Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Gastric Cancer ; 24(3): 300-315, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38960889

RESUMO

PURPOSE: Gastric cancer (GC) is among the deadliest malignancies and the third leading cause of cancer-related deaths worldwide. Galectin-1 (Gal-1) is a primary protein secreted by cancer-associated fibroblasts (CAFs); however, its role and mechanisms of action of Gal-1 in GC remain unclear. In this study, we stimulated GC cells with exogenous human recombinant galectin-1 protein (rhGal-1) to investigate its effects on the proliferation, migration, and resistance to cisplatin. MATERIALS AND METHODS: We used simulated rhGal-1 protein as a paracrine factor produced by CAFs to induce GC cells and investigated its promotional effects and mechanisms in GC progression and cisplatin resistance. Immunohistochemical (IHC) assay confirmed that Gal-1 expression was associated with clinicopathological parameters and correlated with the expression of neuropilin-1 (NRP-1), c-JUN, and Wee1. RESULTS: Our study reveals Gal-1 expression was significantly associated with poor outcomes. Gal-1 boosts the proliferation and metastasis of GC cells by activating the NRP-1/C-JUN/Wee1 pathway. Gal-1 notably increases GC cell resistance to cisplatin The NRP-1 inhibitor, EG00229, effectively counteracts these effects. CONCLUSIONS: These findings revealed a potential mechanism by which Gal-1 promotes GC growth and contributes to chemoresistance, offering new therapeutic targets for the treatment of GC.


Assuntos
Proliferação de Células , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Galectina 1 , Neuropilina-1 , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Galectina 1/genética , Galectina 1/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Proliferação de Células/efeitos dos fármacos , Masculino , Feminino , Progressão da Doença , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Pessoa de Meia-Idade , Camundongos , Animais , Movimento Celular/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/patologia
2.
Commun Biol ; 7(1): 837, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982284

RESUMO

Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.


Assuntos
Peptídeos , Humanos , Peptídeos/metabolismo , Peptídeos/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/química , Galectina 1/metabolismo , Galectina 1/química , Galectina 1/genética , Ligação Proteica , Transdução de Sinais
3.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000527

RESUMO

Mast cells are essential immune cells involved in the host's defence against gastrointestinal nematodes. To evade the immune response, parasitic nematodes produce a variety of molecules. Galectin 1, produced by Teladorsagia circumcincta (Tci-gal-1), reduces mast cell degranulation and selectively regulates mediator production and release in an IgE-dependent manner. To uncover the activity of Tci-gal-1, we have examined the effect of the protein on gene expression, protein production, and apoptosis in activated basophilic leukaemia RBL-2H3 cells. Rat RBL-2H3 cells were activated with anti-DNP IgE and DNP-HSA, and then treated with Tci-gal-1. Microarray analysis was used to examine gene expression. The levels of several apoptosis-related molecules and cytokines were determined using antibody arrays and ELISA. Early and late apoptosis was evaluated cytometrically. Degranulation of cells was determined by a ß-hexosaminidase release assay. Treatment of activated RBL-2H3 cells with Tci-gal-1 resulted in inhibited apoptosis and decreased degranulation, although we did not detect significant changes in gene expression. The production of pro-apoptotic molecules, receptor for advanced glycation end products (RAGE) and Fas ligand (FasL), and the cytokines IL-9, IL-10, IL-13, TNF-α, and IL-2 was strongly inhibited. Tci-gal-1 modulates apoptosis, degranulation, and production of cytokines by activated RBL-2H3 cells without detectable influence on gene transcription. This parasite protein is crucial for modulation of the protective immune response and the inhibition of chronic inflammation driven by mast cell activity.


