Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Mol Pharm ; 21(5): 2590-2605, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38656981

RESUMO

We report a novel utilization of a pH modifier as a disproportionation retardant in a tablet formulation. The drug molecule of interest has significant bioavailability challenges that require solubility enhancement. In addition to limited salt/cocrystal options, disproportionation of the potential salt(s) was identified as a substantial risk. Using a combination of Raman spectroscopy with chemometrics and quantitative X-ray diffraction in specially designed stress testing, we investigated the disproportionation phenomena. The learnings and insight drawn from crystallography drove the selection of the maleate form as the target API. Inspired by the fumarate form's unique stability and solubility characteristics, we used fumaric acid as the microenvironmental pH modulator. Proof-of-concept experiments with high-risk (HCl) and moderate-risk (maleate) scenarios confirmed the synergistic advantage of fumaric acid, which interacts with the freebase released by disproportionation to form a more soluble species. The resultant hemifumarate helps maintain the solubility at an elevated level. This work demonstrates an innovative technique to mediate the solubility drop during the "parachute" phase of drug absorption using compendial excipients, and this approach can potentially serve as an effective risk-mitigating strategy for salt disproportionation.


Assuntos
Química Farmacêutica , Composição de Medicamentos , Fumaratos , Solubilidade , Fumaratos/química , Concentração de Íons de Hidrogênio , Composição de Medicamentos/métodos , Química Farmacêutica/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos , Comprimidos/química , Sais/química , Maleatos/química , Excipientes/química , Disponibilidade Biológica
2.
J Biomed Mater Res A ; 112(5): 672-684, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971074

RESUMO

Polycaprolactone fumarate (PCLF) is a cross-linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell-cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro-architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post-processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D-printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.


Assuntos
Fumaratos , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Fumaratos/farmacologia , Fumaratos/química , Materiais Biocompatíveis/química , Poliésteres/farmacologia , Poliésteres/química , Engenharia Tecidual/métodos , Regeneração Óssea , Porosidade , Impressão Tridimensional
3.
Biomater Adv ; 157: 213714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096647

RESUMO

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Assuntos
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
4.
Eur J Med Chem ; 246: 114993, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495631

RESUMO

Solubility-driven optimization of the salts of nitro benzothiopyranone 1, which targets DprE1, led to an antimycobacterial preclinical candidate 2. Five pharmaceutically acceptable salts, including the maleate (2), fumarate (3), citrate (4, 5), and l-malate (6) of compound 1, were prepared via the salt formation reaction and evaluated for their physicochemical and pharmacokinetic properties. Compared with 1, all the target salts exhibited greatly increased aqueous solubility and improved oral bioavailability in mice. Maleate salt 2, which displayed higher chemical stability and lower log P, showed substantially improved bioavailability in rats and a much better in vivo effect compared with free base 1 at the same dose. The X-ray crystal structure of 2 revealed that the exposed hydrophilic piperazine-maleate moiety in the crystal structure cell may be critical in increasing the solubility of 2. Thus, this maleate salt 2 overcame the poor druggability of benzothiopyranone derivatives and was identified as a promising preclinical candidate for treating tuberculosis.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Ratos , Maleatos/química , Maleatos/farmacologia , Piperazina/farmacologia , Sais/química , Solubilidade , Fumaratos/química , Fumaratos/farmacologia
5.
Magn Reson Med ; 88(5): 2014-2020, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35816502

RESUMO

PURPOSE: There is an unmet clinical need for direct and sensitive methods to detect cell death in vivo, especially with regard to monitoring tumor treatment response. We have shown previously that tumor cell death can be detected in vivo from 2 H MRS and MRSI measurements of increased [2,3-2 H2 ]malate production following intravenous injection of [2,3-2 H2 ]fumarate. We show here that cell death can be detected with similar sensitivity following oral administration of the 2 H-labeled fumarate. METHODS: Mice with subcutaneously implanted EL4 tumors were fasted for 1 h before administration (200 µl) of [2,3-2 H2 ]fumarate (2 g/kg bodyweight) via oral gavage without anesthesia. The animals were then anesthetized, and after 30 min, tumor conversion of [2,3-2 H2 ]fumarate to [2,3-2 H2 ]malate was assessed from a series of 13 2 H spectra acquired over a period of 65 min. The 2 H spectra and 2 H spectroscopic images were acquired using a surface coil before and at 48 h after treatment with a chemotherapeutic drug (etoposide, 67 mg/kg). RESULTS: The malate/fumarate signal ratio increased from 0.022 ± 0.03 before drug treatment to 0.12 ± 0.04 following treatment (p = 0.023, n = 4). Labeled malate was undetectable in spectroscopic images acquired before treatment and increased in the tumor area following treatment. The increase in the malate/fumarate signal ratio was similar to that observed previously following intravenous administration of labeled fumarate. CONCLUSION: Orally administered [2,3-2 H2 ]fumarate can be used to detect tumor cell death noninvasively following treatment with a sensitivity that is similar to that obtained with intravenous administration.


Assuntos
Fumaratos , Neoplasias , Animais , Morte Celular , Deutério , Fumaratos/química , Malatos/química , Malatos/metabolismo , Malatos/uso terapêutico , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
6.
Biochem Biophys Res Commun ; 605: 9-15, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35306364

RESUMO

Fumarates (fumaric acid esters), primarily dimethyl fumarate (DMF) and monoethyl fumarate (MEF) and its salts, are orally administered systemic agents used for the treatment of psoriasis and multiple sclerosis. It is widely believed that the pharmaceutical activities of fumarates are exerted through the Keap1-Nrf2 pathway. Although it has been revealed that DMF and MEF differentially modify specific Keap1 cysteine residues and result in the differential activation of Nrf2, how the modification of DMF and MEF impacts the biochemical properties of Keap1 has not been well characterized. Here, we found that both DMF and MEF can only modify the BTB domain of Keap1 and that only C151 is accessible for covalent binding in vitro. Dynamic fluorescence scanning (DSF) assays showed that the modification of DMF to Keap1 BTB increased its thermal stability, while the modification of MEF dramatically decreased its thermal stability. Further crystal structures revealed no significant conformational variation between the DMF-modified and MEF-modified BTBs. Overall, our biochemical and structural study provides a better understanding of the covalent modification of fumarates to Keap1 and may suggest fundamentally different mechanisms adopted by fumarates in regulating the Keap1-Nrf2 pathway.


Assuntos
Fumarato de Dimetilo , Fator 2 Relacionado a NF-E2 , Fumarato de Dimetilo/farmacologia , Fumaratos/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica
7.
Anal Chem ; 94(7): 3260-3267, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35147413

RESUMO

Microfluidic systems hold great potential for the study of live microscopic cultures of cells, tissue samples, and small organisms. Integration of hyperpolarization would enable quantitative studies of metabolism in such volume limited systems by high-resolution NMR spectroscopy. We demonstrate, for the first time, the integrated generation and detection of a hyperpolarized metabolite on a microfluidic chip. The metabolite [1-13C]fumarate is produced in a nuclear hyperpolarized form by (i) introducing para-enriched hydrogen into the solution by diffusion through a polymer membrane, (ii) reaction with a substrate in the presence of a ruthenium-based catalyst, and (iii) conversion of the singlet-polarized reaction product into a magnetized form by the application of a radiofrequency pulse sequence, all on the same microfluidic chip. The microfluidic device delivers a continuous flow of hyperpolarized material at the 2.5 µL/min scale, with a polarization level of 4%. We demonstrate two methods for mitigating singlet-triplet mixing effects which otherwise reduce the achieved polarization level.


Assuntos
Hidrogênio , Microfluídica , Fumaratos/química , Hidrogênio/química , Espectroscopia de Ressonância Magnética , Ondas de Rádio
8.
Bioconjug Chem ; 32(8): 1629-1640, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34165285

RESUMO

Macrophage-mediated inflammation drives autoimmune and chronic inflammatory diseases. Treatment with anti-inflammatory agents can be an effective strategy to reduce this inflammation; however, high concentrations of these agents can have immune-dampening and other serious side effects. Synergistic combination of anti-inflammatory agents can mitigate dosing by requiring less drug. Multiple anti-inflammatory agents were evaluated in combination for synergistic inhibition of macrophage inflammation. The most potent synergy was observed between dexamethasone (DXM) and fumaric acid esters (e.g., monomethyl fumarate (MMF)). Furthermore, this combination was found to synergistically inhibit inflammatory nuclear factor κB (NF-κB) transcription factor activity. The optimal ratio for synergy was determined to be 1:1, and DXM and MMF were conjugated by esterification at this molar ratio. The DXM-MMF conjugate displayed improved inhibition of inflammation over the unconjugated combination in both murine and human macrophages. In the treatment of human donor monocyte-derived macrophages, the combination of DXM and MMF significantly inhibited inflammatory gene expression downstream of NF-κB and overall performed better than either agent alone. Further, the DXM-MMF conjugate significantly inhibited expression of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome-associated genes. The potent anti-inflammatory activity of the DXM-MMF conjugate in human macrophages indicates that it may have benefits in the treatment of autoimmune and inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Fumaratos/uso terapêutico , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , NF-kappa B/antagonistas & inibidores , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Citocinas/genética , Citocinas/metabolismo , Dexametasona/química , Sinergismo Farmacológico , Fumaratos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/patologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7
9.
Int J Biol Macromol ; 181: 1010-1022, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33892027

RESUMO

Molecular recognition is essential for the advancement of functional supramolecular natural polymer-based hydrogels. First, a series of carboxymethyl cellulose (CMC)-chitosan (CSN) hydrogels crosslinked with fumaric acid are studied, where the influence of composition on microstructure and swelling is investigated using mathematical modelling and experiment and the hydrolytic properties, microstructure parameters and physicochemical properties are examined. Second, best fit values for the responses are obtained using multiple linear regression and MATLAB R2020a curve fitting and predictive models are generated. Third, the optimum microstructure is loaded with polyethylene glycol (PEG) and bismuth telluride (Bi2Te3) and coated on fabric for imparting thermal sensitivity. The results show that (1) optimum microstructure (25.65 ± 1.86 nm mesh size, 116.25 ± 0.00 µmol/cm3 effective crosslinking-density, 348.03 ± 10.81% swelling, and 62.86 ± 1.11% gel fraction) is found at CMC:CSN = 1:3 for G3; (2) the model shows good agreement with experimental data demonstrating potential for estimating hydrogel swelling and microstructure; and (3) G3/PEG and G3/PEG/Bi2Te3 enhance thermal conductivity of fabric at ambient, body, and elevated temperatures. The study demonstrates the potential of the generated model in predicting CMC-CSN swelling and G3 as an ideal host matrix for wearable textiles/devices.


Assuntos
Bandagens , Carboximetilcelulose Sódica/química , Quitosana/análogos & derivados , Têxteis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Bismuto/química , Carboximetilcelulose Sódica/uso terapêutico , Quitosana/química , Quitosana/uso terapêutico , Fumaratos/química , Humanos , Hidrogéis/química , Hidrogéis/uso terapêutico , Telúrio/química , Cicatrização/efeitos dos fármacos
10.
J Biomed Mater Res A ; 109(10): 1858-1868, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33830598

RESUMO

In this study, a light cross-linkable biocomposite scaffold based on a photo-cross-linkable poly (propylene fumarate) (PPF)-co-polycaprolactone (PCL) tri-block copolymer was synthesized and characterized. The developed biodegradable scaffold was further modified with ß-tricalcium phosphate (ß-TCP) bioceramic for bone tissue engineering applications. The developed biocomposite was characterized using H nuclear magnetic resonance and Fourier transform infrared spectroscopy. Moreover, the bioceramic particle size distribution and morphology were evaluated using Brunauer-Emmett-Teller method, X-ray diffraction, and scanning electron microscopy. The mechanical properties and biodegradation of the scaffolds were also evaluated. Cytotoxicity and mineralization assays were performed to analyze the biocompatibility and bioactivity capacity of the developed biocomposite. The characterization data confirmed the development of a biodegradable and photo-cross-linkable PCL-based biocomposite reinforced with ß-TCP bioceramic. In vitro analyses demonstrated the biocompatibility and mineralization potential of the synthesized bioceramic. Altogether, the results of the present study suggest that the photo-cross-linkable PCL-PPF-PCL tri-block copolymer reinforced with ß-TCP is a promising biocomposite for bone tissue engineering applications. According to the results, this newly synthesized material has a proper chemical composition for further clinically-relevant studies in tissue engineering.


Assuntos
Materiais Biocompatíveis/síntese química , Regeneração Óssea , Reagentes de Ligações Cruzadas/química , Luz , Poliésteres/síntese química , Apatitas/química , Materiais Biocompatíveis/química , Líquidos Corporais/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Morte Celular , Módulo de Elasticidade , Fumaratos/síntese química , Fumaratos/química , Humanos , Teste de Materiais , Poliésteres/química , Polipropilenos/síntese química , Polipropilenos/química , Porosidade , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
11.
J Biomed Mater Res A ; 109(9): 1633-1645, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33650768

RESUMO

A promising strategy that emerged in tissue engineering is to incorporate two-dimensional (2D) materials into polymer scaffolds, producing materials with desirable mechanical properties and surface chemistries, which also display broad biocompatibility. Black phosphorus (BP) is a 2D material that has sparked recent scientific interest due to its unique structure and electrochemical characteristics. In this study, BP nanosheets (BPNSs) were incorporated into a cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) hydrogel to produce a new nanocomposite for bone regeneration. BPNSs exhibited a controllable degradation rate coupled with the release of phosphate in vitro. MTS assay results together with live/dead images confirmed that the introduction of BPNSs into OPF hydrogels enhanced MC3T3-E1 cell proliferation. Moreover, the morphology parameters indicated better attachments of cells in the BPNSs containing group. Immunofluorescence images as well as intercellular ALP and OCN activities showed that adding a certain amount of BPNSs to OPF hydrogel could greatly improve differentiation of pre-osteoblasts on the hydrogel. Additionally, embedding black phosphorous into a neutral polymer network helped to control its cytotoxicity, with optimal cell growth observed at BP concentrations as high as 500 ppm. These results reinforced that the supplementation of OPF with BPNSs can increase the osteogenic capacity of polymer scaffolds for use in bone tissue engineering.


Assuntos
Diferenciação Celular , Hidrogéis/farmacologia , Nanocompostos/química , Fósforo/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fumaratos/química , Camundongos , Nanocompostos/ultraestrutura , Fosfatos , Polietilenoglicóis/química
12.
Chemphyschem ; 22(10): 915-923, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33590933

RESUMO

Hyperpolarized [1-13 C]fumarate is a promising magnetic resonance imaging (MRI) biomarker for cellular necrosis, which plays an important role in various disease and cancerous pathological processes. To demonstrate the feasibility of MRI of [1-13 C]fumarate metabolism using parahydrogen-induced polarization (PHIP), a low-cost alternative to dissolution dynamic nuclear polarization (dDNP), a cost-effective and high-yield synthetic pathway of hydrogenation precursor [1-13 C]acetylenedicarboxylate (ADC) was developed. The trans-selectivity of the hydrogenation reaction of ADC using a ruthenium-based catalyst was elucidated employing density functional theory (DFT) simulations. A simple PHIP set-up was used to generate hyperpolarized [1-13 C]fumarate at sufficient 13 C polarization for ex vivo detection of hyperpolarized 13 C malate metabolized from fumarate in murine liver tissue homogenates, and in vivo 13 C MR spectroscopy and imaging in a murine model of acetaminophen-induced hepatitis.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Fumaratos/metabolismo , Imageamento por Ressonância Magnética , Alcinos/química , Isótopos de Carbono , Teoria da Densidade Funcional , Ácidos Graxos Insaturados/química , Fumaratos/química , Hidrogenação
13.
Int J Biol Macromol ; 176: 520-529, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607140

RESUMO

Naftopidil (NAF), an α1-adrenoceptor antagonist, is administered as a treatment for benign prostatic hyperplasia; however, according to the Biopharmaceutical Classification System (BCS IV), it is a poorly-soluble drug that exhibits poor permeability. We aimed to increase the dissolution (%) of NAF by adding chitosan to a polymer-free formulation. Compared to the formulation prepared using Flivas®, at 60 min, the solid dispersion (SD) formulation containing NAF, fumaric acid, chitosan, and US2® in a 1:1:2:1 weight ratio improved the dissolution (%) of NAF in distilled water, pH 1.2 media, pH 4.0 and pH 6.8 buffers by 27.2-, 1.2-, 1.1- and 6.5-fold, respectively. The physicochemical properties of the SD1 formulation were also found to be altered, including its thermal properties, crystal intensity, and chemical interaction. As a result, the hydrogen bonding that occurs between NAF and fumaric acid was identified as a major factor in the increase in NAF dissolution (%). Further, chitosan was observed to contribute to the stability of NAF and SD1, which was assessed over a 3-month period. To our knowledge, this is the first study to employ a polymer-free system to improve the solubilization of NAF.


Assuntos
Quitosana/química , Fumaratos/química , Naftalenos/química , Piperazinas/química , Solubilidade
14.
Ann Biomed Eng ; 49(9): 2114-2125, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33560466

RESUMO

Growth factors such as bone morphogenetic protein-2 (BMP-2) are potent tools for tissue engineering. Three-dimensional (3D) printing offers a potential strategy for delivery of BMP-2 from polymeric constructs; however, these biomolecules are sensitive to inactivation by the elevated temperatures commonly employed during extrusion-based 3D printing. Therefore, we aimed to correlate printing temperature to the bioactivity of BMP-2 released from 3D printed constructs composed of a model polymer, poly(propylene fumarate). Following encapsulation of BMP-2 in poly(DL-lactic-co-glycolic acid) particles, growth factor-loaded fibers were fabricated at three different printing temperatures. Resulting constructs underwent 28 days of aqueous degradation for collection of released BMP-2. Supernatants were then assayed for the presence of bioactive BMP-2 using a cellular assay for alkaline phosphatase activity. Cumulative release profiles indicated that BMP-2 released from constructs that were 3D printed at physiologic and intermediate temperatures exhibited comparable total amounts of bioactive BMP-2 release as those encapsulated in non-printed particulate delivery vehicles. Meanwhile, the elevated printing temperature of 90 °C resulted in a decreased amount of total bioactive BMP-2 release from the fibers. These findings elucidate the effects of elevated printing temperatures on BMP-2 bioactivity during extrusion-based 3D printing, and enlighten polymeric material selection for 3D printing with growth factors.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Impressão Tridimensional , Alicerces Teciduais , Animais , Linhagem Celular , Fumaratos/química , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polipropilenos/química , Temperatura
15.
Artigo em Inglês | MEDLINE | ID: mdl-33468560

RESUMO

OBJECTIVE: To test the hypothesis that dimethyl fumarate (DMF, Tecfidera) elicits different biological changes from DMF combined with monoethyl fumarate (MEF) (Fumaderm, a psoriasis therapy), we investigated DMF and MEF in rodents and cynomolgus monkeys. Possible translatability of findings was explored with lymphocyte counts from a retrospective cohort of patients with MS. METHODS: In rodents, we evaluated pharmacokinetic and pharmacodynamic effects induced by DMF and MEF monotherapies or in combination (DMF/MEF). Clinical implications were investigated in a retrospective, observational analysis of patients with MS treated with DMF/MEF (n = 36). RESULTS: In rodents and cynomolgus monkeys, monomethyl fumarate (MMF, the primary metabolite of DMF) exhibited higher brain penetration, whereas MEF was preferentially partitioned into the kidney. In mice, transcriptional profiling for DMF and MEF alone identified both common and distinct pharmacodynamic responses, with almost no overlap between DMF- and MEF-induced differentially expressed gene profiles in immune tissues. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated oxidative stress response pathway was exclusively regulated by DMF, whereas apoptosis pathways were activated by MEF. DMF/MEF treatment demonstrated that DMF and MEF functionally interact to modify DMF- and MEF-specific responses in unpredictable ways. In patients with MS, DMF/MEF treatment led to early and pronounced suppression of lymphocytes, predominantly CD8+ T cells. In a multivariate regression analysis, the absolute lymphocyte count (ALC) was associated with age at therapy start, baseline ALC, and DMF/MEF dosage but not with previous immunosuppressive medication and sex. Furthermore, the ALC increased in a small cohort of patients with MS (n = 6/7) after switching from DMF/MEF to DMF monotherapy. CONCLUSIONS: Fumaric acid esters exhibit different biodistribution and may elicit different biological responses; furthermore, pharmacodynamic effects of combinations differ unpredictably from monotherapy. The strong potential to induce lymphopenia in patients with MS may be a result of activation of apoptosis pathways by MEF compared with DMF.


Assuntos
Fumarato de Dimetilo/química , Fumarato de Dimetilo/farmacologia , Fumaratos/química , Fumaratos/farmacologia , Esclerose Múltipla/tratamento farmacológico , Animais , Estudos Transversais , Fumarato de Dimetilo/uso terapêutico , Feminino , Fumaratos/uso terapêutico , Perfilação da Expressão Gênica/métodos , Humanos , Imunossupressores/química , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/sangue , Esclerose Múltipla/genética , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos
16.
Molecules ; 27(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35011434

RESUMO

X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer's claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.


Assuntos
Varredura Diferencial de Calorimetria , Suplementos Nutricionais/análise , Ferro/análise , Termogravimetria , Difração de Raios X , Difosfatos/química , Fumaratos/análise , Fumaratos/química , Gluconatos/química , Ferro/química
17.
FEBS J ; 288(5): 1599-1613, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32672401

RESUMO

The activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription function has been implicated in the protection of neurodegenerative diseases. The cytoplasmic protein, Kelch-like ECH-associated protein 1 (Keap1), negatively regulates Nrf2. The Keap1-Nrf2 pathway is a potential therapeutic target for tackling free-radical damage. Dimethyl fumarate (DMF) is currently an approved drug for the treatment of relapsing multiple sclerosis. Recent studies showed that DMF modifies the reactive cysteines in the BTB domain of Keap1 and thus activates Nrf2 transcription function. Intriguingly, our crystal structure studies revealed that DMF also binds to the ß-propeller domain (Keap1-DC) of Keap1. The crystal structure of the complex, refined to 1.54 Å resolution, revealed unexpected features: DMF binds (a) to the Nrf2-binding site (bottom region of Keap1-DC, site 1) with moderate interaction, and (b) to the top region of Keap1-DC, near to the blade II (site 2). The specificity of the binding 'site 2' was found to be unique to blade II of the ß-propeller domain. The newly identified 'site 2' region in Keap1-DC may have a different functional role to regulate Nrf2. Moreover, the crystal structures of Keap1-DC in complex with the DMF analogs, including monoethyl fumarate, fumarate, and itaconate, also exhibited similar binding modes with Keap1-DC. Binding studies confirmed that DMF binds, in a nanomolar range, to the Keap1-DC region as well as the BTB domain of Keap1. Furthermore, the competitive binding assay in the presence of the Nrf2 peptide affirmed the direct binding of DMF at the Nrf2-binding region of Keap1-DC. Overall, our studies suggest that the drug molecule, DMF, binds at multiple sites of Keap1 and thus potentially activates Nrf2 function through covalent as well as the noncovalent mode of action, to combat oxidative stress. DATABASE: Structural data are available in RCSB-protein data bank database(s) under the accession numbers 6LRZ, 7C60, and 7C5E.


Assuntos
Fumarato de Dimetilo/química , Fumaratos/química , Proteína 1 Associada a ECH Semelhante a Kelch/química , Fator 2 Relacionado a NF-E2/química , Sequência de Aminoácidos , Elementos de Resposta Antioxidante , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Fumarato de Dimetilo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fumaratos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Modelos Moleculares , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
J Biomed Mater Res A ; 109(1): 6-17, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32418273

RESUMO

3D bioprinting is a promising new tissue restoration technique that enables the precise deposition of cells and growth factors in order to more closely mimic the structure and function of native organs. In this study, we report the development of a new bioink using oligo(poly[ethylene glycol] fumarate) (OPF), a photo-crosslinkable, and biodegradable polymer, for 3D bioprinting. In addition to OPF, a small portion of gelatin was also incorporated into the bioink to make it bio-printable. After immersion in the cell medium, gelatin was eluted away to create a bioprinted scaffold of pure OPF. Excellent cell viability, spreading, and long-term proliferation of encapsulated cells was observed using both bone and nerve cells as examples. These results demonstrate that OPF bioink has great potential in future 3D bioprinting applications that aim to replicate complex, layered tissues, and/or organs.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fumaratos/química , Regeneração Nervosa/efeitos dos fármacos , Polietilenoglicóis/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Células 3T3 , Animais , Bioimpressão , Osso e Ossos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Reagentes de Ligações Cruzadas , Gelatina , Hidrogéis , Camundongos , Tecido Nervoso/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Alicerces Teciduais
19.
Anal Chem ; 93(2): 1009-1015, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33290053

RESUMO

We describe a method for the analysis of organic acids, including those of the tricarboxylic acid cycle (TCA cycle), by mixed-mode reversed-phase chromatography, on a CSH Phenyl-Hexyl column, to accomplish mixed-mode anion-exchange separations, which results in increased retention for acids without the need for ion-pairing reagents or other mobile phase additives. The developed method exhibited good retention time reproducibility for over 650 injections or more than 5 days of continuous operation. Additionally, it showed excellent resolution of the critical pairs, isocitric acid and citric acid as well as malic acid and fumaric acid, among others. The use of hybrid organic-inorganic surface technology incorporated into the hardware of the column not only improved the mass spectral quality and subsequent database match scoring but also increased the recovery of the analytes, showing particular benefit for low concentrations of phosphorylated species. The method was applied to the comparative metabolomic analysis of urine samples from healthy controls and breast cancer positive subjects. Unsupervised PCA analysis showed distinct grouping of samples from healthy and diseased subjects, with excellent reproducibility of respective injection clusters. Finally, abundance plots of selected analytes from the tricarboxylic acid cycle revealed differences between healthy control and disease groups.


Assuntos
Líquidos Corporais/metabolismo , Ciclo do Ácido Cítrico , Ácido Cítrico/metabolismo , Fumaratos/metabolismo , Isocitratos/metabolismo , Malatos/metabolismo , Líquidos Corporais/química , Cromatografia Líquida de Alta Pressão , Ácido Cítrico/química , Ácido Cítrico/urina , Fumaratos/química , Fumaratos/urina , Humanos , Isocitratos/química , Isocitratos/urina , Malatos/química , Malatos/urina , Espectrometria de Massas , Estrutura Molecular
20.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287166

RESUMO

Tenofovir alafenamide (TAF) is a prodrug of tenofovir as a potent nucleotide reverse transcriptase inhibitor. It serves as the key component of Genvoya® for the first-line treatment of human immunodeficiency virus infection (HIV) and is the active component of Vemlidy® for the treatment of chronic hepatitis B. Vemlidy® is also a monotherapeutic regimen formulated as TAF hemifumarate (1; TAF:fumarate = 2:1). In this work, we report for the first time the single-crystal structure of TAF fumarate hemihydrate (2, TAF:fumarate:H2O = 2:2:1). Compound 2 is initially documented as a salt in which one proton of the fumaric acid migrates to the amine group of the adenine moiety in TAF. It was recently proposed that ca. 20-30% proton is transferred to the N atom on the aromatic adenine backbone. We herein provide definitive single-crystal X-ray diffraction results to confirm that 2, though phase pure, is formed as a mixture of co-crystal (75%) and salt (25%). It features two pairs of TAF fumarates, wherein one of the four H atoms on the fumaric acid is transferred to the N atom of the adjacent adenine moiety while the other three carboxylates remain in their intrinsic acid form. Compound 2 is a metastable phase during the preparation of 1 and can be isolated by halting the reaction during the refluxing of TAF and fumaric acid in acetonitrile (MeCN). Our report complements the previous characterizations of TAF monofumarate, and its elusive structural patterns are finally deciphered.


Assuntos
Fumaratos/química , Modelos Moleculares , Tenofovir/química , Fármacos Anti-HIV/química , Técnicas de Química Sintética , Cristalografia por Raios X , Conformação Molecular , Estrutura Molecular , Sais , Análise Espectral , Tenofovir/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...