Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(7): e0180048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678887

RESUMO

The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this was caused by direct interaction with crude oil droplets, which adhered to the chorion of exposed embryos. Such a phenomenon would increase the potential for uptake of less water-soluble compounds, including alkylated PAHs. In the current study, we compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally relevant concentrations (10-600 µg oil/liter seawater). Although the species are biologically very similar, the cod chorion does not become fouled with oil droplets, even when the two species are exposed to dispersions of crude oil droplets under similar conditions. A close correlation between the degree of fouling and toxicological response (heart defects, craniofacial malformation) was observed. Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggesting differential metabolism of unsubstituted versus alkylated compounds.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Pesqueiros , Gadus morhua/anormalidades , Gadus morhua/metabolismo , Inativação Metabólica , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar , Toxicocinética , Poluentes Químicos da Água/metabolismo
2.
Fish Physiol Biochem ; 39(5): 1195-203, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23412979

RESUMO

Induction of triploidy has been suggested as an effective tool to prevent spawning of farmed fish. This experiment examined the growth potential of triploid cod when reared communally with diploid ones after the juvenile stage. Pressure treatment was used to induce triploidy in a batch of cod eggs in April 2009. The resulting offspring were reared separately from their diploid counterparts until they reached the proper size for PIT tagging. At the age of 8 months, an equal number of 115 diploids (135.5 ± 3.95 g) and triploids (93.6 ± 2.63 g) were communally reared in a circular flow-through tank until the age of 22 months. By the end of this rearing period, diploids (1,002.4 ± 39.9 g) were significantly heavier than triploids (654.6 ± 27.7 g), but the specific growth rate did not differ significantly during the growth trial. Gonadal development at the age of 22 months was also lower among triploids than diploids, especially for females (5.3 and 91.9 %) but also for males (32.5 and 72.7 %). Sterility among female triploids was evident by the reduced size and dysfunctional gonads, but gonadal development in male triploids was less suppressed. Prevalence of body deformities was, however, significantly higher among triploids (62.6 %) than diploids (33.9 %). Higher prevalence of deformities in triploid cod underlines the need for further fine-tuning of the triploidization procedure or finding other methods of sterilization. At present, triploid cod are still far from being established as an alternative for commercial production.


Assuntos
Aquicultura/métodos , Gadus morhua/anormalidades , Gadus morhua/crescimento & desenvolvimento , Gadus morhua/genética , Triploidia , Análise de Variância , Animais , Cruzamento/métodos , Feminino , Gônadas/crescimento & desenvolvimento , Islândia , Masculino , Fatores Sexuais
3.
Mar Environ Res ; 70(5): 383-94, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20846718

RESUMO

Produced water (PW) contains numerous toxic compounds of natural origin, such as dispersed oil, metals, alkylphenols (APs), and polycyclic aromatic hydrocarbons (PAHs). In addition, PW also contains many different chemicals which have been added during the oil production process. In the study described here, cod were exposed to real PW collected from an oil production platform in the North Sea. This was done in order to best recreate the most realistic field-exposure regime in which fish will be affected by a wide range of chemicals. The biological effects found in this study therefore cannot be assigned to one group of chemicals alone, but are the result of exposure to the complex chemical mixture found in real PW. Since APs are well known to cause endocrine disruption in marine organisms, we focused our chemical analysis on APs in an attempt to better understand the long-term effects of APs from PW on the biology of fish. In this study, cod were exposed to several concentrations of real PW and 17ß-oestradiol (E(2)), a natural oestrogen, at different developmental stages. Cod were exposed to PW either during the embryo and early larvae stage (up to 3 months of age) or during the early juvenile stage (from 3 to 6 months of age). Results showed that, in general, APs bioconcentrate in fish tissue in a dose and developmental stage dependent manner during PW exposure. However, juveniles appeared able to effectively metabolise the short chain APs. Importantly, PW exposure had no effect on embryo survival or hatching success. However, 1% PW clearly interfered with the development of normal larval pigmentation. After hatching most of the larvae exposed to 1% PW failed to begin feeding and died of starvation. This inability to feed may be linked to the increased incidence of jaw deformities seen in these larvae. In addition, cod exposed to 1% PW, had significantly higher levels of the biomarkers vitellogenin and CYP1A in plasma and liver, respectively. No similar effects were seen in cod exposed to either 0.1% or 0.01% PW.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Gadus morhua/embriologia , Resíduos Industriais/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/anormalidades , Embrião não Mamífero/metabolismo , Indústrias Extrativas e de Processamento , Feminino , Gadus morhua/anormalidades , Gadus morhua/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Óvulo/efeitos dos fármacos , Petróleo/toxicidade , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA