Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Chembiochem ; 24(24): e202300421, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37782555

RESUMO

Galactose Oxidase (GalOx) has gained significant interest in biocatalysis due to its ability for selective oxidation beyond the natural oxidation of galactose, enabling the production of valuable derivatives. However, the practical application of GalOx has been hindered by the limited availability of active and stable biocatalysts, as well as the inherent biochemical limitations such as oxygen (O2 ) dependency and the need for activation. In this study, we addressed these challenges by immobilizing GalOx into agarose-based and Purolite supports to enhance its activity and stability. Additionally, we identified and quantified the oxygen supply limitation into solid catalysts by intraparticle oxygen sensing showing a trade-off between the amount of protein loaded onto the solid support and the catalytic effectiveness of the immobilized enzyme. Furthermore, we coimmobilized a heme-containing protein along with the enzyme to function as an activator. To evaluate the practical application of the immobilized GalOx, we conducted the oxidation of galactose in an instrumented aerated reactor. The results showcased the efficient performance of the immobilized enzyme in the 8 h reaction cycle. Notably, the GalOx immobilized into dextran sulfate-activated agarose exhibited improved stability, overcoming the need for a soluble activator supply, and demonstrated exceptional performance in galactose oxidation. These findings offer promising prospects for the utilization of GalOx in technical biocatalytic applications.


Assuntos
Enzimas Imobilizadas , Hemeproteínas , Enzimas Imobilizadas/metabolismo , Galactose Oxidase/metabolismo , Galactose , Sefarose , Biocatálise , Hemeproteínas/metabolismo , Oxigênio
2.
Angew Chem Int Ed Engl ; 62(22): e202214999, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36861784

RESUMO

Oxidases are of interest to chemical and pharmaceutical industries because they catalyze highly selective oxidations. However, oxidases found in nature often need to be re-engineered for synthetic applications. Herein, we developed a versatile and robust flow cytometry-based screening platform "FlOxi" for directed oxidase evolution. FlOxi utilizes hydrogen peroxide produced by oxidases expressed in E. coli to oxidize Fe2+ to Fe3+ (Fenton reaction). Fe3+ mediates the immobilization of a His6 -tagged eGFP (eGFPHis ) on the E. coli cell surface, ensuring the identification of beneficial oxidase variants by flow cytometry. FlOxi was validated with two oxidases-a galactose oxidase (GalOx) and a D-amino acid oxidase (D-AAO)-yielding a GalOx variant (T521A) with a 4.4-fold lower Km value and a D-AAO variant (L86M/G14/A48/T205) with a 4.2-fold higher kcat than their wildtypes. Thus, FlOxi can be used for the evolution of hydrogen peroxide-producing oxidases and applied for non-fluorescent substrates.


Assuntos
Escherichia coli , Peróxido de Hidrogênio , Citometria de Fluxo/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Peróxido de Hidrogênio/metabolismo , Galactose Oxidase/metabolismo , Oxirredução
3.
FEBS J ; 290(10): 2658-2672, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36660811

RESUMO

Fungal copper radical oxidases (CROs) from the Auxiliary Activity family 5 (AA5) constitute a group of metalloenzymes that oxidize a wide panel of natural compounds, such as galactose-containing saccharides or primary alcohols, into product derivatives exhibiting promising biotechnological interests. Despite a well-conserved first copper-coordination sphere and overall fold, some members of the AA5_2 subfamily are incapable of oxidizing galactose and galactosides but conversely efficiently catalyse the oxidation of diverse aliphatic alcohols. The objective of this study was to understand which residues dictate the substrate preferences between alcohol oxidases and galactose oxidases within the AA5_2 subfamily. Based on structural differences and molecular modelling predictions between the alcohol oxidase from Colletotrichum graminicola (CgrAlcOx) and the archetypal galactose oxidase from Fusarium graminearum (FgrGalOx), a rational mutagenesis approach was developed to target regions or residues potentially driving the substrate specificity of these enzymes. A set of 21 single and multiple CgrAlcOx variants was produced and characterized leading to the identification of six residues (W39, F138, M173, F174, T246, L302), in the vicinity of the active site, crucial for substrate recognition. Two multiple CgrAlcOx variants, i.e. M4F (W39F, F138W, M173R and T246Q) and M6 (W39F, F138W, M173R, F174Y, T246Q and L302P), exhibited a similar affinity for carbohydrate substrates when compared to FgrGalOx. In conclusion, using a rational site-directed mutagenesis approach, we identified key residues involved in the substrate selectivity of AA5_2 enzymes towards galactose-containing saccharides.