Assuntos
Apoptose , Degranulação Celular , Imunoglobulina E , Leucemia Basofílica Aguda , Animais , Ratos , Imunoglobulina E/imunologia , Linhagem Celular Tumoral , Leucemia Basofílica Aguda/metabolismo , Leucemia Basofílica Aguda/imunologia , Leucemia Basofílica Aguda/patologia , Mastócitos/imunologia , Mastócitos/metabolismo , Citocinas/metabolismo , Galectinas/metabolismo , Proteínas de Helminto/farmacologia , Proteínas de Helminto/metabolismo , Galectina 1/metabolismo , Galectina 1/genética
4.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000066

RESUMO

Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used 15N and 13C HSQC NMR spectroscopy to gain structural insight into the CuSO4-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.


Assuntos
Cisteína , Galectina 1 , Oxirredução , Galectina 1/metabolismo , Galectina 1/química , Galectina 1/genética , Humanos , Cisteína/metabolismo , Cisteína/química , Dissulfetos/metabolismo , Dissulfetos/química , Dobramento de Proteína , Desdobramento de Proteína , Modelos Moleculares , Lactose/metabolismo , Lactose/química , Mutagênese Sítio-Dirigida
5.
Talanta ; 278: 126460, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968660

RESUMO

The detection of HPV infection and microbial colonization in cervical lesions is currently done through PCR-based viral or bacterial DNA amplification. Our objective was to develop a methodology to expand the metaproteomic landscape of cervical disease and determine if protein biomarkers from both human and microbes could be detected in distinct cervical samples. This would lead to the development of multi-species proteomics, which includes protein-based lateral flow diagnostics that can define patterns of microbes and/or human proteins relevant to disease status. In this study, we collected both non-frozen tissue biopsy and exfoliative non-fixed cytology samples to assess the consistency of detecting human proteomic signatures between the cytology and biopsy samples. Our results show that proteomics using biopsies or cytologies can detect both human and microbial organisms. Across patients, Lumican and Galectin-1 were most highly expressed human proteins in the tissue biopsy, whilst IL-36 and IL-1RA were most highly expressed human proteins in the cytology. We also used mass spectrometry to assess microbial proteomes known to reside based on prior 16S rRNA gene signatures. Lactobacillus spp. was the most highly expressed proteome in patient samples and specific abundant Lactobacillus proteins were identified. These methodological approaches can be used in future metaproteomic clinical studies to interrogate the vaginal human and microbiome structure and metabolic diversity in cytologies or biopsies from the same patients who have pre-invasive cervical intraepithelial neoplasia, invasive cervical cancer, as well as in healthy controls to assess how human and pathogenic proteins may correlate with disease presence and severity.


Assuntos
Biomarcadores , Colo do Útero , Proteômica , Humanos , Feminino , Proteômica/métodos , Colo do Útero/microbiologia , Colo do Útero/patologia , Biópsia , Biomarcadores/análise , Biomarcadores/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/microbiologia , Lactobacillus , Galectina 1/metabolismo , Galectina 1/análise , Galectina 1/genética , Lumicana , Adulto , Microbiota
6.
Front Immunol ; 15: 1372956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953033

RESUMO

Our study aimed to elucidate the role of Galectin-1 (Gal-1) role in the immunosuppressive tumor microenvironment (TME) of prostate cancer (PCa). Our previous findings demonstrated a correlation between elevated Gal-1 expression and advanced PCa stages. In this study, we also observed that Gal-1 is expressed around the tumor stroma and its expression level is associated with PCa progression. We identified that Gal-1 could be secreted by PCa cells, and secreted Gal-1 has the potential to induce T cell apoptosis. Gal-1 knockdown or inhibition of Gal-1 function by LLS30 suppresses T cell apoptosis resulting in increased intratumoral T cell infiltration. Importantly, LLS30 treatment significantly improved the antitumor efficacy of anti-PD-1 in vivo. Mechanistically, LLS30 binds to the carbohydrate recognition domain (CRD) of Gal-1, disrupting its binding to CD45 leading to the suppression of T cell apoptosis. In addition, RNA-seq analysis revealed a novel mechanism of action for LLS30, linking its tumor-intrinsic oncogenic effects to anti-tumor immunity. These findings suggested that tumor-derived Gal-1 contributes to the immunosuppressive TME in PCa by inducing apoptosis in effector T cells. Targeting Gal-1 with LLS30 may offer a strategy to enhance anti-tumor immunity and improve immunotherapy.


Assuntos
Apoptose , Galectina 1 , Imunoterapia , Neoplasias da Próstata , Linfócitos T , Microambiente Tumoral , Masculino , Galectina 1/genética , Galectina 1/metabolismo , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Humanos , Animais , Microambiente Tumoral/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Camundongos , Imunoterapia/métodos , Linhagem Celular Tumoral , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo
7.
Cell Death Dis ; 15(7): 482, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965225

RESUMO

Leukemia stem cells (LSCs) are recognized as the root cause of leukemia initiation, relapse, and drug resistance. Lipid species are highly abundant and essential component of human cells, which often changed in tumor microenvironment. LSCs remodel lipid metabolism to sustain the stemness. However, there is no useful lipid related biomarker has been approved for clinical practice in AML prediction and treatment. Here, we constructed and verified fatty acid metabolism-related risk score (LFMRS) model based on TCGA database via a series of bioinformatics analysis, univariate COX regression analysis, and multivariate COX regression analysis, and found that the LFMRS model could be an independent risk factor and predict the survival time of AML patients combined with age. Moreover, we revealed that Galectin-1 (LGALS1, the key gene of LFMRS) was highly expressed in LSCs and associated with poor prognosis of AML patients, and LGALS1 repression inhibited AML cell and LSC proliferation, enhanced cell apoptosis, and decreased lipid accumulation in vitro. LGALS1 repression curbed AML progression, lipid accumulation, and CD8+ T and NK cell counts in vivo. Our study sheds light on the roles of LFMRS (especially LGALS1) model in AML, and provides information that may help clinicians improve patient prognosis and develop personalized treatment regimens for AML.


Assuntos
Ácidos Graxos , Galectina 1 , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Galectina 1/metabolismo , Galectina 1/genética , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Masculino , Animais , Feminino , Camundongos , Fatores de Risco , Microambiente Tumoral , Linhagem Celular Tumoral , Apoptose , Proliferação de Células , Prognóstico , Pessoa de Meia-Idade
8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928409

RESUMO

The beta-galactoside-binding mammalian lectin galectin-1 can bind, via its carbohydrate recognition domain (CRD), to various cell surface glycoproteins and has been implicated in a range of cancers. As a consequence of binding to sugar residues on cell surface receptors, it has been shown to have a pleiotropic effect across many cell types and mechanisms, resulting in immune system modulation and cancer progression. As a result, it has started to become a therapeutic target for both small and large molecules. In previous studies, we used fluorescence polarization (FP) assays to determine KD values to screen and triage small molecule glycomimetics that bind to the galectin-1 CRD. In this study, surface plasmon resonance (SPR) was used to compare human and mouse galectin-1 affinity measures with FP, as SPR has not been applied for compound screening against this galectin. Binding affinities for a selection of mono- and di-saccharides covering a 1000-fold range correlated well between FP and SPR assay formats for both human and mouse galectin-1. It was shown that slower dissociation drove the increased affinity at human galectin-1, whilst faster association was responsible for the effects in mouse galectin-1. This study demonstrates that SPR is a sound alternative to FP for early drug discovery screening and determining affinity estimates. Consequently, it also allows association and dissociation constants to be measured in a high-throughput manner for small molecule galectin-1 inhibitors.


Assuntos
Galectina 1 , Ligação Proteica , Ressonância de Plasmônio de Superfície , Galectina 1/metabolismo , Galectina 1/antagonistas & inibidores , Galectina 1/química , Ressonância de Plasmônio de Superfície/métodos , Humanos , Animais , Camundongos , Cinética , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Polarização de Fluorescência/métodos
9.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928462

