Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Eur J Immunol ; 52(2): 285-296, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34694641

RESUMO

The upregulation of interferon (IFN)-inducible GTPases in response to pathogenic insults is vital to host defense against many bacterial, fungal, and viral pathogens. Several IFN-inducible GTPases play key roles in mediating inflammasome activation and providing host protection after bacterial or fungal infections, though their role in inflammasome activation after viral infection is less clear. Among the IFN-inducible GTPases, the expression of immunity-related GTPases (IRGs) varies widely across species for unknown reasons. Here, we report that IRGB10, but not IRGM1, IRGM2, or IRGM3, is required for NLRP3 inflammasome activation in response to influenza A virus (IAV) infection in mice. While IRGB10 functions to release inflammasome ligands in the context of bacterial and fungal infections, we found that IRGB10 facilitates endosomal maturation and nuclear translocation of IAV, thereby regulating viral replication. Corresponding with our in vitro results, we found that Irgb10-/- mice were more resistant to IAV-induced mortality than WT mice. The results of our study demonstrate a detrimental role of IRGB10 in host immunity in response to IAV and a novel function of IRGB10, but not IRGMs, in promoting viral translocation into the nucleus.


Assuntos
GTP Fosfo-Hidrolases/imunologia , Inflamassomos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/imunologia , Replicação Viral/imunologia , Animais , GTP Fosfo-Hidrolases/genética , Inflamassomos/genética , Camundongos , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Replicação Viral/genética
2.
J Hematol Oncol ; 14(1): 171, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663417

RESUMO

GTPase-activating protein (GAP) is a negative regulator of GTPase protein that is thought to promote the conversion of the active GTPase-GTP form to the GTPase-GDP form. Based on its ability to regulate GTPase proteins and other domains, GAPs are directly or indirectly involved in various cell requirement processes. We reviewed the existing evidence of GAPs regulating regulated cell death (RCD), mainly apoptosis and autophagy, as well as some novel RCDs, with particular attention to their association in diseases, especially cancer. We also considered that GAPs could affect tumor immunity and attempted to link GAPs, RCD and tumor immunity. A deeper understanding of the GAPs for regulating these processes could lead to the discovery of new therapeutic targets to avoid pathologic cell loss or to mediate cancer cell death.


Assuntos
Proteínas Ativadoras de GTPase/imunologia , Neoplasias/imunologia , Morte Celular Regulada , Animais , GTP Fosfo-Hidrolases/imunologia , Guanosina Trifosfato/imunologia , Humanos , Neoplasias/patologia
3.
Aging (Albany NY) ; 13(18): 21962-21974, 2021 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-34537761

RESUMO

Dulaglutide, a glucagon-like peptide-1 receptor (GLP-1R) agonist, is widely used to treat diabetes. However, its effects on muscle wasting due to aging are poorly understood. In the current study, we investigated the therapeutic potential and underlying mechanism of dulaglutide in muscle wasting in aged mice. Dulaglutide improved muscle mass and strength in aged mice. Histological analysis revealed that the cross-sectional area of the tibialis anterior (TA) in the dulaglutide-treated group was thicker than that in the vehicle group. Moreover, dulaglutide increased the shift toward middle and large-sized fibers in both young and aged mice compared to the vehicle. Dulaglutide increased myofiber type I and type IIa in young (18.5% and 8.2%) and aged (1.8% and 19.7%) mice, respectively, compared to the vehicle group. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), a master regulator of mitochondrial biogenesis, decreased but increased by dulaglutide in aged mice. The expression of atrophic factors such as myostatin, atrogin-1, and muscle RING-finger protein-1 was decreased in aged mice, whereas that of the myogenic factor, MyoD, was increased in both young and aged mice following dulaglutide treatment. In aged mice, optic atrophy-1 (OPA-1) protein was decreased, whereas Toll-like receptor-9 (TLR-9) and its targeting inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-α [TNF-α]) were elevated in the TA and quadriceps (QD) muscles. In contrast, dulaglutide administration reversed this expression pattern, thereby significantly attenuating the expression of inflammatory cytokines in aged mice. These data suggest that dulaglutide may exert beneficial effects in the treatment of muscle wasting due to aging.


Assuntos
Envelhecimento/metabolismo , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Músculo Esquelético/fisiopatologia , Proteínas Recombinantes de Fusão/administração & dosagem , Sarcopenia/tratamento farmacológico , Sarcopenia/imunologia , Receptor Toll-Like 9/imunologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/genética , Animais , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Humanos , Hipoglicemiantes/administração & dosagem , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/imunologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/imunologia , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/imunologia , Sarcopenia/etiologia , Sarcopenia/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Future Microbiol ; 16: 721-729, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34223787

RESUMO

Aim: This study aims to develop a subunit vaccine with high cross-protection for Streptococcus suis. Materials & methods: Four-week-old female BALB/c mice were first immunized with a single and mixed protein. Various indicators, such as antibody titers and various cytokine levels, were further analyzed. Results: The results showed that purified recombinant proteins IF-2 and 1022 had a good protective effect against lethal doses of S. suis serotype 2 and S. suis serotype 9. This study showed immunization with recombinant proteins. Conclusion: IF-2 and 1022 can enhance cross-protection against S. suis serotypes 2 and 9.


Assuntos
Vacinas Bacterianas/imunologia , GTP Fosfo-Hidrolases , Streptococcus suis , Vacinas de Subunidades Antigênicas , Animais , Proteção Cruzada , Feminino , GTP Fosfo-Hidrolases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Vacinas de Subunidades Antigênicas/imunologia
5.
Biochem Soc Trans ; 49(3): 1287-1297, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34003245

RESUMO

Interferon (IFN)-induced guanosine triphosphate hydrolysing enzymes (GTPases) have been identified as cornerstones of IFN-mediated cell-autonomous defence. Upon IFN stimulation, these GTPases are highly expressed in various host cells, where they orchestrate anti-microbial activities against a diverse range of pathogens such as bacteria, protozoan and viruses. IFN-induced GTPases have been shown to interact with various host pathways and proteins mediating pathogen control via inflammasome activation, destabilising pathogen compartments and membranes, orchestrating destruction via autophagy and the production of reactive oxygen species as well as inhibiting pathogen mobility. In this mini-review, we provide an update on how the IFN-induced GTPases target pathogens and mediate host defence, emphasising findings on protection against bacterial pathogens.


Assuntos
Bactérias/imunologia , Infecções Bacterianas/imunologia , GTP Fosfo-Hidrolases/imunologia , Imunidade Inata/imunologia , Interferons/imunologia , Animais , Bactérias/patogenicidade , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , GTP Fosfo-Hidrolases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferons/metabolismo , Transdução de Sinais/imunologia , Virulência/imunologia
6.
Cell Microbiol ; 23(2): e13278, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040458

RESUMO

Toxoplasma gondii infects virtually any nucleated cell and resides inside a non-phagocytic vacuole surrounded by a parasitophorous vacuolar membrane (PVM). Pivotal to the restriction of T. gondii dissemination upon infection in murine cells is the recruitment of immunity regulated GTPases (IRGs) and guanylate binding proteins (GBPs) to the PVM that leads to pathogen elimination. The virulent T. gondii type I RH strain secretes a handful of effectors including the dense granule protein GRA7, the serine-threonine kinases ROP17 and ROP18, and a pseudo-kinase ROP5, that synergistically inhibit the recruitment of IRGs to the PVM. Here, we characterise GRA60, a novel dense granule effector, which localises to the vacuolar space and PVM and contributes to virulence of RH in mice, suggesting a role in the subversion of host cell defence mechanisms. Members of the host cell IRG defence system Irgb10 and Irga6 are recruited to the PVM of RH parasites lacking GRA60 as observed previously for the avirulent RHΔrop5 mutant, with RH preventing such recruitment. Deletion of GRA60 in RHΔrop5 leads to a recruitment of IRGs comparable to the single knockouts. GRA60 therefore represents a novel parasite effector conferring resistance to IRGs in type I parasites, and found associated to ROP18, a member of the virulence complex.


Assuntos
Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Toxoplasma/imunologia , Toxoplasma/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/metabolismo , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , DNA de Protozoário , Fibroblastos/parasitologia , Prepúcio do Pênis/parasitologia , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Inativação de Genes , Interações Hospedeiro-Parasita , Humanos , Imunidade , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Toxoplasma/genética , Vacúolos/metabolismo , Virulência
7.
Rheumatology (Oxford) ; 60(2): 494-506, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159795

RESUMO

Human IFNs are secreted cytokines shown to stimulate the expression of over one thousand genes. These IFN-inducible genes primarily encode four major protein families, known as IFN-stimulated GTPases (ISGs), namely myxovirus-resistance proteins, guanylate-binding proteins (GBPs), p47 immunity-related GTPases and very large inducible guanosine triphosphate hydrolases (GTPases). These families respond specifically to type I or II IFNs and are well reported in coordinating immunity against some well known as well as newly discovered viral, bacterial and parasitic infections. A growing body of evidence highlights the potential contributory and regulatory roles of ISGs in dysregulated inflammation and autoimmune diseases. Our focus was to draw attention to studies that demonstrate increased expression of ISGs in the serum and affected tissues of patients with RA, SS, lupus, IBD and psoriasis. In this review, we analysed emerging literature describing the potential roles of ISGs, particularly the GBP family, in the context of autoimmunity. We also highlighted the promise and implications for therapeutically targeting IFNs and GBPs in the treatment of rheumatic diseases.


Assuntos
Autoimunidade , GTP Fosfo-Hidrolases/imunologia , Inflamação/imunologia , Interferons/imunologia , Doenças Reumáticas/imunologia , GTP Fosfo-Hidrolases/metabolismo , Humanos , Inflamação/metabolismo , Doenças Reumáticas/metabolismo
8.
Fish Shellfish Immunol ; 103: 248-255, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32408018

RESUMO

Immunity-related GTPases (IRGs) are a family of large interferon-inducible GTPases that function in effective host defense against invading pathogens. IRGs have been extensively studied in mammals for their roles in the elimination of intracellular pathogens; however, their homologs in lower vertebrates are not well known. In this study, an IRG from obscure puffer (Takifugu obscurus), ToIRG, was identified and further characterized for its functional activity. The ToIRG gene encodes a protein of 396 amino acids containing a typical N-terminal GTPase domain with three conserved motifs. Phylogenetic analysis revealed that it has a closer evolutionary relationship with mammalian GKS IRGs. Gene expression profile analysis revealed that ToIRG was ubiquitously expressed in all tested healthy tissues of obscure puffer and upregulated in response to Aeromonas hydrophila or Edwardsiella tarda challenge. The subcellular localization of ToIRG is characterized as condensed forms around the nucleus. Importantly, an antimicrobial assay in vitro suggested that ToIRG enhanced the ability of host cells to resist both intracellular (E. tarda) and extracellular pathogens (A. hydrophila). Taken together, these results provide the functional characterization of obscure puffer IRGs in immune defense, which is the first study to reveal the function of IRGs in bony fish and will provide important insights into the evolutionary divergence of IRGs.


Assuntos
Doenças dos Peixes/imunologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Takifugu/genética , Takifugu/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , GTP Fosfo-Hidrolases/química , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Filogenia , Alinhamento de Sequência/veterinária
9.
Cancer Lett ; 467: 96-106, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31326556

RESUMO

Tumor-associated antigen (TAA)-specific autoantibodies have been widely implicated in cancer diagnosis. However, cancer cell lines that are typically exploited as candidate TAA sources in immunoproteomic studies may fail to accurately represent the autoantigen-ome of lower-grade neoplasms. Here, we established an integrated strategy for the identification of disease-relevant TAAs in thyroid neoplasia, which combined NRASQ61R oncogene expression in non-tumorous thyroid Nthy-ori 3-1 cells with a multi-dimensional proteomic technique DISER that consisted of profiling NRASQ61R-induced proteins using 2-dimensional difference gel electrophoresis (2D-DIGE) coupled with serological proteome analysis (SERPA) of the TAA repertoire of patients with thyroid encapsulated follicular-patterned/RAS-like phenotype (EFP/RLP) tumors. We identified several candidate cell-based (nicotinamide phosphoribosyltransferase NAMPT, glutamate dehydrogenase GLUD1, and glutathione S-transferase omega-1 GSTO1) and autoantibody (fumarate hydratase FH, calponin-3 CNN3, and pyruvate kinase PKM autoantibodies) biomarkers, including NRASQ61R-induced TAA phosphoglycerate kinase 1 PGK1. Meta-profiling of the reactivity of the identified autoantibodies across an independent SERPA series implicated the PKM autoantibody as a histological phenotype-independent biomarker of thyroid malignancy (11/38 (29%) patients with overtly malignant and uncertain malignant potential (UMP) tumors vs 0/22 (p = 0.0046) and 0/20 (p = 0.011) patients with non-invasive EFP/RLP tumors and healthy controls, respectively). PGK1 and CNN3 autoantibodies were identified as EFP/RLP-specific biomarkers, potentially suitable for further discriminating tumors with different malignant potential (PGK1: 7/22 (32%) patients with non-invasive EFP/RLP tumors vs 0/38 (p = 0.00044) and 0/20 (p = 0.0092) patients with other tumors and healthy controls, respectively; СNN3: 9/29 (31%) patients with malignant and borderline EFP/RLP tumors vs 0/31 (p = 0.00068) and 0/20 (p = 0.0067) patients with other tumors and healthy controls, respectively). The combined use of PKM, CNN3, and PGK1 autoantibodies allowed the reclassification of malignant/UMP tumor risk in 19/41 (46%) of EFP/RLP tumor patients. Taken together, we established an experimental pipeline DISER for the concurrent identification of cell-based and TAA biomarkers. The combination of DISER with in vitro oncogene expression allows further targeted identification of oncogene-induced TAAs. Using this integrated approach, we identified candidate autoantibody biomarkers that might be of value for differential diagnostic purposes in thyroid neoplasia.


Assuntos
Autoanticorpos/metabolismo , GTP Fosfo-Hidrolases/genética , Proteínas de Membrana/genética , Proteômica/métodos , Neoplasias da Glândula Tireoide/diagnóstico , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Feminino , GTP Fosfo-Hidrolases/imunologia , Humanos , Proteínas de Membrana/imunologia , Mutação , Neoplasias da Glândula Tireoide/imunologia
10.
Clin Sci (Lond) ; 133(14): 1537-1548, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31285364

RESUMO

Background: Soluble ST2 (interleukin 1 receptor-like 1) (sST2) is involved in inflammatory diseases and increased in heart failure (HF). We herein investigated sST2 effects on oxidative stress and inflammation in human cardiac fibroblasts and its pathological role in human aortic stenosis (AS).Methods and results: Using proteomics and immunodetection approaches, we have identified that sST2 down-regulated mitofusin-1 (MFN-1), a protein involved in mitochondrial fusion, in human cardiac fibroblasts. In parallel, sST2 increased nitrotyrosine, protein oxidation and peroxide production. Moreover, sST2 enhanced the secretion of pro-inflammatory cytokines interleukin (IL)-6, IL-1ß and monocyte chemoattractant protein-1 (CCL-2). Pharmacological inhibition of transcriptional factor nuclear factor κB (NFκB) restored MFN-1 levels and improved oxidative status and inflammation in cardiac fibroblasts. Mito-Tempo, a mitochondria-specific superoxide scavenger, as well as Resveratrol, a general antioxidant, attenuated oxidative stress and inflammation induced by sST2. In myocardial biopsies from 26 AS patients, sST2 up-regulation paralleled a decrease in MFN-1. Cardiac sST2 inversely correlated with MFN-1 levels and positively associated with IL-6 and CCL-2 in myocardial biopsies from AS patients.Conclusions: sST2 affected mitochondrial fusion in human cardiac fibroblasts, increasing oxidative stress production and inflammatory markers secretion. The blockade of NFκB or mitochondrial reactive oxygen species restored MFN-1 expression, improving oxidative stress status and reducing inflammatory markers secretion. In human AS, cardiac sST2 levels associated with oxidative stress and inflammation. The present study reveals a new pathogenic pathway by which sST2 promotes oxidative stress and inflammation contributing to cardiac damage.


Assuntos
Estenose da Valva Aórtica/imunologia , Fibroblastos/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Estresse Oxidativo , Idoso , Idoso de 80 Anos ou mais , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/patologia , Biomarcadores , Células Cultivadas , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Pessoa de Meia-Idade , Dinâmica Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/imunologia , Miocárdio/imunologia , Miocárdio/patologia
11.
Nat Commun ; 10(1): 1233, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874554

RESUMO

Some strains of the protozoan parasite Toxoplasma gondii (such as RH) are virulent in laboratory mice because they are not restricted by the Immunity-Related GTPase (IRG) resistance system in these mouse strains. In some wild-derived Eurasian mice (such as CIM) on the other hand, polymorphic IRG proteins inhibit the replication of such virulent T. gondii strains. Here we show that this resistance is due to direct binding of the IRG protein Irgb2-b1CIM to the T. gondii virulence effector ROP5 isoform B. The Irgb2-b1 interface of this interaction is highly polymorphic and under positive selection. South American T. gondii strains are virulent even in wild-derived Eurasian mice. We were able to demonstrate that this difference in virulence is due to polymorphic ROP5 isoforms that are not targeted by Irgb2-b1CIM, indicating co-adaptation of host cell resistance GTPases and T. gondii virulence effectors.


Assuntos
GTP Fosfo-Hidrolases/imunologia , Interações Hospedeiro-Parasita/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/patogenicidade , Toxoplasmose Animal/imunologia , Animais , Resistência à Doença/genética , Resistência à Doença/imunologia , Feminino , Fibroblastos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Interações Hospedeiro-Parasita/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Seleção Genética/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/parasitologia , Virulência/imunologia
12.
J Allergy Clin Immunol ; 143(1): 245-257.e6, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30616774

RESUMO

BACKGROUND: GTPase of immunity-associated protein 5 (GIMAP5) is essential for lymphocyte homeostasis and survival. Recently, human GIMAP5 single nucleotide polymorphisms have been linked to an increased risk for asthma, whereas loss of Gimap5 in mice has been associated with severe CD4+ T cell-driven immune pathology. OBJECTIVE: We sought to identify the molecular and cellular mechanisms by which Gimap5 deficiency predisposes to allergic airway disease. METHODS: CD4+ T-cell polarization and development of pathogenic CD4+ T cells were assessed in Gimap5-deficient mice and a human patient with a GIMAP5 loss-of-function (LOF) mutation. House dust mite-induced airway inflammation was assessed by using a complete Gimap5 LOF (Gimap5sph/sph) and conditional Gimap5fl/flCd4Cre/ert2 mice. RESULTS: GIMAP5 LOF mutations in both mice and human subjects are associated with spontaneous polarization toward pathogenic TH17 and TH2 cells in vivo. Mechanistic studies in vitro reveal that impairment of Gimap5-deficient TH cell differentiation is associated with increased DNA damage, particularly during TH1-polarizing conditions. DNA damage in Gimap5-deficient CD4+ T cells could be controlled by TGF-ß, thereby promoting TH17 polarization. When challenged with house dust mite in vivo, Gimap5-deficient mice displayed an exacerbated asthma phenotype (inflammation and airway hyperresponsiveness), with increased development of TH2, TH17, and pathogenic TH17/TH2 cells. CONCLUSION: Activation of Gimap5-deficient CD4+ T cells is associated with increased DNA damage and reduced survival that can be overcome by TGF-ß. This leads to selective survival of pathogenic TH17 cells but also TH2 cells in human subjects and mice, ultimately promoting allergic airway disease.


Assuntos
Asma/imunologia , GTP Fosfo-Hidrolases/deficiência , Mutação com Perda de Função , Células Th17/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/patologia , GTP Fosfo-Hidrolases/imunologia , Proteínas de Ligação ao GTP , Humanos , Camundongos , Camundongos Transgênicos , Células Th17/patologia , Células Th2/patologia , Fator de Crescimento Transformador beta/genética
13.
Front Immunol ; 9: 2609, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483267

RESUMO

Although it is well-recognized that inflammation enhances leukocyte bactericidal activity, the underlying mechanisms are not clear. Here we report that PRL2 is sensitive to oxidative stress at inflamed sites. Reduced PRL2 in phagocytes causes increased respiratory burst activity and enhances phagocyte bactericidal activity. PRL2 (Phosphatase Regenerating Liver 2) is highly expressed in resting immune cells, but is markedly downregulated by inflammation. in vitro experiments showed that PRL2 was sensitive to hydrogen peroxide (H2O2), a common damage signal at inflamed sites. In response to infection, PRL2 knockout (KO) phagocytes were hyper activated, produced more reactive oxygen species (ROS) and exhibited enhanced bactericidal activity. Mice with PRL2 deficiency in the myeloid cell compartment were resistant to lethal listeria infection and cleared the bacteria more rapidly and effectively. Moreover, in vitro experiments demonstrated that PRL2 binds to GTPase Rac and regulates ROS production. Rac GTPases were more active in PRL2 (KO) phagocytes than in wild type cells after bacterium infection. Our findings indicate that PRL2 senses ROS at inflamed sites and regulates ROS production in phagocytes. This positive feedback mechanism promotes bactericidal activity of phagocytes and may play an important role in innate anti-bacterial immunity.


Assuntos
Antibacterianos/imunologia , Fagócitos/imunologia , Prolactina/imunologia , Espécies Reativas de Oxigênio/imunologia , Animais , Infecções Bacterianas/imunologia , Células COS , Linhagem Celular , Chlorocebus aethiops , GTP Fosfo-Hidrolases/imunologia , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Inflamação/imunologia , Listeriose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/imunologia , Fagócitos/efeitos dos fármacos , Células RAW 264.7 , Explosão Respiratória/imunologia
14.
Front Immunol ; 9: 2073, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283439

RESUMO

Toxoplasma gondii is an important human and animal pathogen that causes life-threatening toxoplasmosis. Interferon-γ (IFN-γ) is critical for anti-T. gondii cell-autonomous immunity in both humans and mice. To proliferate efficiently within the hosts, virulent strains of T. gondii can suppress IFN-γ-dependent immunity. During parasite infection, it is well-characterized that various virulence effectors are secreted to transcriptionally or post-translationally target IFN-γ-inducible GTPases, which are essential for anti-parasite responses in mice. However, the role of IFN-γ-inducible GTPases in anti-T. gondii responses in human cells is controversial since they are non-functional or absent in humans. Instead, IFN-γ-induced tryptophan degradation by indole-2,3-dioxygenase (IDO) is important for the anti-T. gondii human response. To date, the T. gondii virulent mechanism targeting IDO in human cells remains elusive. Here we show that although humans possess two IDO isozymes, IDO1 and IDO2, human cells of various origins require IDO1 but not IDO2 for IFN-γ-induced cell-autonomous immunity to T. gondii. T. gondii secretes an effector TgIST to inhibit IDO1 mRNA expression. Taken together, the data suggests that T. gondii possesses virulence programs operated by TgIST to antagonize IFN-γ-induced IDO1-mediated anti-parasite cell-autonomous immunity in human cells.


Assuntos
Imunidade Celular/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Interferon gama/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Autofagia/genética , Autofagia/imunologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/imunologia , Proteínas Relacionadas à Autofagia/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Imunidade Celular/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/metabolismo , Camundongos Knockout , Toxoplasma/patogenicidade , Toxoplasmose/enzimologia , Toxoplasmose/parasitologia , Virulência/genética , Virulência/imunologia
15.
Viruses ; 10(8)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096906

RESUMO

Nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome plays a pivotal role in modulating lung inflammation in response to the influenza A virus infection. We previously showed that the swine influenza virus (SIV) infection induced NLRP3 inflammasome-mediated IL-1ß production in primary porcine alveolar macrophages (PAMs), and we were interested in examining the upstream signaling events that are involved in this process. Here, we report that the SIV-infection led to dynamin-related protein 1 (DRP1) phosphorylation at serine 579 and mitochondrial fission in PAMs. IL-1ß production was dependent on the reactive oxygen species (ROS) production, and DRP1 phosphorylation resulted in the upregulation of the NLRP3 inflammasome. Furthermore, the requirement of the kinase activity of receptor-interacting protein kinase 1 (RIPK1) for the IL-1ß production and RIPK1-DRP1 association suggested that RIPK1 is an upstream kinase for DRP1 phosphorylation. Our results reveal a critical role of the RIPK1/DRP1 signaling axis, whose activation leads to mitochondrial fission and ROS release, in modulating porcine NLRP3 inflammasome-mediated IL-1ß production in SIV-infected PAMs.


Assuntos
Dinaminas/imunologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Infecções por Orthomyxoviridae/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Células Cultivadas , Dinaminas/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1 , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Serina/metabolismo , Transdução de Sinais , Suínos
16.
Nat Commun ; 9(1): 2958, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054480

RESUMO

Optic atrophy 1 (OPA1) is a mitochondrial inner membrane protein that has an important role in mitochondrial fusion and structural integrity. Dysfunctional OPA1 mutations cause atrophy of the optic nerve leading to blindness. Here, we show that OPA1 has an important role in the innate immune system. Using conditional knockout mice lacking Opa1 in neutrophils (Opa1N∆), we report that lack of OPA1 reduces the activity of mitochondrial electron transport complex I in neutrophils. This then causes a decline in adenosine-triphosphate (ATP) production through glycolysis due to lowered NAD+ availability. Additionally, we show that OPA1-dependent ATP production in these cells is required for microtubule network assembly and for the formation of neutrophil extracellular traps. Finally, we show that Opa1N∆ mice exhibit a reduced antibacterial defense capability against Pseudomonas aeruginosa.


Assuntos
Trifosfato de Adenosina/metabolismo , Armadilhas Extracelulares/metabolismo , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Glicólise/fisiologia , Neutrófilos/metabolismo , Actinas/metabolismo , Animais , Antibacterianos/farmacologia , Medula Óssea , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/genética , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neutrófilos/citologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/patogenicidade , Espécies Reativas de Oxigênio/metabolismo
17.
Curr Opin Immunol ; 54: 93-101, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986303

RESUMO

Once pathogens have breached the mechanical barriers to infection, survived extracellular immunity and successfully invaded host cells, cell-intrinsic immunity becomes the last line of defense to protect the mammalian host against viruses, bacteria, fungi and protozoa. Many cell-intrinsic defense programs act as high-precision weapons that specifically target intracellular microbes or cytoplasmic sites of microbial replication while leaving endogenous organelles unharmed. Critical executioners of cell-autonomous immunity include interferon-inducible dynamin-like GTPases and autophagy proteins, which often act cooperatively in locating and antagonizing intracellular pathogens. Here, we discuss possible mechanistic models to account for the functional interactions that occur between these two distinct classes of host defense proteins.


Assuntos
Proteínas Relacionadas à Autofagia/imunologia , GTP Fosfo-Hidrolases/imunologia , Interferons/imunologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos
18.
J Clin Invest ; 128(5): 2048-2063, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664013

RESUMO

Immunotherapy prolongs survival in only a subset of melanoma patients, highlighting the need to better understand the driver tumor microenvironment. We conducted bioinformatic analyses of 703 transcriptomes to probe the immune landscape of primary cutaneous melanomas in a population-ascertained cohort. We identified and validated 6 immunologically distinct subgroups, with the largest having the lowest immune scores and the poorest survival. This poor-prognosis subgroup exhibited expression profiles consistent with ß-catenin-mediated failure to recruit CD141+ DCs. A second subgroup displayed an equally bad prognosis when histopathological factors were adjusted for, while 4 others maintained comparable survival profiles. The 6 subgroups were replicated in The Cancer Genome Atlas (TCGA) melanomas, where ß-catenin signaling was also associated with low immune scores predominantly related to hypomethylation. The survival benefit of high immune scores was strongest in patients with double-WT tumors for BRAF and NRAS, less strong in BRAF-V600 mutants, and absent in NRAS (codons 12, 13, 61) mutants. In summary, we report evidence for a ß-catenin-mediated immune evasion in 42% of melanoma primaries overall and in 73% of those with the worst outcome. We further report evidence for an interaction between oncogenic mutations and host response to melanoma, suggesting that patient stratification will improve immunotherapeutic outcomes.


Assuntos
GTP Fosfo-Hidrolases/imunologia , Melanoma/imunologia , Proteínas de Membrana/imunologia , Mutação , Proteínas Proto-Oncogênicas B-raf/imunologia , Neoplasias Cutâneas/imunologia , Microambiente Tumoral/imunologia , beta Catenina/imunologia , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Microambiente Tumoral/genética , beta Catenina/genética
19.
Chin Med J (Engl) ; 131(3): 330-338, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29363649

RESUMO

BACKGROUND: Mitofusin-2 (MFN2), a well-known mitochondrial fusion protein, has been shown to participate in innate immunity, but its role in mediating adaptive immunity remains poorly characterized. In this study, we explored the potential role of MFN2 in mediating the immune function of T lymphocytes. METHODS: We manipulated MFN2 gene expression in Jurkat cells via lentiviral transduction of MFN2 small interfering RNA (siRNA) or full-length MFN2. After transduction, the immune response and its underlying mechanism were determined in Jurkat cells. One-way analysis of variance and Student's t-test were performed to determine the statistical significance between the groups. RESULTS: Overexpression of MFN2 enhanced the immune response of T lymphocytes by upregulating Ca2+ (359.280 ± 10.130 vs. 266.940 ± 10.170, P = 0.000), calcineurin (0.513 ± 0.014 vs. 0.403 ± 0.020 nmol/L, P = 0.024), and nuclear factor of activated T cells (NFATs) activation (1.040 ± 0.086 vs. 0.700 ± 0.115, P = 0.005), whereas depletion of MFN2 impaired the immune function of T lymphocytes by downregulating Ca2+ (141.140 ± 14.670 vs. 267.060 ± 9.230, P = 0.000), calcineurin (0.054 ± 0.030 nmol/L vs. 0.404 ± 0.063 nmol/L, P = 0.000), and NFAT activation (0.500 ± 0.025 vs. 0.720 ± 0.061, P = 0.012). Furthermore, upregulated calcineurin partially reversed the negative effects of MFN2 siRNA on T cell-mediated immunity evidenced by elevations in T cell proliferation (1.120 ± 0.048 vs. 0.580 ± 0.078, P = 0.040), interleukin-2 (IL-2) production (473.300 ± 24.100 vs. 175.330 ± 12.900 pg/ml, P = 0.000), and the interferon-γ/IL-4 ratio (3.080 ± 0.156 vs. 0.953 ± 0.093, P = 0.000). Meanwhile, calcineurin activity inhibitor depleted the positive effects of overexpressed MFN2 on T cells function. CONCLUSIONS: Our findings suggest that MFN2 may regulate T cell immune functions primarily through the Ca2+-calcineurin-NFAT pathway. MFN2 may represent a potential therapeutic target for T cell immune dysfunction-related diseases.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição NFATC/metabolismo , Linfócitos T/metabolismo , Inibidores de Calcineurina/farmacologia , Núcleo Celular/metabolismo , Proliferação de Células , Citocinas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/imunologia , Expressão Gênica , Humanos , Células Jurkat , Lentivirus/genética , Ativação Linfocitária , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , RNA Interferente Pequeno/genética , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/imunologia , Transfecção , Regulação para Cima
20.
Int J Med Microbiol ; 308(1): 237-245, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29174633

RESUMO

Guanylate-binding proteins (GBP) are a family of dynamin-related large GTPases which are expressed in response to interferons and other pro-inflammatory cytokines. GBPs mediate a broad spectrum of innate immune functions against intracellular pathogens ranging from viruses to bacteria and protozoa. Several binding partners for individual GBPs have been identified and several different mechanisms of action have been proposed depending on the organisms, the cell type and the pathogen used. Many of these anti-pathogenic functions of GBPs involve the recruitment to and the subsequent destruction of pathogen containing vacuolar compartments, the assembly of large oligomeric innate immune complexes such as the inflammasome, or the induction of autophagy. Furthermore, GBPs often cooperate with immunity-related GTPases (IRGs), another family of dynamin-related GTPases, to exert their anti-pathogenic function, but since most IRGs have been lost in the evolution of higher primates, the anti-pathogenic function of human GBPs seems to be IRG-independent. GBPs and IRGs share biochemical and structural properties with the other members of the dynamin superfamily such as low nucleotide affinity and a high intrinsic GTPase activity which can be further enhanced by oligomerisation. Furthermore, GBPs and IRGs can interact with lipid membranes. In the case of three human and murine GBP isoforms this interaction is mediated by C-terminal isoprenylation. Based on cell biological studies, and in analogy to the function of other dynamins in membrane scission events, it has been postulated that both GBPs and IRGs might actively disrupt the outer membrane of pathogen-containing vacuole leading to the detection and destruction of the pathogen by the cytosolic innate immune system of the host. Recent evidence, however, indicates that GBPs might rather function by mediating membrane tethering events similar to the dynamin-related atlastin and mitofusin proteins, which mediate fusion of the ER and mitochondria, respectively. The aim of this review is to highlight the current knowledge on the function of GBPs in innate immunity and to combine it with the recent progress in the biochemical characterisation of this protein family.


Assuntos
Citoplasma/imunologia , Proteínas de Ligação ao GTP/fisiologia , Imunidade Inata , Animais , Autofagia/imunologia , Citoplasma/microbiologia , Citoplasma/parasitologia , Citoplasma/virologia , GTP Fosfo-Hidrolases/imunologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/imunologia , Proteínas de Ligação ao GTP/metabolismo , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interferons/imunologia , Interferons/metabolismo , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/parasitologia , Vacúolos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...