Assuntos
Cobre , Galactose , Cobre/metabolismo , Galactose/química , Oxirredutases/metabolismo , Galactose Oxidase/genética , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Oxirredução , Ceruloplasmina , Álcoois , Especificidade por Substrato
4.
Inorg Chem ; 61(44): 17777-17789, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36278950

RESUMO

A series of azo-aromatic copper(II) complexes, [1a-g] and a Cu(I) complex, [1h], with varying amine-functionalized hemilabile pincer-like [HL1-3] and [L1,2], methyl-substituted azo [L3], and imine [L4] ligands, were synthesized and characterized. These complexes were investigated for aerobic oxidation of a variety of aromatic alcohols in the presence of 2.0 mol % precatalysts [1a-g], cobaltocene (2.0 mol %), N-methyl imidazole (NMI) (8.0 mol %), and TEMPOH (2.0 mol %) at room temperature. The Cu(I) complex (1h) acted as a catalyst in the absence of cobaltocene. To understand the mechanism, detailed experimental and theoretical studies have been performed with the representative complex [1a], which has suggested a new kind of mechanism involving a Cu(II)/Cu(I) redox couple. Cobaltocene acts as a reductant to [1a] to generate a Cu(I) complex, which activates dioxygen in the presence of NMI. TEMPOH transfers a hydrogen atom to the activated dioxygen with the generation of TEMPO•, which further participates in α-C-H bond activation in the Cu(II)-alkoxide intermediate in an intermolecular fashion in the catalytic cycle. The amine sidearm in the ligand backbone of the complexes has a significant role in catalytic activity. Complexes with amine sidearms are more effective than complexes without them. Moreover, the aliphatic secondary amine sidearm is more efficient among the amine sidearm than the aromatic secondary amine and tertiary amines. The amine sidearm that remained coordinated to the Cu(II) center is hemilabile, and it facilitates alcohol coordination in the catalytic process. Alcohol coordination was the rate-limiting step, and it was supported by the isotope effect study on benzyl alcohol, substitution effect on the amine moiety of the ligands, and DFT calculation. The hemilabile amine sidearm of the coordinated ligand also acted as a base in deprotonating the alcoholic O-H proton and acted as an acid in releasing H2O2 during the catalysis.


Assuntos
Álcoois , Galactose Oxidase , Galactose Oxidase/metabolismo , Álcoois/química , Aminas/química , Ligantes , Peróxido de Hidrogênio , Catálise , Oxirredução , Cobre/química , Oxigênio/química , Álcool Benzílico
5.
Anal Methods ; 14(37): 3644-3651, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36098063

RESUMO

Abnormal galactose metabolism is the main cause of galactosemia, which makes the accurate and rapid analysis of galactose levels in food and organism the key issue at present. In this study, a novel strategy for one-step galactose determination was proposed based on galactose oxidase and copper-based metal-organic framework complexes (GAOx@MOF) with dual catalytic activities at neutral pH. Typically, GAOx catalyzes the oxidation of the C6 hydroxyl group of D-galactose to generate an aldehyde (D-galactose-hexanedial), and coupled with the reduction of dioxygen to H2O2, which was immediately transformed to ˙OH by mimicking peroxidase activity and at the same time oxidized ABTS to a green product with a clear colorimetric signal. The whole process was completed using one buffer, which simplified the procedure and increased the sensitivity. Moreover, the proposed method can also be used for the quantitative analysis of galactose. It showed a good linear relationship at 20-1000 µM, while the LOD was 6.67 µM. Furthermore, the strategy has been successfully utilized for galactose determination in milk samples, which proved its promising applications in clinical analysis and the food industry.


Assuntos
Galactose Oxidase , Estruturas Metalorgânicas , Aldeídos , Corantes , Cobre , Galactose , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Estruturas Metalorgânicas/química , Oxirredutases , Oxigênio , Peroxidase/metabolismo , Peroxidases/química
6.
Chemistry ; 28(30): e202200868, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338670

RESUMO

The use of enzymes as catalysts in chemical synthesis offers advantages in terms of clean and highly selective transformations. Galactose oxidase (GalOx) is a remarkable enzyme with several applications in industrial conversions as it catalyzes the oxidation of primary alcohols. We have investigated the wiring of GalOx with a redox polymer; this enables mediated electron transfer with the electrode surface for its potential application in biotechnological conversions. As a result of electrochemical regeneration of the catalytic center, the formation of harmful H2 O2 is minimized during enzymatic catalysis. The introduced bioelectrode was applied to the conversion of bio-renewable platform materials, with glycerol as model substrate. The biocatalytic transformations of glycerol and 5-hydroxymethylfurfural (HMF) were investigated in a circular flow-through setup to assess the possibility of substrate over-oxidation, which is observed for glycerol oxidation but not during HMF conversion.


Assuntos
Galactose Oxidase , Glicerol , Eletrodos , Transporte de Elétrons , Elétrons , Enzimas Imobilizadas , Galactose Oxidase/metabolismo , Oxirredução
7.
J Biol Chem ; 298(1): 101453, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838818

RESUMO

In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.


Assuntos
Galactose Oxidase , Vacinas Pneumocócicas , Polissacarídeos Bacterianos , Streptococcus pneumoniae , Animais , Anticorpos Antibacterianos/química , Anticorpos Antibacterianos/imunologia , Galactose Oxidase/química , Galactose Oxidase/imunologia , Galactose Oxidase/metabolismo , Glicoconjugados , Camundongos , Vacinas Pneumocócicas/química , Vacinas Pneumocócicas/imunologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/imunologia , Sorogrupo , Streptococcus pneumoniae/química , Streptococcus pneumoniae/imunologia , Vacinas Conjugadas
8.
Nat Commun ; 12(1): 4946, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400632

RESUMO

5-Hydroxymethylfurfural (HMF) has emerged as a crucial bio-based chemical building block in the drive towards developing materials from renewable resources, due to its direct preparation from sugars and its readily diversifiable scaffold. A key obstacle in transitioning to bio-based plastic production lies in meeting the necessary industrial production efficiency, particularly in the cost-effective conversion of HMF to valuable intermediates. Toward addressing the challenge of developing scalable technology for oxidizing crude HMF to more valuable chemicals, here we report coordinated reaction and enzyme engineering to provide a galactose oxidase (GOase) variant with remarkably high activity toward HMF, improved O2 binding and excellent productivity (>1,000,000 TTN). The biocatalyst and reaction conditions presented here for GOase catalysed selective oxidation of HMF to 2,5-diformylfuran offers a productive blueprint for further development, giving hope for the creation of a biocatalytic route to scalable production of furan-based chemical building blocks from sustainable feedstocks.


Assuntos
Furaldeído/análogos & derivados , Furaldeído/metabolismo , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Engenharia de Proteínas , Biocatálise , Catálise , Domínio Catalítico , Furanos , Galactose Oxidase/química , Mutagênese , Oxirredução
9.
Plant Cell Physiol ; 62(12): 1927-1943, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042158

RESUMO

Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Galactose Oxidase/genética , Expressão Gênica , Sequência de Aminoácidos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Filogenia , Alinhamento de Sequência
10.
Inorg Chem ; 59(22): 16567-16581, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33136386

RESUMO

Cu(I) active sites in metalloproteins are involved in O2 activation, but their O2 reactivity is difficult to study due to the Cu(I) d10 closed shell which precludes the use of conventional spectroscopic methods. Kß X-ray emission spectroscopy (XES) is a promising technique for investigating Cu(I) sites as it detects photons emitted by electronic transitions from occupied orbitals. Here, we demonstrate the utility of Kß XES in probing Cu(I) sites in model complexes and a metalloprotein. Using Cu(I)Cl, emission features from double-ionization (DI) states are identified using varying incident X-ray photon energies, and a reasonable method to correct the data to remove DI contributions is presented. Kß XES spectra of Cu(I) model complexes, having biologically relevant N/S ligands and different coordination numbers, are compared and analyzed, with the aid of density functional theory (DFT) calculations, to evaluate the sensitivity of the spectral features to the ligand environment. While the low-energy Kß2,5 emission feature reflects the ionization energy of ligand np valence orbitals, the high-energy Kß2,5 emission feature corresponds to transitions from molecular orbitals (MOs) having mainly Cu 3d character with the intensities determined by ligand-mediated d-p mixing. A Kß XES spectrum of the Cu(I) site in preprocessed galactose oxidase (GOpre) supports the 1Tyr/2His structural model that was determined by our previous X-ray absorption spectroscopy and DFT study. The high-energy Kß2,5 emission feature in the Cu(I)-GOpre data has information about the MO containing mostly Cu 3dx2-y2 character that is the frontier molecular orbital (FMO) for O2 activation, which shows the potential of Kß XES in probing the Cu(I) FMO associated with small-molecule activation in metalloproteins.


Assuntos
Cobre/metabolismo , Galactose Oxidase/metabolismo , Cobre/química , Teoria da Densidade Funcional , Galactose Oxidase/química , Oxigênio/química , Oxigênio/metabolismo , Espectrometria por Raios X
11.
J Am Chem Soc ; 142(44): 18753-18757, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33091303

RESUMO

Galactose oxidase (GAO) contains a Cu(II)-ligand radical cofactor. The cofactor, which is autocatalytically generated through the oxidation of the copper, consists of a cysteine-tyrosine radical (Cys-Tyr•) as a copper ligand. The formation of the cross-linked thioether bond is accompanied by a C-H bond scission on Tyr272 with few details known thus far. Here, we report the genetic incorporation of 3,5-dichlorotyrosine (Cl2-Tyr) and 3,5-difluorotyrosine (F2-Tyr) to replace Tyr272 in the GAOV previously optimized for expression through directed evolution. The proteins with an unnatural tyrosine residue are catalytically competent. We determined the high-resolution crystal structures of the GAOV, Cl2-Tyr272, and F2-Tyr272 incorporated variants at 1.48, 1.23, and 1.80 Šresolution, respectively. The structural data showed only one halogen remained in the cofactor, indicating that an oxidative carbon-chlorine/fluorine bond scission has occurred during the autocatalytic process of cofactor biogenesis. Using hydroxyurea as a radical scavenger, the spin-coupled hidden Cu(II) was observed by EPR spectroscopy. Thus, the structurally defined catalytic center with genetic unnatural tyrosine substitution is in the radical containing form as in the wild-type, i.e., Cu(II)-(Cl-Tyr•-Cys) or Cu(II)-(F-Tyr•-Cys). These findings illustrate a previously unobserved C-F/C-Cl bond cleavage in biology mediated by a mononuclear copper center.


Assuntos
Carbono/química , Cobre/química , Flúor/química , Radicais Livres/química , Galactose Oxidase/metabolismo , Tirosina/química , Catálise , Cristalografia por Raios X , Evolução Molecular Direcionada , Espectroscopia de Ressonância de Spin Eletrônica , Galactose Oxidase/química , Galactose Oxidase/genética , Cinética , Ligantes , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Terciária de Proteína , Tirosina/análogos & derivados , Tirosina/metabolismo
12.
Chem Commun (Camb) ; 56(57): 7949-7952, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32531011

RESUMO

Multi-enzyme cascades utilising variants of galactose oxidase and imine reductase led to the successful conversion of N-Cbz-protected l-ornithinol and l-lysinol to l-3-N-Cbz-aminopiperidine and l-3-N-Cbz-aminoazepane respectively, in up to 54% isolated yield. Streamlining the reactions into one-pot prevented potential racemisation of key labile intermediates and led to products with high enantiopurity.


Assuntos
Azepinas/metabolismo , Galactose Oxidase/metabolismo , Iminas/metabolismo , Oxirredutases/metabolismo , Piperidinas/metabolismo , Azepinas/química , Estrutura Molecular , Piperidinas/química
13.
Anal Chem ; 92(10): 7232-7239, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32297503

RESUMO

Lipid rafts, highly ordered cell membrane domains mainly composed of cholesterol, sphingolipids, and protein receptors, serve as important functional platforms for regulation of lipid/protein interactions. The major predicament in lipid raft study is the lack of direct and robust visualization tools for in situ tracking raft components. To solve this issue, we herein report a proximity enzymatic glyco-remodeling strategy for direct and highly efficient lipid raft labeling and imaging on live cells. Through cofunctionalization of raft-specific recognition motif and glycan-remodeling enzyme on gold nanoparticles, the fabricated nanoprobe can be specifically guided to the raft domains to perform catalytic remodeling on neighboring glycans. Taking advantage of the abundant glycoconjugates enriched in lipid rafts, this elaborate design achieves the translation of one raft-recognition event to multiple raft-confined labeling operations, thus, significantly increasing the labeling efficiency and imaging sensitivity. The direct covalent labeling also enables in situ and long-term tracking of raft components in live cells. The method possesses broad applicability and potential expansibility, thus, will greatly facilitate the investigations on the complex composition, organization, and dynamics of lipid rafts.


Assuntos
Toxina da Cólera/metabolismo , Galactose Oxidase/metabolismo , Lipídeos/análise , Polissacarídeos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Toxina da Cólera/química , Galactose Oxidase/química , Ouro/química , Ouro/metabolismo , Humanos , Nanopartículas Metálicas/química , Polissacarídeos/química , Células Tumorais Cultivadas
14.
Dalton Trans ; 49(4): 960-965, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31907502

RESUMO

Metalloenzymes catalyze many important reactions by managing the proton and electron flux at the enzyme active site. The motifs utilized to facilitate these transformations include hemilabile, redox-active, and so called proton responsive sites. Given the importance of incorporating and understanding these motifs in the area of coordination chemistry and catalysis, we highlight recent milestones in the field. Work incorporating the triad of hemilability, redox-activity, and proton responsivity into single ligand scaffolds will be described.


Assuntos
Domínio Catalítico , Galactose Oxidase/química , Galactose Oxidase/metabolismo , Prótons , Ligantes , Modelos Moleculares , Oxirredução , Conformação Proteica
15.
Mol Biotechnol ; 61(9): 633-649, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177409

RESUMO

Galactose oxidase catalyzes a two-electron oxidation, mainly from the C6 hydroxyl group of D-galactose, with the concomitant reduction of water to hydrogen peroxide. This enzyme is secreted by Fusarium species and has several biotechnological applications. In this study, a screening of galactose oxidase production among species of the Fusarium fujikuroi species complex demonstrated Fusarium subglutinans to be the main producer. The truncated F. subglutinans gaoA gene coding for the mature galactose oxidase was expressed from the prokaryotic vector pTrcHis2B in the E. coli Rosetta™ (DE3) strain. The purified recombinant enzyme presented temperature and pH optima of 30 °C and 7.0, respectively, KM of 132.6 ± 18.18 mM, Vmax of 3.2 ± 0.18 µmol of H2O2/min, kcat of 12,243 s-1, and a catalytic efficiency (kcat/KM) of 9.2 × 104 M-1 s-1. In the presence of 50% glycerol, the enzyme showed a T50 of 59.77 °C and was stable for several hours at pH 8.0 and 4 °C. Besides D-(+)-galactose, the purified enzyme also acted against D-(+)-raffinose, α-D-(+)-melibiose, and methyl-α-D-galactopyranoside, and was strongly inhibited by SDS. Although the F. subglutinans gaoA gene was successfully expressed in E. coli, its endogenous transcription was not confirmed by RT-PCR.


Assuntos
Fusarium/enzimologia , Galactose Oxidase/metabolismo , Galactose/química , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fusarium/química , Galactose/metabolismo , Galactose Oxidase/química , Galactose Oxidase/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Concentração de Íons de Hidrogênio , Melibiose/química , Melibiose/metabolismo , Metilgalactosídeos/química , Metilgalactosídeos/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Rafinose/química , Rafinose/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
16.
Chemistry ; 25(44): 10505-10510, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31173420

RESUMO

Precision cell-selective surface glycan remodeling is of vital importance for modulation of cell surface dynamics, tissue-specific imaging, and immunotherapy, but remains an unsolved challenge. Herein, we report a switchable enzymatic accessibility (SEA) strategy for highly specific editing of carbohydrate moieties of interest on the target cell surface. We demonstrate the blocking of enzyme in the inaccessible state with a metal-organic framework (MOF) cage and instantaneous switching to the accessible state through disassembly of MOF. We further show that this level of SEA regulation enables initial guided enzyme delivery to the target cell surface for subsequent cell-specific glycan remodeling, thus providing a temporally and spatially controlled tool for tuning the glycosylation architectures. Terminal galactose/N-acetylgalactosamine (Gal/GalNAc) remodeling and terminal sialic acid (Sia) desialylation have been precisely achieved on target cells even with other cell lines in close spatial proximity. The SEA protocol features a modular and generically adaptable design, a very short protocol duration (ca. 30 min or shorter), and a very high spatial resolving power (ability to differentiate immediately neighboring cell lines).


Assuntos
Membrana Celular/enzimologia , Polissacarídeos/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Aptâmeros de Nucleotídeos/química , Biocatálise , Membrana Celular/química , Ativação Enzimática , Galactose/química , Galactose/metabolismo , Galactose Oxidase/antagonistas & inibidores , Galactose Oxidase/metabolismo , Glicosilação , Células Hep G2 , Humanos , Células MCF-7 , Estruturas Metalorgânicas/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Imagem Óptica/métodos , Polissacarídeos/química , Propriedades de Superfície
17.
Plant Cell ; 31(4): 809-831, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30852555

RESUMO

Cell-to-cell adhesion is essential for establishment of multicellularity. In plants, such adhesion is mediated through a middle lamella composed primarily of pectic polysaccharides. The molecular interactions that influence cell-to-cell adhesion are not fully understood. We have used Arabidopsis (Arabidopsis thaliana) seed coat mucilage as a model system to investigate interactions between cell wall carbohydrates. Using a forward-genetic approach, we have discovered a gene, RUBY PARTICLES IN MUCILAGE (RUBY), encoding a protein that is annotated as a member of the Auxiliary Activity 5 (AA5) family of Carbohydrate-Active Enzymes (Gal/glyoxal oxidases) and is secreted to the apoplast late in the differentiation of seed coat epidermal cells. We show that RUBY is required for the Gal oxidase activity of intact seeds; the oxidation of Gal in side-chains of rhamnogalacturonan-I (RG-I) present in mucilage-modified2 (mum2) mucilage, but not in wild-type mucilage; the retention of branched RG-I in the seed following extrusion; and the enhancement of cell-to-cell adhesion in the seed coat epidermis. These data support the hypothesis that RUBY is a Gal oxidase that strengthens pectin cohesion within the middle lamella, and possibly the mucilage of wild-type seed coat epidermal cells, through oxidation of RG-I Gal side-chains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactose Oxidase/metabolismo , Pectinas/metabolismo , Sementes/metabolismo , Galactose Oxidase/genética , Regulação da Expressão Gênica de Plantas/fisiologia
18.
Anal Chem ; 91(6): 4195-4203, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30794380

RESUMO

The cell surface is normally covered with sugars that are bound to lipids or proteins. Surface glycoproteins play critically important roles in many cellular events, including cell-cell communications, cell-matrix interactions, and response to environmental cues. Aberrant protein glycosylation on the cell surface is often a hallmark of human diseases such as cancer and infectious diseases. Global analysis of surface glycoproteins will result in a better understanding of glycoprotein functions and the molecular mechanisms of diseases and the discovery of surface glycoproteins as biomarkers and drug targets. Here, an enzyme is exploited to tag surface glycoproteins, generating a chemical handle for their selective enrichment prior to mass spectrometric (MS) analysis. The enzymatic reaction is very efficient, and the reaction conditions are mild, which are well-suited for surface glycoprotein tagging. For biologically triplicate experiments, on average 953 N-glycosylation sites on 393 surface glycoproteins per experiment were identified in MCF7 cells. Integrating chemical and enzymatic reactions with MS-based proteomics, the current method is highly effective to globally and site-specifically analyze glycoproteins only located on the cell surface. Considering the importance of surface glycoproteins, this method is expected to have extensive applications to advance glycoscience.


Assuntos
Membrana Celular/metabolismo , Galactose Oxidase/metabolismo , Marcação por Isótopo/métodos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Glicosilação , Humanos , Células MCF-7
19.
Talanta ; 185: 123-131, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759178

RESUMO

Galactose oxidase is a copper-activated enzyme and have a vital role in metabolism of galactose. Much of the work is focused on determining the amount of galactose in the blood rather than measuring the amount of galactose oxidase to urge the galactosemia patients to restrict milk intake. Here, a simple and effective method was developed for Cu2+ and copper-activated enzyme detection based on homogenous alloyed CdZnTeS quantum dots (QDs). Meso- 2,3-dimercaptosuccinic acid (DMSA) was used as the reducing agent for preparing QDs and the highest quantum yield of CdZnTeS QDs was 69.4%. In addition, the as-prepared CdZnTeS QDs show superior fluorescence properties, such as good photo-/chemical stability. The DMSA was the surface ligand of the QDs, containing abundant -SH and -COOH, thus the surface ligands have a high affinity with Cu2+. Therefore, this developed probe can be applied for Cu2+ and galactose oxidase detection and shows a good sensitivity in the buffer. Then, this probe was successfully used for Cu2+ and galactose oxidase detection in real samples with the satisfactory results. The proposed fluorescence quenching strategy gives a new and simple insight for enzyme assay without the enzyme-catalyzed reaction.


Assuntos
Cádmio/química , Cobre/análise , Galactose Oxidase/análise , Pontos Quânticos/química , Telúrio/química , Zinco/química , Cádmio/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Cobre/metabolismo , Relação Dose-Resposta a Droga , Fluorescência , Galactose Oxidase/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Tamanho da Partícula , Espectrometria de Fluorescência , Relação Estrutura-Atividade , Propriedades de Superfície , Telúrio/farmacologia , Zinco/farmacologia
20.
Appl Microbiol Biotechnol ; 102(11): 4687-4702, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29700569

RESUMO

New biomaterials from renewable sources and the development of "functionalized biopolymers" are fields of growing industrial interest. Plant polysaccharides represent a valid alternative to traditional synthetic polymers, which are obtained from monomers of fossil, non-renewable origin. Several polysaccharides, either in their natural or chemically/biochemically modified forms, are currently employed in the biomedical, food and feed, and industrial fields, including packaging. Sustainable biochemical reactions, such as enzyme modifications of polysaccharides, open further possibilities for new product and process innovation. In the present review, we summarize the recent progress on enzyme oxidation of galactomannans (GM) from few leguminous plants (performed either with galactose oxidase or laccase) and we focus on the versatile and easily accessible laccase/TEMPO oxidative reaction. The latter causes a steep viscosity increase of GM water solutions and a transition of the gels from a viscous to an elastic form, due to formation of emiacetalic bonds and thus of internal cross-linking of the polymers. Following lyophilization of these hydrogels, stable aerogels can be obtained, which were shown to have good potential as delivery systems (DS) of actives. The active molecules tested and herewith described are polymyxin B, an antibiotic; nisin, an antimicrobial peptide; the enzymes lysozyme, protease and lipase; the mixture of the industrial microbiocides 5-chloro-2-methyl-4-isothiazolin-3-one (CIT) and 2-methyl-4-isothiazolin-3-one (MIT). The advantages of such aerogel systems and the possibilities they open for future developments, including as DS, are described.


Assuntos
Materiais Biocompatíveis/metabolismo , Sistemas de Liberação de Medicamentos , Lacase/metabolismo , Mananas/metabolismo , Galactose/análogos & derivados , Galactose Oxidase/metabolismo , Oxirredução , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...