RESUMO

Galectins are a family of beta-galactoside-binding proteins that are characterised by their carbohydrate recognition domain (CRD) and include galectin-1 and galectin-3. These galectins have been implicated in numerous diseases due to their pleiotropic nature, including cancer and fibrosis, with therapeutic inhibitors being clinically developed to block the CRD. One of the early methods developed to characterise these galectins was the hemagglutination of red blood cells. Although it is insightful, this approach has been hampered by a lack of sensitivity and accurate quantification of the agglutination observed. In this study, we aimed to validate a more precise and quantitative method to enable the further investigation of differences between galectins in respect to agglutination induction in different blood groups, as well as the characterisation of small molecule inhibitors. Quantification of hemagglutination was shown to be optimal using U-bottom plates imaged and analysed with FIJI ImageJ rather than flat-bottom plates read for absorbance on an optical density plate reader. Galectin-3-induced red blood cell agglutination efficacy increased significantly from blood group O to A to B. However, for both the galectin-1 monomer and concatemer, a more comparable effect was observed between blood group B and O, but with more potent effects than in blood group A. Inhibition assays for both galectin-3 and galectin-1 induced-hemagglutination were able to demonstrate clear concentration responses and expected selectivity profiles for a set of small-molecule glycomimetics, confirming the historical profiles obtained in biochemical binding and functional cellular assays.


Assuntos
Eritrócitos , Galectina 1 , Galectinas , Hemaglutinação , Humanos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Galectinas/antagonistas & inibidores , Galectinas/metabolismo , Galectina 1/antagonistas & inibidores , Galectina 1/metabolismo , Galectina 3/antagonistas & inibidores , Galectina 3/metabolismo , Testes de Aglutinação/métodos , Testes de Hemaglutinação , Aglutinação/efeitos dos fármacos
10.
Clin Oral Investig ; 28(6): 309, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743248

RESUMO

OBJECTIVES: This study aimed to explore the effect of nonsurgical periodontal treatment on Galectin-1 and -3 GCF levels in gingivitis and periodontitis stage III compared to periodontally healthy individuals, to determine whether they could serve as diagnostic markers / therapeutic targets for periodontitis and revealing their possible role in periodontal disease. MATERIALS AND METHODS: Forty-five systemically healthy participants were included and equally subdivided into three groups: gingivitis, periodontitis (stage III), and a periodontally healthy control group. The clinical parameters were recorded. Galectin-1 and -3 GCF levels were evaluated (before and after non-surgical treatment for periodontitis) using an enzyme linked immune-sorbent assay (ELISA) kit. Receiver operating characteristic (ROC) curve was performed to reveal sensitivity, specificity, predictive value, and diagnostic accuracy of both markers. RESULTS: The study showed statistical significance between different groups regarding Galectin-3 with higher values in periodontitis and the lowest values in healthy control. Also, Galectin-1 was significantly higher in the periodontitis/gingivitis groups than in the control group. Moreover, non-surgical periodontal treatment in periodontitis patients caused a statistical reduction in clinical parameters and biomarkers. ROC analysis revealed excellent diagnostic ability of both biomarkers in discriminating periodontitis/gingivitis against healthy individuals (100% diagnostic accuracy for Galectin-1 and 93% for Galectin-3, AUC > 0.9) and acceptable diagnostic ability between periodontitis participants against gingivitis (73% diagnostic accuracy for Gal-1 and 80% for Gal-3, AUC > 0.7). CONCLUSIONS: Both Galectin-1 and Galectin-3 seem to have outstanding diagnostic accuracy for the identification of periodontal disease, an acceptable ability to measure periodontal disease activity and the severity of inflammatory status. Additionally, they could serve as therapeutic targets to monitor treatment efficiency. CLINICALTRIAL: GOV REGISTRATION NUMBER: (NCT06038812).


Assuntos
Biomarcadores , Ensaio de Imunoadsorção Enzimática , Galectina 1 , Líquido do Sulco Gengival , Periodontite , Humanos , Masculino , Feminino , Estudos de Casos e Controles , Adulto , Biomarcadores/análise , Periodontite/terapia , Periodontite/metabolismo , Líquido do Sulco Gengival/química , Galectina 1/metabolismo , Galectina 1/análise , Galectina 3/metabolismo , Sensibilidade e Especificidade , Pessoa de Meia-Idade , Gengivite/terapia , Gengivite/metabolismo , Galectinas , Índice Periodontal , Resultado do Tratamento
11.
J Med Chem ; 67(11): 9374-9388, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38804039

RESUMO

We have previously described a new series of selective and orally available galectin-1 inhibitors resulting in the thiazole-containing glycomimetic GB1490. Here, we show that the introduction of polar substituents to the thiazole ring results in galectin-1-specific compounds with low nM affinities. X-ray structural analysis of a new ligand-galectin-1 complex shows changes in the binding mode and ligand-protein hydrogen bond interactions compared to the GB1490-galectin-1 complex. These new high affinity ligands were further optimized with respect to affinity and ADME properties resulting in the galectin-1-selective GB1908 (Kd galectin-1/3 0.057/6.0 µM). In vitro GB1908 inhibited galectin-1-induced apoptosis in Jurkat cells (IC50 = 850 nM). Pharmacokinetic experiments in mice revealed that a dose of 30 mg/kg b.i.d. results in free levels of GB1908 in plasma over galectin-1 Kd for 24 h. GB1908 dosed with this regimen reduced the growth of primary lung tumor LL/2 in a syngeneic mouse model.


Assuntos
Antineoplásicos , Galectina 1 , Neoplasias Pulmonares , Galectina 1/antagonistas & inibidores , Galectina 1/metabolismo , Humanos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Administração Oral , Apoptose/efeitos dos fármacos , Relação Estrutura-Atividade , Células Jurkat , Descoberta de Drogas , Cristalografia por Raios X , Tiazóis/farmacocinética , Tiazóis/farmacologia , Tiazóis/química
12.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750548

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Assuntos
Endocitose , Galectina 1 , Galectinas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Animais , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
13.
Int J Obes (Lond) ; 48(8): 1180-1189, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38777863

RESUMO

OBJECTIVES: Experimental studies indicate a role for galectin-1 and galectin-3 in metabolic disease, but clinical evidence from larger populations is limited. METHODS: We measured circulating levels of galectin-1 and galectin-3 in the Prospective investigation of Obesity, Energy and Metabolism (POEM) study, participants (n = 502, all aged 50 years) and characterized the individual association profiles with metabolic markers, including clinical measures, metabolomics, adipose tissue distribution (Imiomics) and proteomics. RESULTS: Galectin-1 and galectin-3 were associated with fatty acids, lipoproteins and triglycerides including lipid measurements in the metabolomics analysis adjusted for body mass index (BMI). Galectin-1 was associated with several measurements of adiposity, insulin secretion and insulin sensitivity, while galectin-3 was associated with triglyceride-glucose index (TyG) and fasting insulin levels. Both galectins were associated with inflammatory pathways and fatty acid binding protein (FABP)4 and -5-regulated triglyceride metabolic pathways. Galectin-1 was also associated with several proteins related to adipose tissue differentiation. CONCLUSIONS: The association profiles for galectin-1 and galectin-3 indicate overlapping metabolic effects in humans, while the distinctly different associations seen with fat mass, fat distribution, and adipose tissue differentiation markers may suggest a functional role of galectin-1 in obesity.


Assuntos
Galectina 1 , Galectina 3 , Humanos , Galectina 1/sangue , Galectina 1/metabolismo , Pessoa de Meia-Idade , Masculino , Estudos Transversais , Feminino , Galectina 3/sangue , Galectina 3/metabolismo , Estudos Prospectivos , Obesidade/metabolismo , Obesidade/sangue , Proteínas Sanguíneas/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Metabolômica/métodos , Resistência à Insulina/fisiologia , Galectinas/metabolismo , Galectinas/sangue , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Multiômica
14.
Cell Adh Migr ; 18(1): 1-11, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38557441

RESUMO

We aimed to investigate galectin-1 overexpression induces normal fibroblasts (NFs) translates into cancer-associated fibroblasts (CAFs). Galectin-1 overexpression was conducted in Human embryonic lung fibroblasts (HFL1) cell. The motilities of H1299 and A549 cells were measured. Human umbilical vein endothelial cell (HUVEC) proliferation and tube formation ability were assessed. Tumor volume and tumor weight was recorded. Cells motilities were increased, while apoptosis rates were decreased after CMs co-cultured. B-cell lymphoma-2 (Bcl-2) expression level was increased, while Bcl2-associatedX (Bax) and cleaved-caspase3 decreased. CMs treatment enhanced HUVEC proliferation and tube formation. Tumor volume and weight in CMs treated mice were increased, and the sensitivity of anlotinib in co-cultured cells was decreased. Our results revealed that galectin-1 overexpression induced NFs translated into CAFs.


Assuntos
Fibroblastos Associados a Câncer , Galectina 1 , Indóis , Neoplasias Pulmonares , Quinolinas , Animais , Humanos , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Proliferação de Células , Fibroblastos/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
15.
Future Med Chem ; 16(9): 843-857, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606540

RESUMO

Aim: To develop novel non-carbohydrate inhibitors of human galectin-1 (GAL-1), we have designed a series of coumarin-benzimidazole hybrids. Methods: We synthesized and characterized the coumarin-benzimidazole hybrids and further evaluated them using an in vitro GAL-1 enzyme-linked immunosorbent assay and in silico methods. Results: Among all, the compounds 6p and 6q were found to be potent, with GAL-1 inhibition of 37.61 and 36.92%, respectively, at 10 µM in GAL-1-expressed cell culture supernatant of MCF-7 cells. These two compounds are feasible for fluorine-18 radiolabeling to develop GAL-1 selective PET radiotracers. Computational studies revealed strong binding interactions of GAL-1 with these novel coumarin-benzimidazole hybrids. Conclusion: Coumarin-benzimidazole hybrids can serve as potential leads to develop selective non-carbohydrate GAL-1 inhibitors for cancer therapy.


[Box: see text].


Assuntos
Benzimidazóis , Cumarínicos , Desenho de Fármacos , Galectina 1 , Humanos , Galectina 1/antagonistas & inibidores , Galectina 1/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Cumarínicos/síntese química , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Células MCF-7 , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular
16.
J Nucl Med ; 65(5): 728-734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514084

RESUMO

Immune checkpoint blockade (ICB) has achieved groundbreaking results in clinical cancer therapy; however, only a subset of patients experience durable benefits. The aim of this study was to explore strategies for predicting tumor responses to optimize the intervention approach using ICB therapy. Methods: We used a bilateral mouse model for proteomics analysis to identify new imaging biomarkers for tumor responses to ICB therapy. A PET radiotracer was synthesized by radiolabeling the identified biomarker-targeting antibody with 124I. The radiotracer was then tested for PET prediction of tumor responses to ICB therapy. Results: We identified galectin-1 (Gal-1), a member of the carbohydrate-binding lectin family, as a potential negative biomarker for ICB efficacy. We established that Gal-1 inhibition promotes a sensitive immune phenotype within the tumor microenvironment (TME) for ICB therapy. To assess the pre-ICB treatment status of the TME, a Gal-1-targeted PET radiotracer, 124I-αGal-1, was developed. PET imaging with 124I-αGal-1 showed the pretreatment immunosuppressive status of the TME before the initiation of therapy, thus enabling the prediction of ICB resistance in advance. Moreover, the use of hydrogel scaffolds loaded with a Gal-1 inhibitor, thiodigalactoside, demonstrated that a single dose of thiodigalactoside-hydrogel significantly potentiated ICB and adoptive cell transfer immunotherapies by remodeling the immunosuppressive TME. Conclusion: Our study underscores the potential of Gal-1-targeted PET imaging as a valuable strategy for early-stage monitoring of tumor responses to ICB therapy. Additionally, Gal-1 inhibition effectively counteracts the immunosuppressive TME, resulting in enhanced immunotherapy efficacy.


Assuntos
Galectina 1 , Imunoterapia , Tomografia por Emissão de Pósitrons , Microambiente Tumoral , Galectina 1/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Feminino , Resultado do Tratamento , Radioisótopos do Iodo , Humanos
17.
Pest Manag Sci ; 80(8): 4024-4033, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38554050

RESUMO

BACKGROUND: Galectins (GALs) are a family of mammalian sugar-binding proteins specific for ß-galactosides. Our previous studies have shown that the larval development of the diamondback moth (Plutella xylostella) is significantly disturbed when fed with recombinant mammalian galectin 1 (GAL1) derived from Escherichia coli. To further explore its applicability, two GAL1-overexpressed Arabidopsis [GAL1-Arabidopsis (whole plant) and GAL1-Arabidopsis-vas (vascular bundle-specific)] lines were established for insecticidal activity and mechanism studies. RESULTS: The expression level of GAL1 in transgenic Arabidopsis is 1-0.5% (GAL1-Arabidopsis) and 0.08-0.01% (GAL1-Arabidopsis-vas) of total leaf soluble protein. Survival, body weight, and food consumption significantly decreased in a time-dependent manner in P. xylostella larvae (with chewing mouthparts) fed on GAL1-Arabidopsis. The mortality of Kolla paulula (with piercing-sucking mouthparts and xylem feeder) fed on GAL1-Arabidopsis-vas was also significantly higher than that fed on wild-type Arabidopsis (WT-Arabidopsis), but was lower than that fed on GAL1-Arabidopsis. The histochemical structure and results of immunostaining suggested that the binding of GAL1 to the midgut epithelium of P. xylostella fed on GAL1-Arabidopsis was dose- and time-dependent. Ultrastructural studies further showed the disruption of microvilli, abnormalities in epithelial cells, and fragments of the peritrophic membrane (PM) in P. xylostella larvae fed on GAL1-Arabidopsis. CONCLUSION: The insecticidal mechanism of GAL1 involves interference with PM integrity and suggests that GAL1 is a potential candidate for bioinsecticide development. © 2024 Society of Chemical Industry.


Assuntos
Arabidopsis , Galectina 1 , Inseticidas , Larva , Mariposas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/metabolismo , Animais , Mariposas/crescimento & desenvolvimento , Mariposas/genética , Mariposas/efeitos dos fármacos , Mariposas/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Larva/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Plantas Geneticamente Modificadas/genética , Transfecção
18.
FASEB J ; 38(3): e23447, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38329326

RESUMO

We aimed to analyze sex-related differences in galectin-1 (Gal-1), a ß-galactoside-binding lectin, in aortic stenosis (AS) and its association with the inflammatory and fibrocalcific progression of AS. Gal-1 was determined in serum and aortic valves (AVs) from control and AS donors by western blot and immunohistochemistry. Differences were validated by ELISA and qPCR in AS samples. In vitro experiments were conducted in primary cultured valve interstitial cells (VICs). Serum Gal-1 was not different neither between control and AS nor between men and women. There was no association between circulating and valvular Gal-1 levels. The expression of Gal-1 in stenotic AVs was higher in men than women, even after adjusting for confounding factors, and was associated with inflammation, oxidative stress, extracellular matrix remodeling, fibrosis, and osteogenesis. Gal-1 (LGALS1) mRNA was enhanced within fibrocalcific areas of stenotic AVs, especially in men. Secretion of Gal-1 was up-regulated over a time course of 2, 4, and 8 days in men's calcifying VICs, only peaking at day 4 in women's VICs. In vitro, Gal-1 was associated with similar mechanisms to those in our clinical cohort. ß-estradiol significantly up-regulated the activity of an LGALS1 promoter vector and the secretion of Gal-1, only in women's VICs. Supplementation with rGal-1 prevented the effects elicited by calcific challenge including the metabolic shift to glycolysis. In conclusion, Gal-1 is up-regulated in stenotic AVs and VICs from men in association with inflammation, oxidative stress, matrix remodeling, and osteogenesis. Estrogens can regulate Gal-1 expression with potential implications in post-menopause women. Exogenous rGal-1 can diminish calcific phenotypes in both women and men.


Assuntos
Estenose da Valva Aórtica , Calcinose , Galectina 1 , Feminino , Humanos , Masculino , Estenose da Valva Aórtica/metabolismo , Células Cultivadas , Galectina 1/genética , Galectina 1/metabolismo , Inflamação/metabolismo
19.
Theranostics ; 14(2): 843-860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169569

RESUMO

Background: In recent years, there has been considerable interest in the therapeutic targeting of tumor-associated macrophages (TAMs) to modulate the tumor microenvironment (TME), resulting in antitumoral phenotypes. However, key mediators suitable for TAM-mediated remodeling of the TME remain poorly understood. Methods: In this study, we used single-cell RNA sequencing analyses to analyze the landscape of the TME modulated by TAMs in terms of a protumor microenvironment during early tumor development. Results: Our data revealed that the depletion of TAMs leads to a decreased epithelial-to-mesenchymal transition (EMT) signature in cancer cells and a distinct transcriptional state characterized by CD8+ T cell activation. Moreover, notable alterations in gene expression were observed upon the depletion of TAMs, identifying Galectin-1 (Gal-1) as a crucial molecular factor responsible for the observed effect. Gal-1 inhibition reversed immune suppression via the reinvigoration of CD8+ T cells, impairing tumor growth and potentiating immune checkpoint inhibitors in breast tumor models. Conclusion: These results provide comprehensive insights into TAM-mediated early tumor microenvironments and reveal immune evasion mechanisms that can be targeted by Gal-1 to induce antitumor immune responses.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Macrófagos Associados a Tumor , Microambiente Tumoral , Galectina 1/genética , Galectina 1/metabolismo , Linfócitos T CD8-Positivos , Macrófagos/metabolismo , Imunidade
20.
mBio ; 15(2): e0330823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38275838

RESUMO

The highly prevalent herpes simplex virus type 1 (HSV-1) causes a range of diseases, including cold sores, blinding keratitis, and life-threatening encephalitis. HSV-1 initially replicates in epithelial cells, enters the peripheral nervous system via neurites, and establishes lifelong infection in the neuronal cell bodies. Neurites are highly dynamic structures that grow or retract in response to attractive or repulsive cues, respectively. Here, we show that infection with HSV-1, but not with a mutant virus lacking glycoprotein G (gG), reduced the repulsive effect of epithelial cells on neurite outgrowth and facilitated HSV-1 invasion of neurons. HSV-1 gG was required and sufficient to induce neurite outgrowth by modifying the protein composition of extracellular vesicles, increasing the amount of neurotrophic and neuroprotective proteins, including galectin-1. Antibodies directed against galectin-1 neutralized the capacity of extracellular vesicles released from HSV-1-infected cells to promote neurite outgrowth. Our study provides new insights into the neurotropism of HSV-1 and identifies a viral protein that modifies the protein composition of extracellular vesicles to stimulate neurite outgrowth and invasion of the nervous system.IMPORTANCEHerpes simplex virus type 1 (HSV-1) must infect neurites (or nerve endings) to establish a chronic infection in neurons. Neurites are highly dynamic structures that retract or grow in the presence of repulsive or attractive proteins. Some of these proteins are released by epithelial cells in extracellular vesicles and act upon interaction with their receptor present on neurites. We show here that HSV-1 infection of epithelial cells modulated their effect on neurites, increasing neurite growth. Mechanistically, HSV-1 glycoprotein G (gG) modifies the protein composition of extracellular vesicles released by epithelial cells, increasing the amount of attractive proteins that enhance neurite outgrowth and facilitate neuronal infection. These results could inform of therapeutic strategies to block HSV-1 induction of neurite outgrowth and, thereby, neuronal infection.


Assuntos
Doenças Transmissíveis , Vesículas Extracelulares , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiologia , Galectina 1/metabolismo , Vesículas Extracelulares/metabolismo , Crescimento Neuronal , Glicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA