Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(9): 1622-1627, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34477364

RESUMO

Chalcogen bonds are the specific interactions involving group 16 elements as electrophilic sites. The role of chalcogen atoms as sticky sites in biomolecules is underappreciated, and the few available studies have mostly focused on S. Here, we carried out a statistical analysis over 3562 protein structures in the Protein Data Bank (PDB) containing 18 266 selenomethionines and found that Se···O chalcogen bonds are commonplace. These findings may help the future design of functional peptides and contribute to understanding the role of Se in nature.


Assuntos
Calcogênios/química , Frutoquinases/química , Selênio/química , Aminoácidos/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Selenometionina/química , Relação Estrutura-Atividade , Xylella/enzimologia
2.
Sci Rep ; 8(1): 16925, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30446722

RESUMO

Fructokinase (FRK) catalyzes the first step of fructose metabolism i.e., D-fructose to D-fructose-6-phosphate (F6P), however, the mechanistic insights of this reaction are elusive yet. Here we demonstrate that the putative Vibrio cholerae fructokinase (VcFRK) exhibit strong fructose-6-kinase activity allosterically modulated by K+/Cs+. We have determined the crystal structures of apo-VcFRK and its complex with fructose, fructose-ADP-Ca2+, fructose-ADP-Ca2+-BeF3-. Collectively, we propose the catalytic mechanism and allosteric activation of VcFRK in atomistic details explaining why K+/Cs+ are better activator than Na+. Structural results suggest that apo VcFRK allows entry of fructose in the active site, sequester it through several conserved H-bonds and attains a closed form through large scale conformational changes. A double mutant (H108C/T261C-VcFRK), that arrests the closed form but unable to reopen for F6P release, is catalytically impotent highlighting the essentiality of this conformational change. Negative charge accumulation around ATP upon fructose binding, is presumed to redirect the γ-phosphate towards fructose for efficient phosphotransfer. Reduced phosphotransfer rate of the mutants E205Q and E110Q supports this view. Atomic resolution structure of VcFRK-fructose-ADP-Ca2+-BeF3-, reported first time for any sugar kinase, suggests that BeF3- moiety alongwith R176, Ca2+ and 'anion hole' limit the conformational space for γ-phosphate favoring in-line phospho-transfer.


Assuntos
Frutoquinases/química , Frutoquinases/metabolismo , Modelos Moleculares , Conformação Molecular , Açúcares/química , Açúcares/metabolismo , Vibrio cholerae/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica
3.
Nutrients ; 10(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29534502

RESUMO

We have previously reported that 60% sucrose diet-fed ChREBP knockout mice (KO) showed body weight loss resulting in lethality. We aimed to elucidate whether sucrose and fructose metabolism are impaired in KO. Wild-type mice (WT) and KO were fed a diet containing 30% sucrose with/without 0.08% miglitol, an α-glucosidase inhibitor, and these effects on phenotypes were tested. Furthermore, we compared metabolic changes of oral and peritoneal fructose injection. A thirty percent sucrose diet feeding did not affect phenotypes in KO. However, miglitol induced lethality in 30% sucrose-fed KO. Thirty percent sucrose plus miglitol diet-fed KO showed increased cecal contents, increased fecal lactate contents, increased growth of lactobacillales and Bifidobacterium and decreased growth of clostridium cluster XIVa. ChREBP gene deletion suppressed the mRNA levels of sucrose and fructose related genes. Next, oral fructose injection did not affect plasma glucose levels and liver fructose contents; however, intestinal sucrose and fructose related mRNA levels were increased only in WT. In contrast, peritoneal fructose injection increased plasma glucose levels in both mice; however, the hepatic fructose content in KO was much higher owing to decreased hepatic Khk mRNA expression. Taken together, KO showed sucrose intolerance and fructose malabsorption owing to decreased gene expression.


Assuntos
Açúcares da Dieta/efeitos adversos , Disbiose/etiologia , Intolerância Alimentar/fisiopatologia , Frutose/efeitos adversos , Síndromes de Malabsorção/fisiopatologia , Proteínas Nucleares/metabolismo , Sacarose/efeitos adversos , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Ceco/efeitos dos fármacos , Ceco/metabolismo , Ceco/microbiologia , Ceco/patologia , Clostridium/efeitos dos fármacos , Clostridium/crescimento & desenvolvimento , Clostridium/isolamento & purificação , Açúcares da Dieta/metabolismo , Disbiose/microbiologia , Intolerância Alimentar/etiologia , Intolerância Alimentar/metabolismo , Intolerância Alimentar/patologia , Frutoquinases/química , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/administração & dosagem , Frutose/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Injeções Intraperitoneais , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia , Lactobacillales/efeitos dos fármacos , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/metabolismo , Síndromes de Malabsorção/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Tamanho do Órgão/efeitos dos fármacos , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 18(11)2017 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-29137155

RESUMO

Fructokinase (FRK) proteins play important roles in catalyzing fructose phosphorylation and participate in the carbohydrate metabolism of storage organs in plants. To investigate the roles of FRKs in cassava tuber root development, seven FRK genes (MeFRK1-7) were identified, and MeFRK1-6 were isolated. Phylogenetic analysis revealed that the MeFRK family genes can be divided into α (MeFRK1, 2, 6, 7) and ß (MeFRK3, 4, 5) groups. All the MeFRK proteins have typical conserved regions and substrate binding residues similar to those of the FRKs. The overall predicted three-dimensional structures of MeFRK1-6 were similar, folding into a catalytic domain and a ß-sheet ''lid" region, forming a substrate binding cleft, which contains many residues involved in the binding to fructose. The gene and the predicted three-dimensional structures of MeFRK3 and MeFRK4 were the most similar. MeFRK1-6 displayed different expression patterns across different tissues, including leaves, stems, tuber roots, flowers, and fruits. In tuber roots, the expressions of MeFRK3 and MeFRK4 were much higher compared to those of the other genes. Notably, the expression of MeFRK3 and MeFRK4 as well as the enzymatic activity of FRK were higher at the initial and early expanding tuber stages and were lower at the later expanding and mature tuber stages. The FRK activity of MeFRK3 and MeFRK4 was identified by the functional complementation of triple mutant yeast cells that were unable to phosphorylate either glucose or fructose. The gene expression and enzymatic activity of MeFRK3 and MeFRK4 suggest that they might be the main enzymes in fructose phosphorylation for regulating the formation of tuber roots and starch accumulation at the tuber root initial and expanding stages.


Assuntos
Frutoquinases/genética , Genes de Plantas , Manihot/enzimologia , Manihot/genética , Família Multigênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Clonagem Molecular , Sequência Conservada , DNA Complementar/genética , Éxons/genética , Frutoquinases/química , Frutoquinases/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Íntrons/genética , Filogenia , Raízes de Plantas/genética , Tubérculos/genética , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade por Substrato
5.
J Med Chem ; 60(18): 7835-7849, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28853885

RESUMO

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.


Assuntos
Desenho de Fármacos , Frutoquinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Cristalografia por Raios X , Frutoquinases/química , Frutoquinases/metabolismo , Humanos , Masculino , Simulação de Acoplamento Molecular , Piridinas/química , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley
6.
BMC Genomics ; 18(1): 197, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222695

RESUMO

BACKGROUND: Sugarcane is an important sugar crop contributing up to about 80% of the world sugar production. Efforts to characterize the genes involved in sugar metabolism at the molecular level are growing since increasing sugar content is a major goal in the breeding of new sugarcane varieties. Fructokinases (FRK) are the main fructose phosphorylating enzymes with high substrate specificity and affinity. RESULTS: In this study, by combining comparative genomics approaches with BAC resources, seven fructokinase genes were identified in S. spontaneum. Phylogenetic analysis based on representative monocotyledon and dicotyledon plant species suggested that the FRK gene family is ancient and its evolutionary history can be traced in duplicated descending order: SsFRK4, SsFRK6/SsFRK7,SsFRK5, SsFRK3 and SsFRK1/SsFRK2. Among the close orthologs, the number and position of exons in FRKs were conserved; in contrast, the size of introns varied among the paralogous FRKs in Saccharum. Genomic constraints were analyzed within the gene alleles and between S. spontaneum and Sorghum bicolor, and gene expression analysis was performed under drought stress and with exogenous applications of plant hormones. FRK1, which was under strong functional constraint selection, was conserved among the gene allelic haplotypes, and displayed dominant expression levels among the gene families in the control conditions, suggesting that FRK1 plays a major role in the phosphorylation of fructose. FRK3 and FRK5 were dramatically induced under drought stress, and FRK5 was also found to increase its expression levels in the mature stage of Saccharum. Similarly, FRK3 and FRK5 were induced in response to drought stress in Saccharum. FRK2 and FRK7 displayed lower expression levels than the other FRK family members; FRK2 was under strong genomic selection constraints whereas FRK7 was under neutral selection. FRK7 may have become functionally redundant in Saccharum through pseudogenization. FRK4 and FRK6 shared the most similar expression pattern: FRK4 was revealed to have higher expression levels in mature tissues than in premature tissues of Saccharum, and FRK6 presented a slight increase under drought stress. CONCLUSIONS: Our study presents a comprehensive genomic study of the entire FRK gene family in Saccharum, providing the foundations for approaches to characterize the molecular mechanism regulated by the SsFRK family in sugarcane.


Assuntos
Evolução Molecular , Frutoquinases/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Saccharum/genética , Alelos , Sequência de Aminoácidos , Sequência Conservada , Éxons , Frutoquinases/química , Haplótipos , Íntrons , Filogenia , Domínios Proteicos/genética
7.
PLoS One ; 11(6): e0157458, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27322374

RESUMO

OBJECTIVE: In developed countries with westernized diets, the excessive consumption of added sugar in beverages and highly refined and processed foods is associated with increased risk for obesity, diabetes, and cardiovascular diseases. As a major constituent of added sugars, fructose has been shown to cause a variety of adverse metabolic effects, such as impaired insulin sensitivity, hypertriglyceridemia, and oxidative stress. Recent studies have shown that ketohexokinase isoform C is the key enzyme responsible in fructose metabolism that drive's fructose's adverse effects. The objective of this study was to identify botanical ingredients with potential for inhibitory activity against ketohexokinase-C and fructose-induced metabolic effects by using a series of in vitro model systems. METHODS: Extracts from 406 botanicals and 1200 purified phytochemicals were screened (initial concentration of 50 µg/mL and 50 µM, respectively) for their inhibitory activity using a cell free, recombinant human ketohexokinase-C assay. Dose response evaluations were conducted on botanical extracts and phytochemicals that inhibited ketohexokinase-C by > 30% and > 40%, respectively. Two different extract lots of the top botanical candidates were further evaluated in lysates of HepG2 cells overexpressing ketohexokinase-C for inhibition of fructose-induced ATP depletion. In addition, extracts were evaluated in intact Hep G2 cells for inhibition of fructose-induced elevation of triglyceride and uric acid production. RESULTS: Among the botanical extracts, phloretin (Malus domestica) extracts were the most potent (IC50: 8.9-9.2 µg/mL) followed by extracts of Angelica archangelica (IC50: 22.6 µg/mL-57.3 µg/mL). Among the purified phytochemicals, methoxy-isobavachalcone (Psoralea corylifolia, IC50 = 0.2 µM) exhibited the highest potency against ketohexokinase isoform C activity followed by osthole (Angelica archangelica, IC50 = 0.7 µM), cratoxyarborenone E (Cratoxylum prunifolium, IC50 = 1.0 µM), and α-/γ-mangostin (Cratoxylum prunifolium, IC50 = 1.5 µM). Extracts of Angelica archangelica, Garcinia mangostana, Petroselinum crispum, and Scutellaria baicalensis exhibited ketohexokinase inhibitory activity and blocked fructose-induced ATP depletion and fructose-induced elevation in triglyerides and uric acid. CONCLUSIONS: Angelica archangelica, Garcinia mangostana, Petroselinum crispum, and Scutellaria baicalensis were the top four botanical candidiates identified with inhibitory activity against ketohexokinase-C. Future studies are needed to show proof of mechanism and the efficacy of these botanical extracts in humans to blunt the negative metabolic effects of fructose-containing added sugars.


Assuntos
Inibidores Enzimáticos/química , Frutoquinases/química , Frutose/metabolismo , Hipertrigliceridemia/tratamento farmacológico , Compostos Fitoquímicos/química , Angelica archangelica/química , Inibidores Enzimáticos/administração & dosagem , Frutoquinases/antagonistas & inibidores , Frutose/química , Garcinia mangostana/química , Células Hep G2 , Humanos , Hipertrigliceridemia/metabolismo , Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Petroselinum/química , Compostos Fitoquímicos/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química
8.
J Nutr Biochem ; 32: 115-22, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27142744

RESUMO

Fructose intake from added sugars correlates with the epidemic rise in metabolic syndrome and related events. Nevertheless, consumption of beverages sweetened with fructose is not regulated in gestation. Previously, we found that maternal fructose intake produces in the progeny, when fetuses, impaired leptin signaling and hepatic steatosis and then impaired insulin signaling and hypoadiponectinemia in adult male rats. Interestingly, adult females from fructose-fed mothers did not exhibit any of these disturbances. However, we think that, actually, these animals keep a programmed phenotype hidden. Fed 240-day-old female progeny from control, fructose- and glucose-fed mothers were subjected for 3weeks to a fructose supplementation period (10% wt/vol in drinking water). Fructose intake provoked elevations in insulinemia and adiponectinemia in the female progeny independently of their maternal diet. In accordance, the hepatic mRNA levels of several insulin-responsive genes were similarly affected in the progeny after fructose intake. Interestingly, adult progeny of fructose-fed mothers displayed, in response to the fructose feeding, augmented plasma triglyceride and NEFA levels and hepatic steatosis versus the other two groups. In agreement, the expression and activity for carbohydrate response element binding protein (ChREBP), a lipogenic transcription factor, were higher after the fructose period in female descendants from fructose-fed mothers than in the other groups. Furthermore, liver fructokinase expression that has been indicated as one of those responsible for the deleterious effects of fructose ingestion was preferentially augmented in that group. Maternal fructose intake does influence the adult female offspring's response to liquid fructose and so exacerbates fructose-induced dyslipidemia and hepatic steatosis.


Assuntos
Bebidas/efeitos adversos , Dislipidemias/etiologia , Desenvolvimento Fetal , Frutose/efeitos adversos , Fenômenos Fisiológicos da Nutrição Materna , Hepatopatia Gordurosa não Alcoólica/etiologia , Adoçantes Calóricos/efeitos adversos , Adiponectina/agonistas , Adiponectina/sangue , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/agonistas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Dislipidemias/sangue , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Ácidos Graxos não Esterificados/agonistas , Ácidos Graxos não Esterificados/sangue , Feminino , Frutoquinases/química , Frutoquinases/genética , Frutoquinases/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/efeitos adversos , Hiperinsulinismo/sangue , Hiperinsulinismo/etiologia , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Fígado/enzimologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Gravidez , Distribuição Aleatória , Ratos Sprague-Dawley , Triglicerídeos/agonistas , Triglicerídeos/sangue
9.
Biosystems ; 138: 39-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26521124

RESUMO

Fructose catabolism starts with phosphorylation of d-fructose to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Fructose metabolism may be the key to understand the long-term consumption of fructose in human's obesity, diabetes and metabolic states in western populations. The inhibition of KHK has medicinally potential roles in fructose metabolism and the metabolic syndrome. To identify the essential chemical features for KHK inhibition, a three-dimensional (3D) chemical-feature-based QSAR pharmacophore model was developed for the first time by using Discovery Studio v2.5 (DS). The best pharmacophore hypothesis (Hypo1) consisting two hydrogen bond donor, two hydrophobic features and has exhibited high correlation co-efficient (0.97), cost difference (76.1) and low RMS (0.66) value. The robustness and predictability of Hypo1 was validated by fisher's randomization method, test set, and the decoy set. Subsequently, chemical databases like NCI, Chembridge and Maybridge were screened for validated Hypo1. The screened compounds were further analyzed by applying drug-like filters such as Lipinski's rule of five, ADME properties, and molecular docking studies. Further, the highest occupied molecular orbital, lowest unoccupied molecular orbital and energy gap values were calculated for the hits compounds using density functional theory. Finally, 3 hit compounds were selected based on their good molecular interactions with key amino acids in the KHK active site, GOLD fitness score, and lowest energy gaps.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Frutoquinases/química , Simulação de Acoplamento Molecular/métodos , Modelos Químicos , Interface Usuário-Computador
10.
Future Med Chem ; 5(10): 1121-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23795969

RESUMO

Crystallography is a major tool for structure-driven drug design, as it allows knowledge of the 3D structure of protein targets and protein-ligand complexes. However, the route for crystal structure determination involves many steps, some of which may hamper its high-throughput use. Recent efforts have produced significant advances in experimental and computational tools and protocols. They include automatic crystallization tools, faster data collection devices, more efficient phasing methods and improved ligand-fitting procedures. The timescales of drug-discovery processes have been also reduced by using a fragment-based screening approach. Herein, the achievements in protein crystallography over the last 5 years are reviewed, and advantages and disadvantages of the fragment-based approaches to drug discovery that make use of x-ray crystallography as a primary screening method are examined. In particular, in some detail, five recent case studies pertaining to the development of new hits or leads in relevant therapeutic areas, such as cancer, immune response, inflammation, metabolic syndrome and neurology are described.


Assuntos
Desenho de Fármacos , Proteínas/química , Sítios de Ligação , Carboidratos/química , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Frutoquinases/química , Frutoquinases/metabolismo , Humanos , Simulação de Dinâmica Molecular , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas/metabolismo , Tripsina/química , Tripsina/metabolismo
11.
Gene ; 515(2): 291-7, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23266804

RESUMO

Fructanase enzymes hydrolyze the ß-2,6 and ß-2,1 linkages of levan and inulin fructans, respectively. We analyzed the influence of fructan on the growth of Prevotella intermedia. The growth of P. intermedia was enhanced by addition of inulin, implying that P. intermedia could also use inulin. Based on this finding, we identified and analyzed the genes encoding a putative fructanase (FruA), sugar transporter (FruB), and fructokinase (FruK) in the genome of strain ATCC25611. Transcript analysis by RT-PCR showed that the fruABK genes were co-transcribed as a single mRNA and semi-quantitative analysis confirmed that the fruA gene was induced in response to fructose and inulin. Recombinant FruA and FruK were purified and characterized biochemically. FruA strongly hydrolyzed inulin, with slight degradation of levan via an exo-type mechanism, revealing that FruA is an exo-ß-d-fructanase. FruK converted fructose to fructose-6-phosphate in the presence of ATP, confirming that FruK is an ATP-dependent fructokinase. These results suggest that P. intermedia can utilize fructan as a carbon source for growth, and that the fructanase, sugar transporter, and fructokinase proteins we identified are involved in this fructan utilization.


Assuntos
Frutanos/metabolismo , Genes Bacterianos , Família Multigênica , Prevotella intermedia/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Meios de Cultura , Frutoquinases/química , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose , Expressão Gênica , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hidrólise , Inulina/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Prevotella intermedia/enzimologia , Prevotella intermedia/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Especificidade por Substrato
12.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1564-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192049

RESUMO

Fructokinase (FK), one of the crucial enzymes for sugar metabolism in bacterial systems, catalyses the unidirectional phosphorylation reaction from fructose to fructose 6-phosphate, thereby allowing parallel entry of fructose into glycolysis beside glucose. The cscK gene from Vibrio cholerae O395 coding for the enzyme FK has been cloned, overexpressed in Escherichia coli BL21 (DE3) and purified using Ni-NTA affinity chromatography. Crystals of V. cholerae FK (Vc-FK) and its cocrystal with fructose, adenosine diphosphate (ADP) and Mg2+ were grown in the presence of polyethylene glycol 6000 and diffracted to 2.45 and 1.75 Šresolution, respectively. Analysis of the diffraction data showed that both crystal forms have symmetry consistent with space group P2(1)2(1)2, but with different unit-cell parameters. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient for the apo Vc-FK crystals was estimated to be 2.4 Å3 Da(-1), which corresponds to a solvent content of 48%. The corresponding values for the ADP- and sugar-bound Vc-FK crystals were 2.1 Å3 Da(-1) and 40%, respectively, assuming the presence of one molecule in the asymmetric unit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Frutoquinases/química , Frutoquinases/isolamento & purificação , Vibrio cholerae/enzimologia , Proteínas de Bactérias/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Frutoquinases/genética
13.
Biochemistry (Mosc) ; 77(4): 372-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22809156

RESUMO

In the cluster of genes for sucrose biosynthesis and cleavage in Methylomicrobium alcaliphilum 20Z, a gene whose encoded sequence showed high similarity to sugar kinases of the ribokinase family was found. By heterologous expression of this gene in Escherichia coli cells and following metal chelate affinity chromatography, the electrophoretically homogenous recombinant enzyme with six histidine residues on the C-end was obtained. The enzyme catalyzes ATP-dependent phosphorylation of fructose into fructose-6-phosphate but is not active with other sugars as phosphoryl acceptors. The fructokinase of M. alcaliphilum 20Z is most active in the presence of Mn(2+) at pH 9.0 and 60°C, being inhibited by ADP (K(i) = 2.50 ± 0.03 mM). The apparent K(m) values for fructose and ATP are 0.26 and 1.3 mM, respectively; the maximal activity is 141 U/mg protein. The enzyme shows the highest similarity of translated amino acid sequence with putative fructokinases of methylotrophic and autotrophic proteobacteria whose fruK gene is located in the gene cluster of sucrose biosynthesis. The involvement of fructokinase in sucrose metabolism in M. alcaliphilum 20Z and other methanotrophs and autotrophs is discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Frutoquinases/química , Methylococcaceae/enzimologia , Processos Autotróficos , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Frutoquinases/genética , Frutoquinases/isolamento & purificação , Frutoquinases/metabolismo , Frutosefosfatos/metabolismo , Cinética , Metano/metabolismo , Methylococcaceae/classificação , Methylococcaceae/genética , Methylococcaceae/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sacarose/metabolismo
14.
Methods Enzymol ; 493: 487-508, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21371603

RESUMO

We describe here a method using protein crystallography as the sole detection tool for fragment-based lead discovery. The methodology consists of iterative design, synthesis, and X-ray crystallographic screening of three libraries of compounds. Target-specific compound design, by way of active site electron density in the presence of a bound fragment hit and the intentional lack of solution activity bias form the basis of our approach. We provide an example of this alternative fragment-based drug design (FBDD) method, detailing results from a campaign using ketohexokinase to generate a unique lead series with promising drug-like properties.


Assuntos
Cristalografia por Raios X , Desenho de Fármacos , Elétrons , Bibliotecas de Moléculas Pequenas , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Domínio Catalítico/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Frutoquinases/antagonistas & inibidores , Frutoquinases/química , Frutose/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Ligação Proteica , Sulfatos/química
15.
J Mol Biol ; 406(2): 325-42, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21185308

RESUMO

The main pathway of bacterial sugar phosphorylation utilizes specific phosphoenolpyruvate phosphotransferase system (PTS) enzymes. In addition to the classic PTS system, a PTS-independent secondary system has been described in which nucleotide-dependent sugar kinases are used for monosaccharide phosphorylation. Fructokinase (FK), which phosphorylates d-fructose with ATP as a cofactor, has been shown to be a member of this secondary system. Bioinformatic analysis has shown that FK is a member of the "ROK" (bacterial Repressors, uncharacterized Open reading frames, and sugar Kinases) sequence family. In this study, we report the crystal structures of ROK FK from Bacillus subtilis (YdhR) (a) apo and in the presence of (b) ADP and (c) ADP/d-fructose. All structures show that YdhR is a homodimer with a monomer composed of two similar α/ß domains forming a large cleft between domains that bind ADP and D-fructose. Enzymatic activity assays support YdhR function as an ATP-dependent fructose kinase.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Frutoquinases/química , Frutose/química , Quinases Associadas a rho/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dados de Sequência Molecular , Ligação Proteica , Especificidade por Substrato
16.
J Struct Biol ; 171(3): 397-401, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20493950

RESUMO

Fructokinase (FRK; EC 2.7.1.4) catalyzes the phosphorylation of d-fructose to d-fructose 6-phosphate (F6P). This irreversible and near rate-limiting step is a central and regulatory process in plants and bacteria, which channels fructose into a metabolically active state for glycolysis. Towards understanding the mechanism of FRK, here we report the crystal structure of a FRK homolog from a thermohalophilic bacterium Halothermothrixorenii (Hore_18220 in sequence databases). The structure of the Hore_18220 protein reveals a catalytic domain with a Rossmann-like fold and a beta-sheet "lid" for dimerization. Based on comparison of Hore_18220 to structures of related proteins, we propose its mechanism of action, in which the lid serves to regulate access to the substrate binding sites. Close relationship of Hore_18220 and plant FRK enzymes allows us to propose a model for the structure and function of FRKs.


Assuntos
Clostridium/enzimologia , Frutoquinases/química , Frutoquinases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Frutose/metabolismo , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
17.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 3): 201-11, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19237742

RESUMO

A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.


Assuntos
Processamento Alternativo , Frutoquinases/química , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Frutoquinases/genética , Frutoquinases/metabolismo , Frutose/metabolismo , Humanos , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fosforilação , Mutação Puntual , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Planta ; 224(6): 1495-502, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16977457

RESUMO

Four hexokinase (LeHXK1-4) and four fructokinase (LeFRK1-4) genes were identified in tomato plants. Previous GFP fusion studies indicate that the gene product of LeHXK3 is associated with the mitochondria while that of LeHXK4 is located within plastids. In this study we found that the enzyme encoded by the fructokinase gene LeFRK3 is also located within plastids. The presence of LeFrk3 enzyme in plastids raises the question of the origin of fructose in these organelles. The other three FRKs enzymes, LeFrk1&2&4, are located in the cytosol. Unlike LeFrk1&2&4, the two additional HXKs, LeHxk1&2, share a common membrane anchor domain and are associated with the mitochondria similar to LeHxk3. The difference in the locations of the cytoplasmic FRK and HXK isozymes suggests that glucose phosphorylation is confined to defined special intracellular localizations while fructose phosphorylation is less confined.


Assuntos
Frutoquinases/metabolismo , Hexoquinase/metabolismo , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Citosol/enzimologia , Primers do DNA , Eletroporação , Frutoquinases/química , Proteínas de Fluorescência Verde/metabolismo , Hexoquinase/química , Dados de Sequência Molecular , Plastídeos/enzimologia , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
19.
J Biol Chem ; 280(32): 29073-9, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15929984

RESUMO

Mlc from Escherichia coli is a transcriptional repressor controlling the expression of a number of genes encoding enzymes of the phosphotransferase system (PTS), including ptsG and manXYZ, the specific enzyme II for glucose and mannose PTS transporters. In addition, Mlc controls the transcription of malT, the gene of the global activator of the mal regulon. The inactivation of Mlc as a repressor is mediated by binding to an actively transporting PtsG (EIICB(Glc)). Here we report the crystal structure of Mlc at 2.7 A resolution representing the first described structure of an ROK (repressors, open reading frames, and kinases) family protein. Mlc forms stable dimers thus explaining its binding affinity to palindromic operator sites. The N-terminal helix-turn-helix domain of Mlc is stabilized by the amphipathic C-terminal helix implicated earlier in EIICB(Glc) binding. Furthermore, the structure revealed a metal-binding site within the cysteine-rich ROK consensus motif that coordinates a structurally important zinc ion. A strongly reduced repressor activity was observed when two of the zinc-coordinating cysteine residues were exchanged against serine or alanine, demonstrating the role of zinc in Mlc-mediated repressor function. The structures of a putative fructokinase from Bacillus subtilis, the glucokinase from Escherichia coli, and a glucomannokinase from Arthrobacter sp. showed high structural homology to the ROK family part of Mlc.


Assuntos
Metabolismo dos Carboidratos , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Repressoras/química , Transcrição Gênica , Alanina/química , Arthrobacter/química , Bacillus subtilis/química , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Bases de Dados de Proteínas , Dimerização , Escherichia coli/enzimologia , Frutoquinases/química , Glucoquinase/metabolismo , Glucose/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Serina/química , Zinco/química , beta-Galactosidase/química
20.
Extremophiles ; 8(4): 301-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15138858

RESUMO

Close to an operon encoding an ABC transporter for maltose and trehalose, Thermococcus litoralis contains a gene whose encoded sequence showed similarity to sugar kinases. We cloned this gene, now called frk, and expressed it as a C-terminal His-tag version in Escherichia coli. We purified the recombinant protein, identified it as an ATP-dependent and fructose-6-phosphate-forming fructokinase (Frk) and determined its biochemical properties. At its optimal temperature of 80 degrees C, the apparent Km and Vmax values of Frk were 2.3 mM and 730 U/mg protein for fructose at saturating ATP concentration, and 0.81 mM and 920 U/mg protein for ATP at saturating fructose concentration. The enzyme did not lose activity at 80 degrees C for 4 h. Under denaturating conditions in SDS-PAGE, it exhibited a molecular mass of 35 kDa. Gel-filtration chromatography revealed a molecular mass of 58 kDa, indicating a dimer under nondenaturating, in vitro conditions.


Assuntos
Trifosfato de Adenosina/metabolismo , Frutoquinases/metabolismo , Glucose-6-Fosfato/biossíntese , Thermococcus/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Sequência Conservada , Primers do DNA , Estabilidade Enzimática , Frutoquinases/química , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...