Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 712
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 183: 114175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760120

RESUMO

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Assuntos
Furaldeído , Lactose , Reação de Maillard , Leite , Polissacarídeos , Pós , Lactose/química , Polissacarídeos/química , Leite/química , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Furaldeído/análogos & derivados , Furaldeído/química , beta-Galactosidase/metabolismo , beta-Ciclodextrinas/química , Hidrólise , Secagem por Atomização , Temperatura , Lisina/química , Lisina/análogos & derivados , Solubilidade , Espectrometria de Fluorescência , Proteínas do Leite/química , Manipulação de Alimentos/métodos
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473867

RESUMO

Nb-based catalysts supported on porous silica with different textural properties have been synthesized, characterized, and tested in the one-pot reaction of furfural to obtain valuable chemicals. The catalytic results reveal that the presence of fluoride in the synthesis, which limits the growing of the porous silica, limits diffusional problems of the porous silica, obtaining higher conversion values at shorter reaction times. On the other hand, the incorporation of NbOx species in the porous silica provides Lewis acid sites and a small proportion of Brönsted acid sites, in such a way that the main products are alkyl furfuryl ethers, which can be used as fuel additives.


Assuntos
Furaldeído , Nióbio , Furaldeído/química , Hidrogenação , Dióxido de Silício/química , Catálise
3.
J Nat Med ; 78(3): 799-802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38502471

RESUMO

Gentianae Radix, an herbal medicine, has been used as a gastrointestinal drug in Japan. In the Japanese Pharmacopoeia 18th Revision, the sublimation test is specified as an identification test for Gentianae Radix. The compound obtained in this sublimation test was believed to be gentisin, a xanthone family compound. However, the compound we identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and 1H- and 13C-NMR was 5-(hydroxymethyl)furfural (5-HMF). The same compound was found to be a sublimate of Gentianae Scabrae Radix and Gentianae Macrophyllae Radix, belonging to the same genus as Gentianae Radix. These results indicate the necessity to revise the identification test for Gentianae Radix to a more unique method.


Assuntos
Furaldeído , Gentiana , Furaldeído/análogos & derivados , Furaldeído/química , Gentiana/química , Japão , Espectrometria de Massas , Raízes de Plantas/química , Farmacopeias como Assunto , Espectroscopia de Ressonância Magnética , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , População do Leste Asiático
4.
Chemistry ; 30(21): e202400269, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38329391

RESUMO

Recently, catalytic valorization of biomass-derived furans has received growing interest. 5-Aminomethyl-2-furancarboxylic acid (AMFC), a furan amino acid, holds great promise in the aeras of polymer and pharmaceutical, but its synthesis remains limited. In this work, we report a chemobiocatalytic route toward AMFC by combining laccase-TEMPO system and recombinant Escherichia coli (named E. coli_TAF) harboring ω-transaminase (TA), L-alanine dehydrogenase (L-AlaDH) and formate dehydrogenase (FDH), starting from 5-hydroxymethylfurfural (HMF). In the cascade, HMF is oxidized into 5-formyl-2-furancarboxylic acid (FFCA) by laccase-TEMPO system, and then the resulting intermediate is converted into AMFC by E. coli_TAF via transamination with cheap ammonium formate instead of costly organic amine donors, theoretically generating H2O and CO2 as by-products. The tandem process was run in a one-pot twostep manner, affording AMFC with approximately 81 % yield, together with 10 % 2,5-furandicarboxylic acid (FDCA) as by-product. In addition, the scale-up production of AMFC was demonstrated, with 0.41 g/L h productivity and 8.6 g/L titer. This work may pave the way for green manufacturing of the furan-containing amino acid.


Assuntos
Escherichia coli , Furaldeído/análogos & derivados , Lacase , Escherichia coli/metabolismo , Lacase/química , Aminoácidos , Furanos/química , Furaldeído/química , Furaldeído/metabolismo , Ácidos Dicarboxílicos/química
5.
Bioresour Technol ; 394: 130301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211714

RESUMO

The purpose of this study is to design and investigate two coupling processes for acid-catalyzed hydrolysis of corncob, achieving the simultaneous preparation of biomass-based furfural and levulinic acid (LA). Meanwhile, high concentration and yield of LA were obtained through a situ feeding strategy of pretreated furfural residue with high solids loading (20%, w/v). In Scenario A, 2-methyltetrahydrofuran was selected as the solvent for the LA extraction process compared with the neutralization process in Scenario B. Techno-economic assessment results show that Scenario A is technically feasible and cost-competitive, with an internal rate of return of 21.92%, a net present value of 121 million US dollars, a carbon efficiency of 72%, an environmental factor of 4.38, and a process mass intensity of 32.19. This study will provide new insights for fully utilizing lignocellulosic biomass to prepare renewable energy resources, comprehensively evaluating the economic feasibility, and promoting green and low-carbon development.


Assuntos
Furaldeído , Zea mays , Furaldeído/química , Zea mays/química , Biomassa , Ácidos Levulínicos , Carbono
6.
Food Chem ; 442: 138421, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244443

RESUMO

A systematic kinetic study was conducted in subcritical water medium in the temperature range from 150 to 200 °C for pure glucose, xylose, proline and aspartic acid as well as binary mixtures of sugars + amino acids to understand the reaction kinetics and interactions among biomass components and to discern the influence of Maillard reaction (MR) on the overall reaction kinetics. The main degradation products identified for glucose and xylose were the respective dehydration products, hydroxymethyl furfural and furfural, yielding an increasing solid residue with temperature (15.9 wt% at 200 °C) with an augmented heating value. The degradation of sugars and amino acids in binary systems was faster compared to pure compounds due to MR and the production of dehydration products was delayed when considering total sugar conversion. Higher relative reactivity in MR was observed for xylose over glucose showing also higher antioxidant activity.


Assuntos
Aminoácidos , Xilose , Humanos , Xilose/química , Glucose/química , Açúcares , Ácido Aspártico/química , Prolina , Água/química , Furaldeído/química , Reação de Maillard , Desidratação , Cinética
7.
Food Chem ; 442: 138406, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38219571

RESUMO

The present study aimed to elucidate the pathway of pigment formation and identify the source of antioxidant activity during sugar smoking. Building upon previous research, this investigation replicated the sucrose cleavage process involved in sugar-smoking through model reactions to obtain distinct model reaction products. The products were analyzed using various techniques such as ultraviolet-visible spectrometry, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and high-performance liquid chromatography-tandem mass spectrometry. The findings revealed that the pyrolysis of sucrose at 330 °C yielded glucose and fructose, with fructose pyrolysis producing significantly more 5-HMF than glucose. Moreover, the antioxidant capacity of 5-HMF was found to make a substantial contribution. The primary source of 5-HMF was identified as fructose resulting from the cleavage of sucrose at 330 °C, while the primary pathway for the formation of the sugar-smoking pigment 5-GGMF was attributed to the intermolecular dehydration of 5-HMF and glucose at 150 °C.


Assuntos
Antioxidantes , Açúcares , Carboidratos/química , Glucose/química , Sacarose/química , Frutose/química , Fumar , Furaldeído/química
8.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069183

RESUMO

Modern biocatalysis requires fast, sensitive, and efficient high-throughput screening methods to screen enzyme libraries in order to seek out novel biocatalysts or enhanced variants for the production of chemicals. For instance, the synthesis of bio-based furan compounds like 2,5-diformylfuran (DFF) from 5-hydroxymethylfurfural (HMF) via aerobic oxidation is a crucial process in industrial chemistry. Laccases, known for their mild operating conditions, independence from cofactors, and versatility with various substrates, thanks to the use of chemical mediators, are appealing candidates for catalyzing HMF oxidation. Herein, Schiff-based polymers based on the coupling of DFF and 1,4-phenylenediamine (PPD) have been used in the set-up of a novel colorimetric assay for detecting the presence of DFF in different reaction mixtures. This method may be employed for the fast screening of enzymes (Z' values ranging from 0.68 to 0.72). The sensitivity of the method has been proved, and detection (8.4 µM) and quantification (25.5 µM) limits have been calculated. Notably, the assay displayed selectivity for DFF and enabled the measurement of kinetics in DFF production from HMF using three distinct laccase-mediator systems.


Assuntos
Furaldeído , Lacase , Lacase/metabolismo , Furaldeído/química , Oxirredução
9.
Bioresour Technol ; 387: 129637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37549711

RESUMO

The research on the efficient use of biomass to produce chemical products has received extensive attention. In this work, a novel heterogeneous biocarbon-based heterogeneous catalyst AT-Sn-YB was prepared using yellow bamboo (YB) as a carrier, and its physical properties were proved to be good by various characterization and stability experiments. In the γ-valerolactone/water (3:1, v/v) medium containing 100 mM CuCl2, the use of AT-Sn-YB (3.6 wt%) under 170 °C for 20 min was applied to catalyze YB into furfural (80.3% yield), accompanied with 2.8 g/L xylooligosaccharides. The YB solid residue obtained from treatment was efficiently saccharified to reducing sugars (17.2 g/L). Accordingly, comprehensive understanding of efficiently co-producing xylooligosaccharides, furfural and reducing sugars from YB was demonstrated via the pretreatment with biochar-based catalyst. This study innovatively used a new type of solid acid to complete the efficient co-production of chemical products, and realized the value-added utilization of yellow bamboo.


Assuntos
Furaldeído , Açúcares , Furaldeído/química , Catálise
10.
ChemSusChem ; 16(16): e202300516, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37067062

RESUMO

FtpM from Aspergillus fumigatus was the first carboxyl methyltransferase reported to catalyse the dimethylation of dicarboxylic acids. Here the creation of mutant R166M that can catalyse the quantitative conversion of bio-derived 2,5-furandicarboxylic acid (FDCA) to its dimethyl ester (FDME), a bioplastics precursor, was reported. Wild type FtpM gave low conversion due to its reduced catalytic efficiency for the second methylation step. An AlphaFold 2 model revealed a highly electropositive active site, due to the presence of 4 arginine residues, postulated to favour the binding of the dicarboxylic acid over the intermediate monoester. The R166M mutation improved both binding and turnover of the monoester to permit near quantitative conversion to the target dimethyl ester product. The mutant also had improved activity for other diacids and a range of monoacids. R166M was incorporated into 2 multienzyme cascades for the synthesis of the bioplastics precursor FDME from bioderived 5-hydroxymethylfurfural (HMF) as well as from poly(ethylene furanoate) (PEF) plastic, demonstrating the potential to recycle waste plastic.


Assuntos
Furanos , Metiltransferases , Furanos/química , Furaldeído/química , Ácidos Dicarboxílicos/química , Catálise , Plásticos
11.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108710

RESUMO

In this study, the high-loaded copper-containing catalysts modified with Fe and Al were successfully applied for the hydroconversion of furfural to furfuryl alcohol (FA) or 2-methylfuran (2-MF) in a batch reactor. The synthesized catalysts were studied using a set of characterization techniques to find the correlation between their activity and physicochemical properties. Fine Cu-containing particles distributed in an amorphous SiO2 matrix, which has a high surface area, provide the conversion of furfural to FA or 2-MF under exposure to high pressure of hydrogen. The modification of the mono-copper catalyst with Fe and Al increases its activity and selectivity in the target process. The reaction temperature strongly affects the selectivity of the formed products. At a H2 pressure of 5.0 MPa, the highest selectivity toward FA (98%) and 2-MF (76%) was achieved in the case of 35Cu13Fe1Al-SiO2 at the temperature of 100 °C and 250 °C, respectively.


Assuntos
Furaldeído , Dióxido de Silício , Furaldeído/química , Dióxido de Silício/química , Hidrogênio/química , Catálise , Temperatura
12.
Food Chem ; 419: 136067, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37015166

RESUMO

The coexistence of anthocyanin with the sugar degradation product 5-hydroxymethylfurfural (5-HMF) is inevitable during the processing and storage of anthocyanin-rich juices. It was determined from our study that lower concentrations of 5-HMF have little effect on the stability of Cyanidin-3-O-glucoside (C3G), and even cause a slight increase for a short period of time. As the concentration of 5-HMF increased, the retention of C3G decreased and the color of the solution changed from orange-red to purple-red. The reaction sites of 5-HMF and C3G in its hemiketal form were predicted by quantum chemical calculations in order to investigate the pathways of action of the two. The degradation mechanism of 5-HMF on anthocyanin was verified by Ultraviolet and Visible spectrophotometer and Ultra performance liquid chromatography-mass spectrometry. Therefore, this article provides further theoretical support for the study of the effect of furfural compounds, which are sugar degradation products, on the stability of anthocyanins.


Assuntos
Antocianinas , Furaldeído/análise , Furaldeído/química , Açúcares/química
13.
ACS Appl Mater Interfaces ; 15(10): 12855-12863, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36859767

RESUMO

The electroenzymatic valorization of biomass derivatives into valuable biochemicals has a promising outlook. However, bottlenecks including poor electron transfer between the electrode surface and oxidoreductase, inefficient regeneration of cofactors, and high cost of enzymes and electron mediators hindered the realistic applications of the technique. Herein, to address the above technical barriers, a novel bio-electrocatalytic system that integrates the electrochemical NADH regeneration and enzymatic reaction was constructed, using an orderly assembled composite bioelectrode consisting of an outer immobilized enzyme layer and a sandwiched redox mediator rhodium complex layer. The as-prepared composite bioelectrode was further applied for the highly selective hydrogenation of furfural into furfural alcohol. Results indicated that the enzyme activity was significantly improved, while the furfural valorization was promoted by effective interfacial electron transition and co-factor regeneration on the composite bioelectrode. Considerable high furfural conversion (96.4%) can be achieved accompanied by a furfural alcohol selectivity of 90.0% at -1.2 V (vs Ag/AgCl). The novel composite bioelectrode also showed good stability and reusability. Up to 85.1% of the original furfural alcohol selectivity can be preserved after 10 times of recycling. This work presents a promising green alternative for the valorization of furfural, which also shows great potential extending to the valorization of other biomass compounds.


Assuntos
Elétrons , Furaldeído , Furaldeído/química , Furaldeído/metabolismo , Furanos/química , Oxirredução
14.
Bioresour Technol ; 378: 128965, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36990332

RESUMO

2,5-Diformylfuran, which can be prepared via the oxidation of biobased HMF, has received considerable attention because of its potential applications in producing furan-based chemicals and functional materials, such as biofuels, polymers, fluorescent material, vitrimers, surfactants, antifungal agents and medicines. This work aimed to develop an efficient one-pot process for chemoenzymatic transformation of biobased substrate to 2,5-diformylfuran with deep eutectic solvent (DES) Betaine:Lactic acid ([BA][LA]) catalyst and oxidase biocatalyst in [BA][LA]-H2O. Using waste bread (50 g/L) and D-fructose (18.0 g/L) as feedstocks in [BA][LA]-H2O (15:85, vol/vol), the yields of HMF were 32.8% (15 min) and 91.6% (90 min) at 150 °C, respectively. These prepared HMF could be biologically oxidized to 2,5-diformylfuran by Escherichia coli pRSFDuet-GOase, achieving a productivity of 0.631 g 2,5-diformylfuran/(g fructose) and 0.323 g 2,5-diformylfuran/(g bread) after 6 h under the mild performance condition. This bioresourced intermediate 2,5-diformylfuran was effectively synthesized from biobased feedstock in an environmentally-friendly system.


Assuntos
Frutose , Furaldeído , Furaldeído/química , Catálise , Oxirredução
15.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768767

RESUMO

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.


Assuntos
Cobre , Furaldeído , Furaldeído/química , Hidrogenação , Cobre/química , Ácidos Levulínicos/química , Catálise
16.
ChemSusChem ; 16(1): e202201846, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36354122

RESUMO

5-Hydroxymethylfurfural (5-HMF) represents a well-known class of lignocellulosic biomass-derived platform molecules. With the presence of many reactive functional groups in the structure, this versatile building block could be valorized into many value-added products. Among well-established catalytic transformations in biorefinery, the reductive amination is of particular interest to provide valuable N-containing compounds. Specifically, the reductive amination of 5-HMF with ammonia (NH3 ) and molecular hydrogen (H2 ) offers a straightforward and sustainable access to primary furanic amines [i. e., 5-hydroxymethyl-2-furfuryl amine (HMFA) and 2,5-bis(aminomethyl)furan (BAMF)], which display far-reaching utilities in pharmaceutical, chemical, and polymer industries. In the presence of heterogeneous catalysts contanining monometals (Ni, Co, Ru, Pd, Pt, and Rh) or bimetals (Ni-Cu and Ni-Mn), this elegant pathway enables a high-yielding and chemoselective production of HMFA/BAMF compared to other synthetic routes. This Review aims to present an up-to-date highlight on the supported metal-catalyzed reductive amination of 5-HMF with elaborate studies on the role of metal, solid support, and reaction parameters. Besides, the recyclability/adaptability of catalysts as well as the reaction mechanism are also provided to give valuable insights into this potential 5-HMF valorization strategy.


Assuntos
Aminas , Furaldeído , Aminação , Aminas/química , Furaldeído/química , Catálise
17.
Bioresour Technol ; 369: 128424, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464000

RESUMO

To date, an efficient process for manufacturing valuable furan compounds from available renewable resources has gained great attention via a chemoenzymatic route. In this study, a sulfonated tin-loaded heterogeneous catalyst CLUST-Sn-LS using lobster shell as biobased carrier was prepared to convert corncob (75.0 g/L) into furfural (122.5 mM) at 170 °C for 30 min in methyl isobutyl ketone (MIBK)-H2O biphasic system (2:1, v/v). To improve furfurylamine yield, a novel recombinant E. coli TFTS harboring robust mutant Aspergillus terreus ω-transaminase [hydrophilic threonine (T) at position 130 was site-directed mutated to hydrophobic phenylalanine (F)] was constructed to transform 300-500 mM furfural into furfurylamine (90.1-93.6 % yield) at 30 °C and pH 7.5 in MIBK-H2O. Corncob was converted to furfurylamine in MIBK-H2O with a high productivity of 0.461 g furfurylamine/(g xylan). This constructed chemoenzymatic method coupling bio-based chemocatalyst CLUST-Sn-LS and mutant ω-transaminase biocatalyst in a biphasic system could efficiently convert lignocellulose into furfurylamine.


Assuntos
Furaldeído , Água , Animais , Furaldeído/química , Água/química , Nephropidae , Transaminases/genética , Biomassa , Escherichia coli , Furanos , Catálise
18.
Bioresour Technol ; 369: 128425, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470494

RESUMO

Furfurylamine is a key furan-based compound for manufacturing perfumes, fibers, additives, medicines and agrochemicals. It can be obtained by amination of furfural by ω-transaminase (AtAT) from Aspergillus terreus. In this work, site-directed mutant of amino acid residues [Threonine (T) at AT130 was mutated to Methionine (M) and Glutamic acid (E) at AT133 was mutated to Phenylalanine (F)] was used to change in the flexible region of AtAT. The transamination activity and thermostability were significantly improved. In ChCl:MA (30 wt%), furfural (500 mM) was efficiently transformed into furfurylamine (92% yield) with TMEF after 12 h. 101.3 mM of biomass-derived furfural and 129.7 mM of D-xylose-derived furfural were wholly converted into furfurylamine within 5 h, achieving the productivity of 0.465 g furfurylamine/(g xylan in corncob) and 0.302 g furfurylamine/(g D-xylose). This established chemoenzymatic conversion strategy by bridging chemocatalysis and biocatalysis could be utilized in the valorisation of renewable biomass to valuable furans.


Assuntos
Furaldeído , Transaminases , Furaldeído/química , Transaminases/genética , Biomassa , Xilose/metabolismo , Catálise , Furanos
19.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499226

RESUMO

Currently, the production of furan aldehydes from raw biomass suffers from low furfural yield and high energy consumption. In this study, a recyclable and practical method was explored for the preparation of furfural from corn stover by the one-pot reaction by acidic lithium bromide solution (ALBS) without pretreatment and enzymolysis. In the ALBS reaction, the furan aldehydes were generated by the degradation of lignocellulose; however, the products were unstable and were further dehydrated to form humins. So, dehydration reaction was inhibited in this study, and the high yield of furan aldehydes was obtained, in which 2.94 g/L of furfural and 2.78 g/L of 5-hydroxymethyl furfural (5-HMF) were generated with high solid loading (10 wt%), the presence of commercial catalyst ZSM-5 and co-solvent tetrahydrofuran (THF) at 140 °C for 200 min. Via this method, almost 100% of hemicellulose was transformed to furfural, and 40.71% of cellulose was transformed to 5-HMF, which was based on the theoretical yield of HMF (8.35 g) from glucose (29.30 g) produced from cellulose. After the reaction, the catalyst ZSM-5 was the main component in the solid residue and kept a suitable performance. THF azeotrope was easily separated from the slurry by evaporation. During the removal of THF, lignin was precipitated from the liquid phase and showed lower molecular weight and abundant active groups, which was a potential feedstock for producing valuable aromatics and polymers. Thus, in a one-pot reaction, the ideal yield of furan aldehydes from raw biomass was obtained on a lab scale, and the catalyst, THF, and LiBr were easily recycled, which provided an option to realize the economical production of sustainable furan aldehydes from raw biomass.


Assuntos
Aldeídos , Zea mays , Furaldeído/química , Ácidos , Celulose
20.
Nat Commun ; 13(1): 7154, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418289

RESUMO

In aqueous mediums, the chemical environment for catalytic reactions is not only comprised of water molecules but also of corresponding ionized species, i.e., hydronium ions, which can impact the mechanism and kinetics of a reaction. Here we show that in aqueous-phase hydrogenation of furfural on Pd/C, increasing the hydronium ion activities by five orders of magnitude (from pH 7 to pH 1.6) leads to an increase of less than one order of magnitude in the reaction rate. Instead of a proton-coupled electron transfer pathway, our results show that a Langmuir-Hinshelwood mechanism describes the rate-limiting hydrogen addition step, where hydrogen atom adsorbed on Pd is transferred to the carbonyl C atom of the reactant. As such, the strength of hydrogen binding on Pd, which decreases with increasing hydronium ion concentration (i.e., 2 kJ molH2-1 per unit pH), is a decisive factor in hydrogenation kinetics (rate constant +270%). In comparison, furfural adsorption on Pd is pH-independent, maintaining a tilted geometry that favors hydrogen attack at the carbonyl group over the furan ring.


Assuntos
Furaldeído , Paládio , Furaldeído/química , Hidrogenação , Paládio/química , Prótons , Hidrogênio , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...