Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 265
Filtrar
1.
Dis Aquat Organ ; 158: 81-99, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661140

RESUMO

Since 2014, mass mortalities of mussels Mytilus spp. have occurred in production areas on the Atlantic coast of France. The aetiology of these outbreaks remained unknown until the bacterium Francisella halioticida was detected in some mussel mortality cases. This retrospective study was conducted to assess the association between F. halioticida and these mussel mortalities. Mussel batches (n = 45) from the Atlantic coast and English Channel were selected from archived individual samples (n = 863) collected either during or outside of mortality events between 2014 and 2017. All mussels were analysed by real-time PCR assays targeting F. halioticida; in addition, 185 were analysed using histological analysis and 178 by 16S rRNA metabarcoding. F. halioticida DNA was detected by real-time PCR and 16S rRNA metabarcoding in 282 and 34 mussels, respectively. Among these individuals, 82% (real-time PCR analysis) and 76% (16S rRNA metabarcoding analysis) were sampled during a mortality event. Histological analyses showed that moribund individuals had lesions mainly characterized by necrosis, haemocyte infiltration and granulomas. Risk factor analysis showed that mussel batches with more than 20% of PCR-positive individuals were more likely to have been sampled during a mortality event, and positive 16S rRNA metabarcoding batches increased the strength of the association with mortality by 11.6 times. The role of F. halioticida in mussel mortalities was determined by reviewing the available evidence. To this end, a causation criteria grid, tailored to marine diseases and molecular pathogen detection tools, allowed more evidence to be gathered on the causal role of this bacterium in mussel mortalities.


Assuntos
Francisella , RNA Ribossômico 16S , Animais , Francisella/genética , Francisella/isolamento & purificação , Francisella/classificação , França/epidemiologia , RNA Ribossômico 16S/genética , Mytilus/microbiologia , Estudos Retrospectivos
2.
Comp Immunol Microbiol Infect Dis ; 104: 102097, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029723

RESUMO

The role of wildlife in the complex balance of tick-borne diseases within ecosystems is crucial, as they serve as hosts for tick carriers and reservoirs for the pathogens carried by these ticks. This study aimed to investigate the presence of zoonotic pathogenic bacteria in wildlife, specifically in hares and long-eared hedgehogs (Hemiechinus megalofis), in the eastern region of Iran. The focus was on the detection of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp., using the Nested-PCR method. We analyzed a total of 124 blood samples, and 196 ticks collected from hares and long-eared hedgehogs were analyzed. The Nested-PCR method was employed to identify the presence of zoonotic pathogenic bacteria DNA. Our study revealed the presence of these zoonotic pathogenic bacteria in both wildlife species, indicating their potential role as hosts and reservoirs for the ticks carrying these pathogens. The specific presence and prevalence of Borrelia spp., Coxiella burnetii, Anaplasma spp., Francisella spp., and Leptospira spp. were determined through the Nested-PCR method. This study contributes to the limited knowledge about the involvement of wild animals in the transmission of tick-borne diseases. By using the Nested-PCR method, we successfully identified the presence of zoonotic pathogenic bacteria in hares and long-eared hedgehogs. This study emphasizes the need for further research to better understand the ecological process of tick-borne diseases, particularly the role of wildlife in their spread. Such knowledge is crucial for wildlife conservation efforts and the management of tick-borne diseases, ultimately benefiting both animal and human health.


Assuntos
Borrelia , Coxiella burnetii , Francisella , Lebres , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ecossistema , Irã (Geográfico)/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Doenças Transmitidas por Carrapatos/microbiologia , Animais Selvagens/microbiologia , Coxiella burnetii/genética , Anaplasma/genética , Francisella/genética , Rickettsia/genética
3.
Microbiol Spectr ; 11(6): e0271323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800934

RESUMO

IMPORTANCE: Francisella species are highly pathogenic bacteria that pose a threat to global health security. These bacteria can be made resistant to antibiotics through facile methods, and we lack a safe and protective vaccine. Given their history of development as bioweapons, new treatment options must be developed to bolster public health preparedness. Here, we report that tolfenpyrad, a pesticide that is currently in use worldwide, effectively inhibits the growth of Francisella. This drug has an extensive history of use and a plethora of safety and toxicity data, making it a good candidate for development as an antibiotic. We identified mutations in Francisella novicida that confer resistance to tolfenpyrad and characterized a transcriptional regulator that is required for sensitivity to both tolfenpyrad and reactive oxygen species.


Assuntos
Francisella , Tularemia , Humanos , Antibacterianos/farmacologia , Tularemia/microbiologia , Tularemia/prevenção & controle , Francisella/genética , Estresse Oxidativo
4.
Genomics ; 115(6): 110735, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898334

RESUMO

We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.


Assuntos
Francisella , Gadus morhua , Animais , Gadus morhua/genética , Temperatura , Francisella/genética
5.
Parasitology ; 150(10): 859-865, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37722758

RESUMO

Ticks transmit pathogens and harbour non-pathogenic, vertically transmitted intracellular bacteria termed endosymbionts. Almost all ticks studied to date contain 1 or more of Coxiella, Francisella, Rickettsia or Candidatus Midichloria mitochondrii endosymbionts, indicative of their importance to tick physiology. Genomic and experimental data suggest that endosymbionts promote tick development and reproductive success. Here, we review the limited information currently available on the potential roles endosymbionts play in enhancing tick metabolism and fitness. Future studies that expand on these findings are needed to better understand endosymbionts' contributions to tick biology. This knowledge could potentially be applied to design novel strategies that target endosymbiont function to control the spread of ticks and pathogens they vector.


Assuntos
Francisella , Rickettsia , Carrapatos , Animais , Rickettsia/genética , Francisella/genética , Vetores Aracnídeos , Simbiose
6.
Cell Host Microbe ; 31(8): 1359-1370.e7, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453420

RESUMO

Glutathione (GSH) is an abundant metabolite within eukaryotic cells that can act as a signal, a nutrient source, or serve in a redox capacity for intracellular bacterial pathogens. For Francisella, GSH is thought to be a critical in vivo source of cysteine; however, the cellular pathways permitting GSH utilization by Francisella differ between strains and have remained poorly understood. Using genetic screening, we discovered a unique pathway for GSH utilization in Francisella. Whereas prior work suggested GSH catabolism initiates in the periplasm, the pathway we define consists of a major facilitator superfamily (MFS) member that transports intact GSH and a previously unrecognized bacterial cytoplasmic enzyme that catalyzes the first step of GSH degradation. Interestingly, we find that the transporter gene for this pathway is pseudogenized in pathogenic Francisella, explaining phenotypic discrepancies in GSH utilization among Francisella spp. and revealing a critical role for GSH in the environmental niche of these bacteria.


Assuntos
Francisella tularensis , Francisella , Glutationa/metabolismo , Francisella/genética , Francisella/metabolismo , Francisella tularensis/genética , Francisella tularensis/crescimento & desenvolvimento , Francisella tularensis/metabolismo , Elementos de DNA Transponíveis , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Macrófagos/parasitologia , Animais , Camundongos , Tularemia/microbiologia
7.
Ticks Tick Borne Dis ; 14(5): 102203, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290396

RESUMO

Ticks and tick-borne diseases represent major threats to the public health of the Mongolian population, of which an estimated 26% live a traditional nomadic pastoralist lifestyle that puts them at increased risk for exposure. Ticks were collected by dragging and removal from livestock in Khentii, Selenge, Tuv, and Umnugovi aimags (provinces) during March-May 2020. Using next-generation sequencing (NGS) with confirmatory PCR and DNA sequencing, we sought to characterize the microbial species present in Dermacentor nuttalli (n = 98), Hyalomma asiaticum (n = 38), and Ixodes persulcatus (n = 72) tick pools. Rickettsia spp. were detected in 90.4% of tick pools, with Khentii, Selenge, and Tuv tick pools all having 100% pool positivity. Coxiella spp. were detected at an overall pool positivity rate of 60%, while Francisella spp. were detected in 20% of pools and Borrelia spp. detected in 13% of pools. Additional confirmatory testing for Rickettsia-positive pools demonstrated Rickettsia raoultii (n = 105), Candidatus Rickettsia tarasevichiae (n = 65) and R. slovaca/R. sibirica (n = 2), as well as the first report of Candidatus Rickettsia jingxinensis (n = 1) in Mongolia. For Coxiella spp. reads, most samples were identified as a Coxiella endosymbiont (n = 117), although Coxiella burnetii was detected in eight pools collected in Umnugovi. Borrelia species that were identified include Borrelia burgdorferi sensu lato (n = 3), B. garinii (n = 2), B. miyamotoi (n = 16), and B. afzelii (n = 3). All Francisella spp. reads were identified as Francisella endosymbiont species. Our findings emphasize the utility of NGS to provide baseline data across multiple tick-borne pathogen groups, which in turn can be used to inform health policy, determine regions for expanded surveillance, and guide risk mitigation strategies.


Assuntos
Borrelia , Dermacentor , Francisella , Ixodes , Ixodidae , Animais , Ixodes/microbiologia , Dermacentor/microbiologia , Mongólia , Sequenciamento de Nucleotídeos em Larga Escala , Ixodidae/microbiologia , Borrelia/genética , Francisella/genética
8.
Ticks Tick Borne Dis ; 13(5): 102002, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810549

RESUMO

As tick-borne diseases continue to increase across North America, current research strives to understand how the tick microbiome may affect pathogen acquisition, maintenance, and transmission. Prior high throughput amplicon-based microbial diversity surveys of the widespread tick Dermacentor variabilis have suggested that life stage, sex, and geographic region may influence the composition of the tick microbiome. Here, adult D. variabilis ticks (n = 145) were collected from dogs and cats from 32 states with specimens originating from all four regions of the United States (West, Midwest, South, and Northeast), and the tick microbiome was examined via V4-16S rRNA gene amplification and Illumina sequencing. A total of 481,246 bacterial sequences were obtained (median 2924 per sample, range 399-11,990). Fifty genera represented the majority (>80%) of the sequences detected, with the genera Allofrancisella and Francisella being the most abundant. Further, 97%, 23%, and 5.5% of the ticks contained sequences belonging to Francisella spp., Rickettsia spp., and Coxiella spp., respectively. No Ehrlichia spp. or Anaplasma spp. were identified. Co-occurrence analysis, by way of correlation coefficients, between the top 50 most abundant genera demonstrated five strong positive and no strong negative correlation relationships. Geographic region had a consistent effect on species richness with ticks from the Northeast having a significantly greater level of richness. Alpha diversity patterns were dependent on tick sex, with males exhibiting higher levels of diversity, and geographical region, with higher level of diversity observed in ticks obtained from the Northeast, but not on tick host. Community structure, or beta diversity, of tick microbiome was impacted by tick sex and geographic location, with microbiomes of ticks from the western US exhibiting a distinct community structure when compared to those from the other three regions (Northeast, South, and Midwest). In total, LEfSe (Linear discriminant analysis Effect Size) identified 18 specific genera driving these observed patterns of diversity and community structure. Collectively, these findings highlight the differences in bacterial diversity of D. variabilis across the US and supports the interpretation that tick sex and geographic region affects microbiome composition across a broad sampling distribution.


Assuntos
Doenças do Gato , Dermacentor , Doenças do Cão , Francisella , Microbiota , Rickettsia , Animais , Doenças do Gato/epidemiologia , Gatos , Dermacentor/microbiologia , Doenças do Cão/epidemiologia , Cães , Francisella/genética , Masculino , RNA Ribossômico 16S/genética , Rickettsia/genética , Estados Unidos/epidemiologia
9.
Front Cell Infect Microbiol ; 12: 787209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493735

RESUMO

Background: Ticks are hematophagous arthropods that transmit various bacterial, viral, and protozoan pathogens of public health significance. The lone star tick (Amblyomma americanum) is an aggressive human-biting tick that transmits bacterial and viral pathogens, and its bites are suspected of eliciting the alpha-gal syndrome, a newly emerged delayed hypersensitivity following consumption of red meat in the United States. While ongoing studies have attempted to investigate the contribution of different tick-inherent factors to the induction of alpha-gal syndrome, an otherwise understudied aspect is the contribution of the tick microbiome and specifically obligate endosymbionts to the establishment of the alpha-gal syndrome in humans. Materials and Methods: Here we utilized a high-throughput metagenomic sequencing approach to cataloging the entire microbial communities residing within different developmental stages and tissues of unfed and blood-fed ticks from laboratory-maintained ticks and three new geographical locations in the United States. The Quantitative Insights Into Microbial Ecology (QIIME2) pipeline was used to perform data analysis and taxonomic classification. Moreover, using a SparCC (Sparse Correlations for Compositional data) network construction model, we investigated potential interactions between members of the microbial communities from laboratory-maintained and field-collected ticks. Results: Overall, Francisellaceae was the most dominant bacteria identified in the microbiome of both laboratory-raised and field-collected Am. americanum across all tissues and developmental stages. Likewise, microbial diversity was seen to be significantly higher in field-collected ticks compared with laboratory-maintained ticks as seen with a higher number of both Operational Taxonomic Units and measures of species richness. Several potential positive and negative correlations were identified from our network analysis. We observed a strong positive correlation between Francisellaceae, Rickettsiaceae, and Midichloriaceae in both developmental stages and tissues from laboratory-maintained ticks, whereas ovarian tissues had a strong positive correlation of bacteria in the family Xanthobacteraceae and Rhizobiaceae. A negative interaction was observed between Coxiellaceae and Francisellaceae in Illinois, and all the bacteria detected from ticks from Delaware were negatively correlated. Conclusion: This study is the first to catalog the microbiome of Am. americanum throughout its developmental stages and different tissue niches and report the potential replacement of Coxiellaceae by Francisellaceae across developmental stages and tissues tested except in ovarian tissues. These unique and significant findings advance our knowledge and open a new avenue of research to further understand the role of tick microbiome in tick-borne diseases and develop a holistic strategy to control alpha-gal syndrome.


Assuntos
Hipersensibilidade Alimentar , Francisella , Carrapatos , Amblyomma , Animais , Bactérias , Coxiella , Francisella/genética , Humanos , Carrapatos/microbiologia , Estados Unidos
10.
PLoS One ; 17(5): e0268172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35587930

RESUMO

Ticks are one of the most important vectors of several pathogens affecting humans and animals. In addition to pathogens, ticks carry diverse microbiota of symbiotic and commensal microorganisms. In this study, we have investigated the first Tunisian insight into the microbial composition of the most dominant Hyalomma species infesting Tunisian cattle and explored the relative contribution of tick sex, life stage, and species to the diversity, richness and bacterial species of tick microbiome. In this regard, next generation sequencing for the 16S rRNA (V3-V4 region) of tick bacterial microbiota and metagenomic analysis were established. The analysis of the bacterial diversity reveals that H. marginatum and H. excavatum have greater diversity than H. scupense. Furthermore, microbial diversity and composition vary according to the tick's life stage and sex in the specific case of H. scupense. The endosymbionts Francisella, Midichloria mitochondrii, and Rickettsia were shown to be the most prevalent in Hyalomma spp. Rickettsia, Francisella, Ehrlichia, and Erwinia are the most common zoonotic bacteria found in Hyalomma ticks. Accordingly, Hyalomma ticks could represent potential vectors for these zoonotic bacterial agents.


Assuntos
Francisella , Ixodidae , Microbiota , Rickettsia , Carrapatos , Animais , Bovinos , Francisella/genética , Sequenciamento de Nucleotídeos em Larga Escala , Ixodidae/genética , Ixodidae/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética , Rickettsia/genética , Carrapatos/genética
11.
Emerg Microbes Infect ; 11(1): 310-313, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34986740

RESUMO

Tularaemia is a zoonotic disease caused by Francisella tularensis (F. tularensis). Human infection is rare and can be life-threatening. F. tularensis subsp. novicida used to be a subspecies of F. tularensis, is now considered a different species, F. novicida. Though less virulent, F. novicida can cause morbidity and mortality among debilitated or immunocompromised patients. We reported that an adult with end-stage renal disease undergoing haemodialysis and a history of melioidotic aortic aneurysm developed F. novicida bacteraemic pneumonia, which was uneventfully treated by antimicrobial therapy. The microbiological confirmation of F. novicida infection relies on 16S rRNA sequencing. It is the first case of F. novicida infection in Taiwan.


Assuntos
Francisella , Infecções por Bactérias Gram-Negativas , Francisella/genética , Infecções por Bactérias Gram-Negativas/diagnóstico , Humanos , Pneumonia Bacteriana , RNA Ribossômico 16S/genética , Diálise Renal , Taiwan
12.
PLoS One ; 17(1): e0261938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077486

RESUMO

Francisella tularensis is a highly pathogenic intracellular bacterium that causes the disease tularemia. While its ability to replicate within cells has been studied in much detail, the bacterium also encodes a less characterised type 4 pili (T4P) system. T4Ps are dynamic adhesive organelles identified as major virulence determinants in many human pathogens. In F. tularensis, the T4P is required for adherence to the host cell, as well as for protein secretion. Several components, including pilins, a pili peptidase, a secretin pore and two ATPases, are required to assemble a functional T4P, and these are encoded within distinct clusters on the Francisella chromosome. While some of these components have been functionally characterised, the role of PilO, if any, still is unknown. Here, we examined the role of PilO in the pathogenesis of F. novicida. Our results show that the PilO is essential for pilus assembly on the bacterial surface. In addition, PilO is important for adherence of F. novicida to human monocyte-derived macrophages, secretion of effector proteins and intracellular replication. Importantly, the pilO mutant is attenuated for virulence in BALB/c mice regardless of the route of infection. Following intratracheal and intradermal infection, the mutant caused no histopathology changes, and demonstrated impaired phagosomal escape and replication within lung liver as well as spleen. Thus, PilO is an essential virulence determinant of F. novicida.


Assuntos
Aderência Bacteriana/genética , Proteínas de Bactérias , Fímbrias Bacterianas , Francisella , Tularemia , Fatores de Virulência , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/ultraestrutura , Francisella/genética , Francisella/metabolismo , Francisella/patogenicidade , Francisella/ultraestrutura , Francisella tularensis/genética , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidade , Francisella tularensis/ultraestrutura , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tularemia/genética , Tularemia/metabolismo , Tularemia/patologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
Nucleic Acids Res ; 50(2): 1162-1173, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34951459

RESUMO

CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5'-scaffold moiety and variable 3'-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.


Assuntos
Acidaminococcus , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Acidaminococcus/genética , Acidaminococcus/metabolismo , Clivagem do DNA , Francisella/genética , Francisella/metabolismo , Edição de Genes
14.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951405

RESUMO

Many animals are dependent on microbial partners that provide essential nutrients lacking from their diet. Ticks, whose diet consists exclusively on vertebrate blood, rely on maternally inherited bacterial symbionts to supply B vitamins. While previously studied tick species consistently harbor a single lineage of those nutritional symbionts, we evidence here that the invasive tick Hyalomma marginatum harbors a unique dual-partner nutritional system between an ancestral symbiont, Francisella, and a more recently acquired symbiont, Midichloria. Using metagenomics, we show that Francisella exhibits extensive genome erosion that endangers the nutritional symbiotic interactions. Its genome includes folate and riboflavin biosynthesis pathways but deprived functional biotin biosynthesis on account of massive pseudogenization. Co-symbiosis compensates this deficiency since the Midichloria genome encompasses an intact biotin operon, which was primarily acquired via lateral gene transfer from unrelated intracellular bacteria commonly infecting arthropods. Thus, in H. marginatum, a mosaic of co-evolved symbionts incorporating gene combinations of distant phylogenetic origins emerged to prevent the collapse of an ancestral nutritional symbiosis. Such dual endosymbiosis was never reported in other blood feeders but was recently documented in agricultural pests feeding on plant sap, suggesting that it may be a key mechanism for advanced adaptation of arthropods to specialized diets.


Assuntos
Francisella/metabolismo , Ixodidae/microbiologia , Rickettsiales/metabolismo , Animais , Francisella/genética , Transferência Genética Horizontal , Ixodidae/fisiologia , Rickettsiales/genética , Simbiose/fisiologia , Complexo Vitamínico B/biossíntese
15.
Ann Clin Microbiol Antimicrob ; 20(1): 72, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34602092

RESUMO

BACKGROUND: Francisella philomiragia is a very rare opportunistic pathogen of humans which causes protean diseases such as pneumonia and other systemic infections. Subsequent failure of prompt treatment may result in poor prognosis with mortality among infected patients. CASE PRESENTATION: The present report describes a case of F. philomiragia bacteraemia first reported in Malaysia and Asian in a 60-year-old patient with underlying end-stage renal disease (ESRF) and diabetes mellitus. He presented with Acute Pulmonary Oedema with Non-ST-Elevation Myocardial Infarction (NSTEMI) in our hospital. He was intubated in view of persistent type I respiratory failure and persistent desaturation despite post haemodialysis. Blood investigation indicated the presence of ongoing infection and inflammation. The aerobic blood culture growth of F. philomiragia was identified using the matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (Score value: 2.16) and confirmed by 16S Ribosomal DNA (16S rDNA) sequencing. He was discharged well on day 26 of admission, after completing one week of piperacillin/tazobactam and two weeks of doxycycline. CONCLUSION: Clinical suspicion should be raised if patients with known risk factors are presenting with pneumonia or pulmonary nodules especially as these are the most common manifestations of F. philomiragia infection. Early diagnosis via accurate laboratory identification of the organism through MALDI-TOF mass spectrometry and molecular technique such as 16S rDNA sequencing are vital for prompt treatment that results in better outcomes for the afflicted patients.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Francisella/isolamento & purificação , Infecções por Bactérias Gram-Negativas/diagnóstico , Falência Renal Crônica/complicações , Bacteriemia/tratamento farmacológico , DNA Ribossômico/genética , Francisella/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Humanos , Hospedeiro Imunocomprometido , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio sem Supradesnível do Segmento ST/etiologia , Edema Pulmonar/etiologia , Sepse , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Cell Rep ; 35(11): 109247, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133919

RESUMO

The outer membrane protects Gram-negative bacteria from the host environment. Lipopolysaccharide (LPS), a major outer membrane constituent, has distinct components (lipid A, core, O-antigen) generated by specialized pathways. In this study, we describe the surprising convergence of these pathways through FlmX, an uncharacterized protein in the intracellular pathogen Francisella. FlmX is in the flippase family, which includes proteins that traffic lipid-linked envelope components across membranes. flmX deficiency causes defects in lipid A modification, core remodeling, and O-antigen addition. We find that an F. tularensis mutant lacking flmX is >1,000,000-fold attenuated. Furthermore, FlmX is required to resist the innate antimicrobial LL-37 and the antibiotic polymyxin. Given FlmX's central role in LPS modification and its conservation in intracellular pathogens Brucella, Coxiella, and Legionella, FlmX may represent a novel drug target whose inhibition could cripple bacterial virulence and sensitize bacteria to innate antimicrobials and antibiotics.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella/metabolismo , Francisella/patogenicidade , Lipopolissacarídeos/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Elementos de DNA Transponíveis/genética , Escherichia coli/metabolismo , Feminino , Francisella/genética , Galactosamina/metabolismo , Regulação Bacteriana da Expressão Gênica , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Modelos Biológicos , Antígenos O/metabolismo , Polimixina B/farmacologia , Virulência/genética
17.
Ticks Tick Borne Dis ; 12(5): 101746, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091278

RESUMO

Ticks are one of the main vectors of pathogens for humans and animals worldwide. However, they harbor non-pathogenic microorganisms that are important for their survival, facilitating both their nutrition and immunity. We investigated the bacterial communities associated with two neotropical tick species of human and veterinary potential health importance from Brazil: Amblyomma aureolatum and Ornithodoros brasiliensis. In A. aureolatum (adult ticks collected from wild canids from Southern Brazil), the predominant bacterial phyla were Proteobacteria (98.68%), Tenericutes (0.70%), Bacteroidetes (0.14%), Actinobacteria (0.13%), and Acidobacteria (0.05%). The predominant genera were Francisella (97.01%), Spiroplasma (0.70%), Wolbachia (0.51%), Candidatus Midichloria (0.25%), and Alkanindiges (0.13%). The predominant phyla in O. brasiliensis (adults, fed and unfed nymphs collected at the environment from Southern Brazil) were Proteobacteria (90.27%), Actinobacteria (7.38%), Firmicutes (0.77%), Bacteroidetes (0.44%), and Planctomycetes (0.22%). The predominant bacterial genera were Coxiella (87.71%), Nocardioides (1.73%), Saccharopolyspora (0.54%), Marmoricola (0.42%), and Staphylococcus (0.40%). Considering the genera with potential importance for human and animal health which can be transmitted by ticks, Coxiella sp. was found in all stages of O. brasiliensis, Francisella sp. in all stages of A. aureolatum and in unfed nymphs of O. brasiliensis, and Rickettsia sp. in females of A. aureolatum from Banhado dos Pachecos (BP) in Viamão municipality, Brazil, and in females and unfed nymphs of O. brasiliensis. These results deepen our understanding of the tick-microbiota relationship in Ixodidae and Argasidae, driving new studies with the focus on the manipulation of tick microbiota to prevent outbreaks of tick-borne diseases in South America.


Assuntos
Amblyomma/microbiologia , Microbiota , Ornithodoros/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Coxiella/genética , Coxiella/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Francisella/genética , Francisella/isolamento & purificação , Ixodidae/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Rickettsia/genética , Rickettsia/isolamento & purificação
18.
Vector Borne Zoonotic Dis ; 21(7): 509-516, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33956519

RESUMO

Two abundant species of aggressive ticks commonly feed on humans in Georgia: the Gulf Coast tick (Amblyomma maculatum) and the Lone Star tick (A. americanum). A. maculatum is the primary host of Rickettsia parkeri, "Candidatus Rickettsia andeanae," and a Francisella-like endosymbiont (AmacFLE), whereas A. americanum is the primary host for R. amblyommatis, Ehrlichia chaffeensis, E. ewingii, and a Coxiella-like endosymbiont (AamCLE). Horizontal transmission of R. parkeri from A. maculatum to A. americanum by co-feeding has been described, and R. amblyommatis has been found infrequently in A. maculatum ticks. We assessed the prevalence of these agents and whether exchange of tick-associated bacteria is common between A. maculatum and A. americanum collected from the same field site. Unengorged ticks were collected May-August 2014 in west-central Georgia from a 4.14 acre site by flagging and from humans and canines traversing that site. All DNA samples were screened with quantitative PCR assays for the bacteria found in both ticks, and the species of any Rickettsia detected was identified by species-specific TaqMan assays or sequencing of the rickettsial ompA gene. Only R. amblyommatis (15) and AamCLE (39) were detected in 40 A. americanum, while the 74 A. maculatum only contained R. parkeri (30), "Candidatus Rickettsia andeanae" (3), and AmacFLE (74). Neither tick species had either Ehrlichia species. Consequently, we obtained no evidence for the frequent exchange of these tick-borne agents in a natural setting despite high levels of carriage of each agent and the common observance of infestation of both ticks on both dogs and humans at this site. Based on these data, exchange of these Rickettsia, Coxiella, and Francisella agents between A. maculatum and A. americanum appears to be an infrequent event.


Assuntos
Ehrlichia chaffeensis , Francisella , Ixodidae , Rickettsia , Amblyomma , Animais , Coxiella , Cães , Francisella/genética , Georgia/epidemiologia , Rickettsia/genética
19.
PLoS Negl Trop Dis ; 15(5): e0009419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33999916

RESUMO

Tularemia is a highly dangerous zoonotic infection due to the bacteria Francisella tularensis. Low genetic diversity promoted the use of polymorphic tandem repeats (MLVA) as first-line assay for genetic description. Whole genome sequencing (WGS) is becoming increasingly accessible, opening the perspective of a time when WGS might become the universal genotyping assay. The main goal of this study was to describe F. tularensis strains circulating in Kazakhstan based on WGS data and develop a MLVA assay compatible with in vitro and in silico analysis. In vitro MLVA genotyping and WGS were performed for the vaccine strain and for 38 strains isolated in Kazakhstan from natural water bodies, ticks, rodents, carnivores, and from one migratory bird, an Isabellina wheatear captured in a rodent burrow. The two genotyping approaches were congruent and allowed to attribute all strains to two F. tularensis holarctica lineages, B.4 and B.12. The seven tandem repeats polymorphic in the investigated strain collection could be typed in a single multiplex PCR assay. Identical MLVA genotypes were produced by in vitro and in silico analysis, demonstrating full compatibility between the two approaches. The strains from Kazakhstan were compared to all publicly available WGS data of worldwide origin by whole genome SNP (wgSNP) analysis. Genotypes differing at a single SNP position were collected within a time interval of more than fifty years, from locations separated from each other by more than one thousand kilometers, supporting a role for migratory birds in the worldwide spread of the bacteria.


Assuntos
Francisella/genética , Tularemia/microbiologia , Animais , Francisella/classificação , Francisella/isolamento & purificação , Variação Genética , Genótipo , Cazaquistão/epidemiologia , Reação em Cadeia da Polimerase Multiplex , Polimorfismo de Nucleotídeo Único , Tularemia/epidemiologia , Microbiologia da Água , Sequenciamento Completo do Genoma
20.
Dis Aquat Organ ; 144: 9-19, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33704088

RESUMO

Francisella halioticida, the causative agent of francisellosis of the giant abalone Haliotis gigantea, has also been isolated from Yesso scallops Mizuhopecten yessoensis, which presented with orange/pinkish lesions in the adductor muscle and experienced high mortality. However, it is not clear whether the F. halioticida isolated from the giant abalone and Yesso scallops are phenotypically and genetically identical to each other. The present study revealed that isolates from the giant abalone and Yesso scallops were phenotypically different, with slower growth in modified eugon broth and a lack of prolyl aminopeptidase and phenylalanine aminopeptidase in Yesso scallop isolates. Additionally, we found that 3 of 8 housekeeping genes were different between them. Based on these phenotypic and genetic differences, we propose that F. halioticida isolated from Yesso scallops in Japan be designated as the 'J-scallop type' to distinguish it from strains from abalone ('abalone type'). Whole-genome sequencing analysis of a strain belonging to the J-scallop type showed that the overall similarity between the J-scallop and abalone type strains was estimated to be 99.84%. In accordance with a lack of prolyl aminopeptidase activity, in general, all of the J-scallop type strains examined have a 1 bp deletion in the responsible gene encoding prolyl aminopeptidase. This deletion was confirmed in all F. halioticida in diseased Yesso scallops examined, suggesting that in Japan, francisellosis of Yesso scallops is caused by a novel type of F. halioticida and not by the abalone type.


Assuntos
Francisella , Gastrópodes , Pectinidae , Animais , Francisella/genética , Japão/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...