Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2108760119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377797

RESUMO

Enhancers integrate transcription factor signaling pathways that drive cell fate specification in the developing brain. We paired enhancer labeling and single-cell RNA-sequencing (scRNA-seq) to delineate and distinguish specification of neuronal lineages in mouse medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE) at embryonic day (E)11.5. We show that scRNA-seq clustering using transcription factors improves resolution of regional and developmental populations, and that enhancer activities identify specific and overlapping GE-derived neuronal populations. First, we mapped the activities of seven evolutionarily conserved brain enhancers at single-cell resolution in vivo, finding that the selected enhancers had diverse activities in specific progenitor and neuronal populations across the GEs. We then applied enhancer-based labeling, scRNA-seq, and analysis of in situ hybridization data to distinguish transcriptionally distinct and spatially defined subtypes of MGE-derived GABAergic and cholinergic projection neurons and interneurons. Our results map developmental origins and specification paths underlying neurogenesis in the embryonic basal ganglia and showcase the power of scRNA-seq combined with enhancer-based labeling to resolve the complex paths of neuronal specification underlying mouse brain development.


Assuntos
Gânglios da Base , Neurônios Colinérgicos , Elementos Facilitadores Genéticos , Neurônios GABAérgicos , Neurogênese , Animais , Gânglios da Base/citologia , Gânglios da Base/embriologia , Linhagem da Célula/genética , Neurônios Colinérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Camundongos , Neurogênese/genética , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nature ; 599(7886): 645-649, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732888

RESUMO

The ability to suppress actions that lead to a negative outcome and explore alternative actions is necessary for optimal decision making. Although the basal ganglia have been implicated in these processes1-5, the circuit mechanisms underlying action selection and exploration remain unclear. Here, using a simple lateralized licking task, we show that indirect striatal projection neurons (iSPN) in the basal ganglia contribute to these processes through modulation of the superior colliculus (SC). Optogenetic activation of iSPNs suppresses contraversive licking and promotes ipsiversive licking. Activity in lateral superior colliculus (lSC), a region downstream of the basal ganglia, is necessary for task performance and predicts lick direction. Furthermore, iSPN activation suppresses ipsilateral lSC, but surprisingly excites contralateral lSC, explaining the emergence of ipsiversive licking. Optogenetic inactivation reveals inter-collicular competition whereby each hemisphere of the superior colliculus inhibits the other, thus allowing the indirect pathway to disinhibit the contralateral lSC and trigger licking. Finally, inactivating iSPNs impairs suppression of devalued but previously rewarded licking and reduces exploratory licking. Our results reveal that iSPNs engage the competitive interaction between lSC hemispheres to trigger a motor action and suggest a general circuit mechanism for exploration during action selection.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Comportamento Exploratório/fisiologia , Inibição Neural/fisiologia , Vias Neurais/fisiologia , Colículos Superiores/fisiologia , Animais , Comportamento Animal/fisiologia , Corpo Estriado/citologia , Tomada de Decisões , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Optogenética , Recompensa , Colículos Superiores/citologia
3.
Sci Rep ; 11(1): 21395, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725371

RESUMO

Recent studies have shown that temporal stability of the neuronal activity over time can be estimated by the structure of the spike-count autocorrelation of neuronal populations. This estimation, called the intrinsic timescale, has been computed for several cortical areas and can be used to propose a cortical hierarchy reflecting a scale of temporal receptive windows between areas. In this study, we performed an autocorrelation analysis on neuronal populations of three basal ganglia (BG) nuclei, including the striatum and the subthalamic nucleus (STN), the input structures of the BG, and the external globus pallidus (GPe). The analysis was performed during the baseline period of a motivational visuomotor task in which monkeys had to apply different amounts of force to receive different amounts of reward. We found that the striatum and the STN have longer intrinsic timescales than the GPe. Moreover, our results allow for the placement of these subcortical structures within the already-defined scale of cortical temporal receptive windows. Estimates of intrinsic timescales are important in adding further constraints in the development of computational models of the complex dynamics among these nuclei and throughout cortico-BG-thalamo-cortical loops.


Assuntos
Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Rede Nervosa/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Gânglios da Base/citologia , Cognição , Corpo Estriado/citologia , Globo Pálido/citologia , Globo Pálido/fisiologia , Macaca mulatta , Masculino , Rede Nervosa/citologia , Núcleo Subtalâmico/citologia , Fatores de Tempo
4.
Nature ; 598(7879): 188-194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616074

RESUMO

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Assuntos
Gânglios da Base/citologia , Córtex Cerebral/citologia , Vias Neurais , Neurônios/citologia , Tálamo/citologia , Animais , Gânglios da Base/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tálamo/anatomia & histologia
5.
Nature ; 599(7886): 635-639, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34671166

RESUMO

Musical and athletic skills are learned and maintained through intensive practice to enable precise and reliable performance for an audience. Consequently, understanding such complex behaviours requires insight into how the brain functions during both practice and performance. Male zebra finches learn to produce courtship songs that are more varied when alone and more stereotyped in the presence of females1. These differences are thought to reflect song practice and performance, respectively2,3, providing a useful system in which to explore how neurons encode and regulate motor variability in these two states. Here we show that calcium signals in ensembles of spiny neurons (SNs) in the basal ganglia are highly variable relative to their cortical afferents during song practice. By contrast, SN calcium signals are strongly suppressed during female-directed performance, and optogenetically suppressing SNs during practice strongly reduces vocal variability. Unsupervised learning methods4,5 show that specific SN activity patterns map onto distinct song practice variants. Finally, we establish that noradrenergic signalling reduces vocal variability by directly suppressing SN activity. Thus, SN ensembles encode and drive vocal exploration during practice, and the noradrenergic suppression of SN activity promotes stereotyped and precise song performance for an audience.


Assuntos
Tentilhões/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Vocalização Animal/fisiologia , Neurônios Adrenérgicos/metabolismo , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Sinalização do Cálcio , Feminino , Masculino , Modelos Neurológicos
6.
Elife ; 102021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128468

RESUMO

Human reproduction is controlled by ~2000 hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Here, we report the discovery and characterization of additional ~150,000-200,000 GnRH-synthesizing cells in the human basal ganglia and basal forebrain. Nearly all extrahypothalamic GnRH neurons expressed the cholinergic marker enzyme choline acetyltransferase. Similarly, hypothalamic GnRH neurons were also cholinergic both in embryonic and adult human brains. Whole-transcriptome analysis of cholinergic interneurons and medium spiny projection neurons laser-microdissected from the human putamen showed selective expression of GNRH1 and GNRHR1 autoreceptors in the cholinergic cell population and uncovered the detailed transcriptome profile and molecular connectome of these two cell types. Higher-order non-reproductive functions regulated by GnRH under physiological conditions in the human basal ganglia and basal forebrain require clarification. The role and changes of GnRH/GnRHR1 signaling in neurodegenerative disorders affecting cholinergic neurocircuitries, including Parkinson's and Alzheimer's diseases, need to be explored.


Assuntos
Gânglios da Base , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios , Adulto , Prosencéfalo Basal/citologia , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiologia , Células Cultivadas , Colina O-Acetiltransferase , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Putamen/citologia , Transcriptoma
7.
Curr Biol ; 31(12): 2619-2632.e4, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974850

RESUMO

Cortical-basal ganglia (CBG) circuits are critical for motor learning and performance, and are a major site of pathology. In songbirds, a CBG circuit regulates moment-by-moment variability in song and also enables song plasticity. Studies have shown that variable burst firing in LMAN, the output nucleus of this CBG circuit, actively drives acute song variability, but whether and how LMAN drives long-lasting changes in song remains unclear. Here, we ask whether chronic pharmacological augmentation of LMAN bursting is sufficient to drive plasticity in birds singing stereotyped songs. We show that altered LMAN activity drives cumulative changes in acoustic structure, timing, and sequencing over multiple days, and induces repetitions and silent pauses reminiscent of human stuttering. Changes persisted when LMAN was subsequently inactivated, indicating plasticity in song motor regions. Following cessation of pharmacological treatment, acoustic features and song sequence gradually recovered to their baseline values over a period of days to weeks. Together, our findings show that augmented bursting in CBG circuitry drives plasticity in well-learned motor skills, and may inform treatments for basal ganglia movement disorders.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Tentilhões/fisiologia , Plasticidade Neuronal/fisiologia , Vocalização Animal/fisiologia , Animais , Gânglios da Base/citologia , Córtex Cerebral/citologia , Aprendizagem , Masculino
8.
Neuron ; 109(10): 1721-1738.e4, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33823137

RESUMO

Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.


Assuntos
Gânglios da Base/citologia , Tronco Encefálico/citologia , Diencéfalo/citologia , Neurônios/fisiologia , Animais , Gânglios da Base/fisiologia , Tronco Encefálico/fisiologia , Diencéfalo/fisiologia , Potenciais Evocados , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia
9.
Nat Neurosci ; 23(11): 1388-1398, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989293

RESUMO

In the basal ganglia (BG), anatomically segregated and topographically organized feedforward circuits are thought to modulate multiple behaviors in parallel. Although topographically arranged BG circuits have been described, the extent to which these relationships are maintained across the BG output nuclei and in downstream targets is unclear. Here, using focal trans-synaptic anterograde tracing, we show that the motor-action-related topographical organization of the striatum is preserved in all BG output nuclei. The topography is also maintained downstream of the BG and in multiple parallel closed loops that provide striatal input. Furthermore, focal activation of two distinct striatal regions induces either licking or turning, consistent with their respective anatomical targets of projection outside of the BG. Our results confirm the parallel model of BG function and suggest that the integration and competition of information relating to different behavior occur largely outside of the BG.


Assuntos
Gânglios da Base/citologia , Gânglios da Base/fisiologia , Comportamento Animal/fisiologia , Neurônios/fisiologia , Animais , Córtex Cerebral/fisiologia , Feminino , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Parte Reticular da Substância Negra/citologia , Parte Reticular da Substância Negra/fisiologia , Colículos Superiores/citologia , Colículos Superiores/fisiologia , Núcleos Ventrais do Tálamo/citologia , Núcleos Ventrais do Tálamo/fisiologia
10.
Sci Data ; 7(1): 211, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632099

RESUMO

Quantitative measurements and descriptive statistics of different cellular elements in the brain are typically published in journal articles as text, tables, and example figures, and represent an important basis for the creation of biologically constrained computational models, design of intervention studies, and comparison of subject groups. Such data can be challenging to extract from publications and difficult to normalise and compare across studies, and few studies have so far attempted to integrate quantitative information available in journal articles. We here present a database of quantitative information about cellular parameters in the frequently studied murine basal ganglia. The database holds a curated and normalised selection of currently available data collected from the literature and public repositories, providing the most comprehensive collection of quantitative neuroanatomical data from the basal ganglia to date. The database is shared as a downloadable resource from the EBRAINS Knowledge Graph (https://kg.ebrains.eu), together with a workflow that allows interested researchers to update and expand the database with data from future reports.


Assuntos
Gânglios da Base/citologia , Bases de Dados Factuais , Animais , Camundongos
11.
Elife ; 92020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32463361

RESUMO

Mutations in TUBB4A result in a spectrum of leukodystrophy including Hypomyelination with Atrophy of Basal Ganglia and Cerebellum (H-ABC), a rare hypomyelinating leukodystrophy, often associated with a recurring variant p.Asp249Asn (D249N). We have developed a novel knock-in mouse model harboring heterozygous (Tubb4aD249N/+) and the homozygous (Tubb4aD249N/D249N) mutation that recapitulate the progressive motor dysfunction with tremor, dystonia and ataxia seen in H-ABC. Tubb4aD249N/D249N mice have myelination deficits along with dramatic decrease in mature oligodendrocytes and their progenitor cells. Additionally, a significant loss occurs in the cerebellar granular neurons and striatal neurons in Tubb4aD249N/D249N mice. In vitro studies show decreased survival and dysfunction in microtubule dynamics in neurons from Tubb4aD249N/D249N mice. Thus Tubb4aD249N/D249N mice demonstrate the complex cellular physiology of H-ABC, likely due to independent effects on oligodendrocytes, striatal neurons, and cerebellar granule cells in the context of altered microtubule dynamics, with profound neurodevelopmental deficits.


Inside human and other animal cells, filaments known as microtubules help support the shape of the cell and move proteins to where they need to be. Defects in microtubules may lead to disease. For example, genetic mutations affecting a microtubule component called TUBB4A cause a rare brain disease in humans known as H-ABC. Individuals with H-ABC display many symptoms including abnormal walking, speech defects, impaired swallowing, and several cognitive defects. Abnormalities in several areas of the brain, including the cerebellum and striatum contribute to these defects. . In these structures, the neurons that carry messages around the brain and their supporting cells, known as oligodendrocytes, die, which causes these parts of the brain to gradually waste away. At this time, there are no therapies available to treat H-ABC. Furthermore, research into the disease has been hampered by the lack of a suitable "model" in mice or other laboratory animals. To address this issue, Sase, Almad et al. generated mice carrying a mutation in a gene which codes for the mouse equivalent of the human protein TUBB4A. Experiments showed that the mutant mice had similar physical symptoms to humans with H-ABC, including an abnormal walking gait, poor coordination and involuntary movements such as twitching and reduced reflexes. H-ABC mice had smaller cerebellums than normal mice, which was consistent with the wasting away of the cerebellum observed in individuals with H-ABC. The mice also lost neurons in the striatum and cerebellum, and oligodendrocytes in the brain and spinal cord. Furthermore, the mutant TUBB4A protein affected the behavior and formation of microtubules in H-ABC mice. The findings of Sase, Almad et al. provide the first mouse model that shares many features of H-ABC disease in humans. This model provides a useful tool to study the disease and develop potential new therapies.


Assuntos
Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Neurônios/patologia , Oligodendroglia/patologia , Tubulina (Proteína)/genética , Animais , Gânglios da Base/citologia , Gânglios da Base/patologia , Cerebelo/citologia , Cerebelo/patologia , Técnicas de Introdução de Genes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Neurônios/metabolismo , Oligodendroglia/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(13): 7418-7429, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170006

RESUMO

The striatal complex of basal ganglia comprises two functionally distinct districts. The dorsal district controls motor and cognitive functions. The ventral district regulates the limbic function of motivation, reward, and emotion. The dorsoventral parcellation of the striatum also is of clinical importance as differential striatal pathophysiologies occur in Huntington's disease, Parkinson's disease, and drug addiction disorders. Despite these striking neurobiologic contrasts, it is largely unknown how the dorsal and ventral divisions of the striatum are set up. Here, we demonstrate that interactions between the two key transcription factors Nolz-1 and Dlx1/2 control the migratory paths of striatal neurons to the dorsal or ventral striatum. Moreover, these same transcription factors control the cell identity of striatal projection neurons in both the dorsal and the ventral striata including the D1-direct and D2-indirect pathways. We show that Nolz-1, through the I12b enhancer, represses Dlx1/2, allowing normal migration of striatal neurons to dorsal and ventral locations. We demonstrate that deletion, up-regulation, and down-regulation of Nolz-1 and Dlx1/2 can produce a striatal phenotype characterized by a withered dorsal striatum and an enlarged ventral striatum and that we can rescue this phenotype by manipulating the interactions between Nolz-1 and Dlx1/2 transcription factors. Our study indicates that the two-tier system of striatal complex is built by coupling of cell-type identity and migration and suggests that the fundamental basis for divisions of the striatum known to be differentially vulnerable at maturity is already encoded by the time embryonic striatal neurons begin their migrations into developing striata.


Assuntos
Gânglios da Base/citologia , Corpo Estriado/citologia , Estriado Ventral/citologia , Animais , Gânglios da Base/metabolismo , Diferenciação Celular , Corpo Estriado/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estriado Ventral/metabolismo
13.
Artif Intell Med ; 101: 101740, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31813493

RESUMO

BACKGROUND: Any ailment in our organs can be visualized by using different modality signals and images. Hospitals are encountering a massive influx of large multimodality patient data to be analysed accurately and with context understanding. The deep learning techniques, like convolution neural networks (CNN), long short-term memory (LSTM), autoencoders, deep generative models and deep belief networks have already been applied to efficiently analyse possible large collections of data. Application of these methods to medical signals and images can aid the clinicians in clinical decision making. PURPOSE: The aim of this study was to explore its potential application mechanism to the abalone basal ganglia neurons in rats based on deep learning. PATIENTS AND METHODS: Firstly, in the GEO database, we obtained data on rat anesthesia, performing differential analysis, co-expression analysis, and enrichment analysis, and then we received the relevant module genes. Besides, the potential regulation of multi-factors on the module was calculated by hypergeometric test, and a series of ncRNA and TF were identified. Finally, we screened the target genes of anesthetized rats to gain insight into the potential role of anesthesia in rat basal lateral nucleus neurons. RESULTS: A total of 535 differentially expressed genes in rats were obtained, involving Mafb and Ryr2. These genes are clustered into 17 anesthesia-related expression disorder modules. At the same time, the biological processes favored by the module are regulation of neuron apoptotic process and transforming growth factor beta2 production. Pivot analysis found that 39 ncRNAs and 4 TFs drive anesthesia-related disorders. Finally, the mechanism of action was analyzed and predicted. The module was regulated by Acvr1. We believe that miR-384-5p in anesthetized rats can activate the TGF-beta signaling pathway. Further, it promotes anesthesia and causes exposure to the basal ganglia neuron damage of the amygdala. CONCLUSION: In this study, the imbalance module was used to explore the multi-factor-mediated anesthesia application mechanism, which provided new methods and ideas for subsequent research. The results suggest that miR-384-5p can promote anesthesia damage to the abalone basal ganglia neurons in rats through a variety of biological processes and signaling pathways. This result lays a solid theoretical foundation for biologists to explore the application mechanism of anesthesiology further.


Assuntos
Gânglios da Base/metabolismo , Aprendizado Profundo , MicroRNAs/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Gânglios da Base/citologia , Neurônios/citologia , Ratos
14.
Sci Rep ; 9(1): 17288, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754123

RESUMO

Idiopathic basal ganglia calcification (IBGC) is a rare intractable disease characterized by abnormal mineral deposits, including mostly calcium in the basal ganglia, thalamus, and cerebellum. SLC20A2 is encoding the phosphate transporter PiT-2 and was identified in 2012 as the causative gene of familial IBGC. In this study, we investigated functionally two novel SLC20A2 variants (c.680C > T, c.1487G > A) and two SLC20A2 variants (c.82G > A, c.358G > C) previously reported from patients with IBGC. We evaluated the function of variant PiT-2 using stable cell lines. While inorganic phosphate (Pi) transport activity was abolished in the cells with c.82G > A, c.358G > C, and c.1487G > A variants, activity was maintained at 27.8% of the reference level in cells with the c.680C > T variant. Surprisingly, the c.680C > T variant had been discovered by chance in healthy members of an IBGC family, suggesting that partial preservation of Pi transport activity may avoid the onset of IBGC. In addition, we confirmed that PiT-2 variants could be translocated into the cell membrane to the same extent as PiT-2 wild type. In conclusion, we investigated the PiT-2 dysfunction of four SLC20A2 variants and suggested that a partial reduced Pi transport function of PiT-2 might not be sufficient to induce brain calcification of IBGC.


Assuntos
Doenças dos Gânglios da Base/genética , Gânglios da Base/patologia , Calcinose/genética , Doenças Neurodegenerativas/genética , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/deficiência , Adulto , Idoso de 80 Anos ou mais , Gânglios da Base/citologia , Doenças dos Gânglios da Base/patologia , Calcinose/patologia , Membrana Celular/metabolismo , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Neurodegenerativas/patologia , Linhagem , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética
15.
Neurochem Int ; 125: 67-73, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710558

RESUMO

The neostriatum has a mosaic organization consisting of striosome and matrix compartments. It receives glutamatergic excitatory afferents from the cerebral cortex and thalamus. Recent behavioral studies in rats revealed a selectively active medial prefronto-striosomal circuit during cost-benefit decision-making. However, clarifying the input/output organization of striatal compartments has been difficult because of its complex structure. We recently demonstrated that the source of thalamostriatal projections are highly organized in striatal compartments. This finding indicated that the functional properties of striatal compartments are influenced by their cortical and thalamic afferents, presumably with different time latencies. In addition, these afferents likely support the unique dynamics of striosome and matrix compartments. In this manuscript, we review the anatomy of basal ganglia networks with regard to striosome/matrix structure. We place specific focus on thalamostriatal projections at the population and single neuron level.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Gânglios da Base/citologia , Córtex Cerebral/citologia , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Humanos , Rede Nervosa/citologia , Neurônios/citologia , Tálamo/citologia
16.
Mol Metab ; 20: 178-193, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528281

RESUMO

OBJECTIVE: The supramammillary nucleus (SuM) is nestled between the lateral hypothalamus (LH) and the ventral tegmental area (VTA). This neuroanatomical position is consistent with a potential role of this nucleus to regulate ingestive and motivated behavior. Here neuroanatomical, molecular, and behavior approaches are utilized to determine whether SuM contributes to ingestive and food-motivated behavior control. METHODS: Through the application of anterograde and retrograde neural tract tracing with novel designer viral vectors, the current findings show that SuM neurons densely innervate the LH in a sex dimorphic fashion. Glucagon-like peptide-1 (GLP-1) is a clinically targeted neuro-intestinal hormone with a well-established role in regulating energy balance and reward behaviors. Here we determine that GLP-1 receptors (GLP-1R) are expressed throughout the SuM of both sexes, and also directly on SuM LH-projecting neurons and investigate the role of SuM GLP-1R in the regulation of ingestive and motivated behavior in male and female rats. RESULTS: SuM microinjections of the GLP-1 analogue, exendin-4, reduced ad libitum intake of chow, fat, or sugar solution in both male and female rats, while food-motivated behaviors, measured using the sucrose motivated operant conditioning test, was only reduced in male rats. These data contrasted with the results obtained from a neighboring structure well known for its role in motivation and reward, the VTA, where females displayed a more potent response to GLP-1R activation by exendin-4. In order to determine the physiological role of SuM GLP-1R signaling regulation of energy balance, we utilized an adeno-associated viral vector to site-specifically deliver shRNA for the GLP-1R to the SuM. Surprisingly, and in contrast to previous results for the two SuM neighboring sites, LH and VTA, SuM GLP-1R knockdown increased food seeking and adiposity in obese male rats without altering food intake, body weight or food motivation in lean or obese, female or male rats. CONCLUSION: Taken together, these results indicate that SuM potently contributes to ingestive and motivated behavior control; an effect contingent on sex, diet/homeostatic energy balance state and behavior of interest. These data also extend the map of brain sites directly responsive to GLP-1 agonists, and highlight key differences in the role that GLP-1R play in interconnected and neighboring nuclei.


Assuntos
Gânglios da Base/metabolismo , Ingestão de Alimentos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipotálamo/metabolismo , Motivação , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Condicionamento Operante , Metabolismo Energético , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
17.
Elife ; 72018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30566076

RESUMO

Dopamine neurotransmission is suspected to play important physiological roles in multiple sparsely innervated brain nuclei, but there has not been a means to measure synaptic dopamine release in such regions. The globus pallidus externa (GPe) is a major locus in the basal ganglia that displays a sparse innervation of en passant dopamine axonal fibers. Due to the low levels of innervation that preclude electrochemical analysis, it is unknown if these axons engage in neurotransmission. To address this, we introduce an optical approach using a pH-sensitive fluorescent false neurotransmitter, FFN102, that exhibits increased fluorescence upon exocytosis from the acidic synaptic vesicle to the neutral extracellular milieu. In marked contrast to the striatum, FFN102 transients in the mouse GPe were spatially heterogeneous and smaller than in striatum with the exception of sparse hot spots. GPe transients were also significantly enhanced by high frequency stimulation. Our results support hot spots of dopamine release from substantia nigra axons.


Assuntos
Axônios/fisiologia , Dopamina/metabolismo , Globo Pálido/fisiologia , Neurotransmissores/metabolismo , Transmissão Sináptica/fisiologia , Animais , Axônios/metabolismo , Gânglios da Base/citologia , Gânglios da Base/metabolismo , Gânglios da Base/fisiologia , Feminino , Globo Pálido/citologia , Globo Pálido/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Substância Negra/citologia , Substância Negra/metabolismo , Substância Negra/fisiologia , Transmissão Sináptica/genética
18.
Nature ; 563(7729): 79-84, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30382200

RESUMO

Activity in the motor cortex predicts movements, seconds before they are initiated. This preparatory activity has been observed across cortical layers, including in descending pyramidal tract neurons in layer 5. A key question is how preparatory activity is maintained without causing movement, and is ultimately converted to a motor command to trigger appropriate movements. Here, using single-cell transcriptional profiling and axonal reconstructions, we identify two types of pyramidal tract neuron. Both types project to several targets in the basal ganglia and brainstem. One type projects to thalamic regions that connect back to motor cortex; populations of these neurons produced early preparatory activity that persisted until the movement was initiated. The second type projects to motor centres in the medulla and mainly produced late preparatory activity and motor commands. These results indicate that two types of motor cortex output neurons have specialized roles in motor control.


Assuntos
Vias Eferentes/citologia , Vias Eferentes/fisiologia , Córtex Motor/citologia , Córtex Motor/fisiologia , Movimento/fisiologia , Animais , Gânglios da Base/citologia , Tronco Encefálico/citologia , Ácido Glutâmico/metabolismo , Bulbo/citologia , Camundongos , Neurônios/metabolismo , Células Piramidais/classificação , Células Piramidais/fisiologia , Análise de Célula Única , Transcriptoma
19.
J Mol Histol ; 49(6): 615-630, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30306356

RESUMO

The claustrum is a subcortical nucleus found in the telencephalon of all placental mammals. It is a symmetrical, thin and irregular sheet of grey matter which lies between the inner surface of the insular cortex and the outer surface of the putamen. The claustrum has extensive connections with the visual, auditory, somatosensory and motor regions of the cortex, as well as with subcortical and allocortical regions. The aim of this study was to provide a detailed description of the morphology of different types of Golgi-impregnated and gold-toned neurons and fibers in the dorsal claustrum of the cat employing the combined Golgi-electron microscope Fairén method. We were able to distinguish two major types of neurons: those with dendritic spines (spiny) and those without dendritic spines (aspiny). In both groups we observed large (21-40 µm in diameter), medium-sized (16-21 µm in diameter) and small cells (10-16 µm in diameter), describing their ultrastructural organization and characteristic features, including the presence of terminal boutons. These ultrastructural findings allow us to conclude that large and medium-sized spiny claustral neurons are indeed efferent neurons, projecting to the cortex, while the small spiny and the different types of aspiny neurons are most likely inhibitory local circuit interneurons. The findings in the present study will hopefully contribute to a better understanding of the role of the claustrum.


Assuntos
Gânglios da Base/fisiologia , Complexo de Golgi , Microscopia Eletrônica/métodos , Neurônios/ultraestrutura , Animais , Gânglios da Base/citologia , Gatos , Tamanho Celular , Espinhas Dendríticas , Terminações Pré-Sinápticas
20.
J Neurophysiol ; 120(5): 2679-2693, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30207859

RESUMO

The changes in firing probability produced by a synaptic input are usually visualized using the poststimulus time histogram (PSTH). It would be useful if postsynaptic firing patterns could be predicted from patterns of afferent synaptic activation, but attempts to predict the PSTH from synaptic potential waveforms using reasoning based on voltage trajectory and spike threshold have not been successful, especially for inhibitory inputs. We measured PSTHs for substantia nigra pars reticulata (SNr) neurons inhibited by optogenetic stimulation of striato-nigral inputs or by matching artificial inhibitory conductances applied by dynamic clamp. The PSTH was predicted by a model based on each SNr cell's phase-resetting curve (PRC). Optogenetic activation of striato-nigral input or artificial synaptic inhibition produced a PSTH consisting of an initial depression of firing followed by oscillatory increases and decreases repeating at the SNr cell's baseline firing rate. The phase resetting model produced PSTHs closely resembling the cell data, including the primary pause in firing and the oscillation. Key features of the PSTH, including the onset rate and duration of the initial inhibitory phase, and the subsequent increase in firing probability could be explained from the characteristic shape of the SNr cell's PRC. The rate of damping of the late oscillation was explained by the influence of asynchronous phase perturbations producing firing rate jitter and wander. Our results demonstrate the utility of phase-resetting models as a general method for predicting firing in spontaneously active neurons and their value in interpretation of the striato-nigral PSTH. NEW & NOTEWORTHY The coupling of patterned presynaptic input to sequences of postsynaptic firing is a Gordian knot, complicated by the multidimensionality of neuronal state and the diversity of potential initial states. Even so, it is fundamental for even the simplest understanding of network dynamics. We show that a simple phase-resetting model constructed from experimental measurements can explain and predict the sequence of spike rate changes following synaptic inhibition of an oscillating basal ganglia output neuron.


Assuntos
Inibição Neural , Parte Reticular da Substância Negra/fisiologia , Potenciais Sinápticos , Animais , Gânglios da Base/citologia , Gânglios da Base/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Optogenética , Parte Reticular da Substância Negra/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...