Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443722

RESUMO

Postnatal bone fractures of the growth plate (GP) are often associated with regenerative complications such as growth impairment. In order to understand the underlying processes of trauma-associated growth impairment within postnatal bone, an ex vivo rat femur slice model was developed. To achieve this, a 2 mm horizontal cut was made through the GP of rat femur prior to the organotypic culture being cultivated for 15 days in vitro. Histological analysis showed disrupted endochondral ossification, including disordered architecture, increased chondrocyte metabolic activity, and a loss of hypertrophic zone throughout the distal femur. Furthermore, altered expression patterns of Col2α1, Acan, and ColX, and increased chondrocyte metabolic activity in the TZ and MZ at day 7 and day 15 postinjury were observed. STEM revealed the presence of stem cells, fibroblasts, and chondrocytes within the injury site at day 7. In summary, the findings of this study suggest that the ex vivo organotypic GP injury model could be a valuable tool for investigating the underlying mechanisms of GP regeneration post-trauma, as well as other tissue engineering and disease studies.


Assuntos
Osteogênese , Fraturas Salter-Harris , Ratos , Animais , Fraturas Salter-Harris/metabolismo , Fraturas Salter-Harris/patologia , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Fêmur/patologia
2.
Autoimmunity ; 56(1): 1-7, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343159

RESUMO

Dexamethasone (Dex) is a type of glucocorticoid drug. Long term use can induce growth plate chondrocytes (GPCs) apoptosis, impair differentiation, and inhibit cell proliferation and bone growth. It has been reported that Krüppel-like factor 2 (KLF2) inhibits osteoblast damage induced by Dex, but the role in Dex-induced GPCs remains unclear. Dex was used to construct a model of growth plate injury in vitro. CCK-8 and TUNEL kits were used to determine cell viability and apoptosis. A model of growth plate injury was established by intraperitoneal injection of Dex. Immunohistochemistry was used to investigate the expression of KLF2 in rats. The results showed that KLF2 expression of rat tibial GPCs was down-regulated after Dex stimulation. Overexpression of KLF2 promoted cell viability and cell cycle, while inhibited apoptosis of growth plate Dex-induced chondrocytes. Moreover, KLF2 inhibited Runx2-mediated PI3K/AKT and ERK signalling pathways. And PI3K/AKT and ERK signalling pathways, which were involved in the regulation of KLF2 on GPCs. Further studies showed that KLF2 alleviated growth plate injury in vivo. In conclusion, our study found that KLF2 promoted proliferation and inhibited apoptosis of Dex-induced GPCs by targeting the Runx2-mediated PI3K/AKT and ERK signalling pathways.


Assuntos
Condrócitos , Fraturas Salter-Harris , Ratos , Animais , Condrócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt , Lâmina de Crescimento/metabolismo , Fraturas Salter-Harris/metabolismo , Dexametasona/efeitos adversos , Fatores de Transcrição/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
3.
J Pediatr Orthop ; 39(9): 479-486, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31503237

RESUMO

BACKGROUND: Although physeal fractures and physeal bars can result in significant clinical consequences to growth and development of the injured physis, little orthopaedic research has focused upon this topic. Our objective was to extend a previously developed rat model to examine the immunohistochemical features following surgical application of techniques disrupting the physis. METHODS: Physes were surgically disrupted using fracture (control), epiphyseal scrape (ES), or epiphyseal drill (ED). After 1, 3, 6, 10, or 21 days, animals were euthanized, sites processed for histology and immunohistochemical localization of vascular endothelial growth factor (VEGF), Factor VIII, Sox-9, PTHrP (parathyroid hormone-related protein) and PTHrP-R (parathyroid hormone-related protein receptor) in resting, proliferative, and hypertrophic physeal zones. Incidence of physeal bars, vertical septa and islands within the metaphysis was quantified. Semiquantitative analysis of immunohistochemistry was performed. RESULTS: Physeal bars, vertical septa, and displaced cartilage islands were present each of the surgical treatments. Fisher's exact test showed a statistically significant increase in the presence of physeal bars (P=0.002) and vertical septa (P=0.012) in the ED group at 10 and 21 days. Analysis of VEGF showed significant differences among the surgical treatments involving the resting zone, and the proliferative zone for days 1, 6, and 21 (P≤0.02) with greater mean scores present in the fracture (control) group, followed by the ED group; the lowest scores were present in the ES group. PTHrP-R immunolocalization showed significant differences among treatments in the hypertrophic zone at days 6 and 21 (P=0.022 and 0.044, respectively). CONCLUSIONS: On the basis of the type of surgical treatment, results show significant differences in the presence of VEGF (reflecting the vascular bed) in the resting and proliferating zones at days 1, 6, and 21. VEGF localization was less abundant in the ED group (which had more physeal bars), suggesting that lack of vascular ingrowth plays a role in physeal bar formation. CLINICAL RELEVANCE: Basic science data presented here provide insight into the importance of the various regions of the physis and its repair and continued growth after physeal fracture. We suggest that a better understanding of the cellular basis of physeal arrest following physeal fracture may have future relevance for the development of treatments to prevent or correct arrest.


Assuntos
Lâmina de Crescimento/metabolismo , Fraturas Salter-Harris/metabolismo , Técnicas de Ablação , Animais , Epífises/lesões , Epífises/metabolismo , Fator VIII/metabolismo , Lâmina de Crescimento/cirurgia , Imuno-Histoquímica , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Ratos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fraturas Salter-Harris/cirurgia , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Tissue Eng Part C Methods ; 25(12): 701-710, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31552802

RESUMO

Physeal injuries can lead to bony repair tissue formation, known as a bony bar. This can result in growth arrest or angular deformity, which is devastating for children who have not yet reached their full height. Current clinical treatment involves resecting the bony bar and replacing it with a fat graft to prevent further bone formation and growth disturbance, but these treatments frequently fail to do so and require additional interventions. Novel treatments that could prevent bone formation but also regenerate the injured physeal cartilage and restore normal bone elongation are warranted. To test the efficacy of these treatments, animal models that emulate human physeal injury are necessary. The rabbit model of physeal injury quickly establishes a bony bar, which can then be resected to test new treatments. Although numerous rabbit models have been reported, they vary in terms of size and location of the injury, tools used to create the injury, and methods to assess the repair tissue, making comparisons between studies difficult. The study presented here provides a detailed method to create a rabbit model of proximal tibia physeal injury using a two-stage procedure. The first procedure involves unilateral removal of 25% of the physis in a 6-week-old New Zealand white rabbit. This consistently leads to a bony bar, significant limb length discrepancy, and angular deformity within 3 weeks. The second surgical procedure involves bony bar resection and treatment. In this study, we tested the implantation of a fat graft and a photopolymerizable hydrogel as a proof of concept that injectable materials could be delivered into this type of injury. At 8 weeks post-treatment, we measured limb length, tibial angle, and performed imaging and histology of the repair tissue. By providing a detailed, easy to reproduce methodology to perform the physeal injury and test novel treatments after bony bar resection, comparisons between studies can be made and facilitate translation of promising therapies toward clinical use. Impact Statement This study provides details to create a rabbit model of physeal injury that can facilitate comparisons between studies and test novel regenerative medicine approaches. Furthermore, this model mimics the human, clinical situation that requires a bony bar resection followed by treatment. In addition, identification of a suitable treatment can be seen in the correction of the growth deformity, allowing this model to facilitate the development of novel physeal cartilage regenerative medicine approaches.


Assuntos
Osteogênese , Medicina Regenerativa , Fraturas Salter-Harris , Animais , Modelos Animais de Doenças , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Coelhos , Fraturas Salter-Harris/metabolismo , Fraturas Salter-Harris/patologia , Fraturas Salter-Harris/terapia
5.
Sci Rep ; 7: 44140, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266598

RESUMO

Tissue-engineered technology has provided a promising method for the repair of growth plate injuries using biocompatible and biodegradable scaffolds and appropriate cells. The aim of this study was to fabricate oriented ECM scaffolds to imitate the material and structure of a natural growth plate and to investigate whether BMSCs in a scaffold could prevent the formation of bone bridges in an injured growth plate. We developed a natural, acellular and oriented scaffold derived from a growth plate. The oriented scaffold was fabricated using new freeze-drying technology and by cross-linking the microfilaments in the growth plate. From histological examination, the scaffold contained most of the ECM components including GAG and collagen II without cell DNA fragments, and SEM revealed that oriented scaffold had a uniform aperture in the transverse plane and columnar structure in length plane. Cytotoxicity testing with MTT showed no cytotoxic effect of the scaffold extracts on BMSCs. Autogenous BMSCs in oriented scaffolds promoted the regeneration of neogenetic growth plate when repairing an injured growth plate and prevent the formation of bone bridges to reduce the angular deformity and length discrepancy in the proximal tibia in rabbits. The well-characterized ECM-derived oriented growth plate scaffold shows potential for the repair of injured growth plates in young rabbits.


Assuntos
Transplante de Medula Óssea , Matriz Extracelular/transplante , Fraturas Salter-Harris/terapia , Alicerces Teciduais , Animais , Autoenxertos , Coelhos , Fraturas Salter-Harris/metabolismo , Fraturas Salter-Harris/patologia , Tíbia/lesões , Tíbia/metabolismo , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA