamic behavior of proteins in the presence of SiQDs. We have investigated their binding mechanisms by incubating them at temperatures below and above the protein denaturation. This study yields various significant characteristics such as their hydrodynamic radius, size distribution, and conformational behavior. The compositions of SiQD and FBS influence the size distribution of their bioconjugates; the size increases by intensifying the concentration of FBS, with their hydrodynamic radii ranging between 150 and 300 nm. The results signify that in the alliance of SiQDs to the system, there is an augmentation of the denaturation point of the proteins and hence their thermal stability, providing a more comprehensive understanding of the interactions between FBS and QDs.


Assuntos
Fracionamento por Campo e Fluxo , Pontos Quânticos , Pontos Quânticos/química , Silício , Soroalbumina Bovina/química , Fracionamento por Campo e Fluxo/métodos , Temperatura
17.
J Pharm Sci ; 112(8): 2190-2202, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211315

RESUMO

Characterization of particulate impurities such as aggregates is necessary to develop safe and efficacious adeno-associated virus (AAV) drug products. Although aggregation of AAVs can reduce the bioavailability of the virus, only a limited number of studies focus on the analysis of aggregates. We explored three technologies for their capability to characterize AAV monomers and aggregates in the submicron (<1 µm) size range: (i) mass photometry (MP), (ii) asymmetric flow field flow fractionation coupled to a UV-detector (AF4-UV/Vis) and (iii) microfluidic resistive pulse sensing (MRPS). Although low counts for aggregates impeded a quantitative analysis, MP was affirmed as an accurate and rapid method for quantifying the genome content of empty/filled/double-filled capsids, consistent with sedimentation velocity analytical ultracentrifugation results. MRPS and AF4-UV/Vis enabled the detection and quantification of aggregate content. The developed AF4-UV/Vis method separated AAV monomers from smaller aggregates, thereby enabling a quantification of aggregates <200 nm. MRPS was experienced as a straightforward method to determine the particle concentration and size distribution between 250-2000 nm, provided that the samples do not block the microfluidic cartridge. Overall, within this study we explored the benefits and limitations of the complementary technologies for assessing aggregate content in AAV samples.


Assuntos
Dependovirus , Fracionamento por Campo e Fluxo , Dependovirus/genética , Fracionamento por Campo e Fluxo/métodos , Vírion/genética , Tamanho da Partícula
18.
Talanta ; 256: 124309, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753887

RESUMO

In-depth characterization of functionalized nanomaterials is still a remaining challenge in nanobioanalytical chemistry. In this work, we propose the online coupling of Asymmetric Flow Field-Flow Fractionation (AF4) with UV/Vis, Multiangle Light Scattering (MALS) and Inductively Coupled Plasma-Tandem Mass Spectrometry (ICP-MS/MS) detectors to carry out, in less than 10 min and directly in the functionalization reaction mixture, the complete characterization of gold nanoparticles (AuNPs) functionalized with oligonucleotides and surface-modified with polyethylene glycol (PEG). AF4 separation provided full separation of the bioconjugates from the original AuNPs while P/Au and S/Au ICP-MS/MS ratios in the bioconjugate fractographic peaks could be used to compute the corresponding stoichiometries, oligonucleotide/AuNP and PEG/AuNPs. MALS detection clearly showed the coexistence of two distinct nanoparticulated populations in the bioconjugation mixture, which were demonstrated to be different not only in size but in functionality as well. The major bioconjugate population showed lower hydrodynamic ratios (18 nm) with higher and steadier oligonucleotides/AuNPs (92) and PEG/AuNPs (2350) stoichiometries, in comparison to the minor abundant population (54 nm, 51 and 1877, respectively). Moreover, the ratio between the absorbance signals measured at 520 nm and 650 nm reflects a lower AuNP aggregation in the major (10.5) than in the minor (4.5) population. Results obtained prove the benefits of a detailed characterization to find out if subsequent purification of functionalized AuNP-oligonucleotides is required to design more efficiently their final bioanalytical application.


Assuntos
Fracionamento por Campo e Fluxo , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Espectrometria de Massas em Tandem , Análise Espectral , Fracionamento por Campo e Fluxo/métodos , Tamanho da Partícula
19.
Anal Bioanal Chem ; 415(11): 2121-2132, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36829041

RESUMO

Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.


Assuntos
Fracionamento por Campo e Fluxo , Nanoestruturas , Surfactantes Pulmonares , Técnicas de Cultura de Células , Meios de Cultura , Fracionamento por Campo e Fluxo/métodos , Nanoestruturas/toxicidade , Nanoestruturas/química , Tamanho da Partícula , Fuligem/toxicidade , Tensoativos/toxicidade , Ponto Isoelétrico
20.
Sci Total Environ ; 855: 158891, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36411600

RESUMO

The structure and size characterization of organic matter (OM) using flow field-flow fractionation (FFFF) is interesting due to the numerous interactions of OM in aquatic systems and water treatment processes. The estimation of hydrodynamic and electrostatic forces involved in the fractionation of OM over different molecular weight cut-off (MWCO) membranes is vital for a better understanding of the FFFF process. This work aims to understand the membrane-OM interactive forces with respect to membrane MWCO, solute molecular weight, flow rates, solution pH and ionic strength. Polystyrene sulfonate sodium salt (PSS) of molecular weights 10, 30 and 65 kDa were used as model organic solutes for fractionation over ultrafiltration (UF) membranes of MWCO 1-30 kDa. Maximum fractionation of PSS was achieved by using a tight membrane of 1 kDa MWCO at the conditions of high permeate flow rate (1.5-2.0 mL·min-1), low concentrate flow rate (0.2-0.3 mL·min-1) and low ionic strength (10 mM). The better fractionation corresponds to high permeate drag force and low concentrate drag force. A low membrane-solute DLVO interaction is favourable for the retention of a small solute. This study illustrated that FFFF characteristics can be analyzed based on membrane-solute interactive forces controlled by selected flow, size and charge parameters.


Assuntos
Fracionamento por Campo e Fluxo , Fracionamento por Campo e Fluxo/métodos , Hidrodinâmica , Eletricidade Estática , Soluções , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...