RESUMO
Three compounds were isolated from Maytenus acanthophylla Reissek (Celastraceae): the pentacyclic triterpenes lup-20(29)-en-3ß-ol (lupeol, 1) and 3ß-lup-20(29)-en-3-yl acetate (2) and the carbohydrate 1,2,3,4,5,6-hexa-O-acetyldulcitol (3); lupeol was also isolated from Xylosma flexuosa. The compounds' structures were elucidated by spectroscopic and spectrometric analysis. Compound 1 acts as an energy transfer inhibitor, interacting with isolated CF1 bound to thylakoid membrane, and dulcitol hexaacetate 3 behaves as a Hill reaction inhibitor and as an uncoupler, as determined by polarography. Chlorophyll a (Chl a) fluorescence induction kinetics from the minimum yield F0 to the maximum yield F(M )provides information of the filling up from electrons coming from water to plastoquinone pool with reducing equivalents. In this paper we have examined the effects of compounds 1 and 3 on spinach leaf discs. Compound 1 induces the appearance of a K-band, which indicates that it inhibits the water splitting enzyme. In vivo assays measuring the fluorescence of chl a in P. ixocarpa leaves sprayed with compound 1, showed the appearance of the K-band and the PSII reaction centers was transformed to "heat sinks" or silent reaction centers unable to reduce Q(A). However, 3 also induced the appearance of a K band and a new band I appears in P. ixocarpa plants, therefore it inhibits at the water splitting enzyme complex and at the PQH2 site on b6f complex. Compounds 1 and 3 did not affect chlorophyll a fluorescence of L. perenne plants.
Assuntos
Galactitol/farmacologia , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Triterpenos/farmacologia , ATPase de Ca(2+) e Mg(2+)/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Fluorescência , Galactitol/química , Cinética , Maytenus/química , Paraquat/metabolismo , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/farmacologia , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/efeitos da radiação , Tilacoides/efeitos dos fármacos , Tilacoides/enzimologia , Tilacoides/efeitos da radiação , Triterpenos/químicaRESUMO
Different conformations of methyl 3,6-anhydro-4-O-methyl-alpha-d-galactoside (1) and 3,6-anhydro-4-O-methylgalactitol (2) were studied by molecular mechanics (using the program mm3) and by quantum mechanical (QM) methods at the B3LYP/6-31+G( * *) and MP2/6-311++G( * *) levels, with and without solvent emulation. In 2, where the five-membered ring is free to move, two main stable conformations of this ring were found, identified as North (N) and South (S). The latter appears to be more stable, by either calculation, though the energy difference is reduced when emulating solution behavior. In order to find out the possible influence of a glycosidic bond over its shape, and to explain the marked NMR chemical shift displacements observed by opening of the ring, the adiabatic maps of two disaccharides carrying an analog of beta-galactoside linked to O-4 of 1 and 2 were generated. It was shown that the characteristics of the 3,6-AnGal terminal influence the characteristics of the map, especially at lower dielectric constants. On the other hand, different glycosidic angles also promote distinct stable conformations of the five-membered ring, changing from N to S, or even variants. Comparison with experimental results leads to the idea of highly flexible disaccharides, with variable values for both the five-membered ring and the glycosidic angles.