Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Front Immunol ; 14: 1251134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38332916

RESUMO

Background and aims: IgG4-related cholangitis (IRC) is the hepatobiliary manifestation of IgG4-related disease, a systemic B cell-driven fibro-inflammatory disorder. Four autoantigens have recently been described in IgG4-RD: annexin A11, galectin-3, laminin 511-E8, and prohibitin 1. We have previously reported a protective role of annexin A11 and laminin 511-E8 in human cholangiocytes against toxic bile acids. Here, we explored the potentially protective role of the carbohydrate-binding lectin galectin-3 and the scaffold proteins prohibitins 1 and 2. Methods: Anti-galectin-3, anti-prohibitin 1 and 2 autoantibody positivity in IRC and healthy and disease (primary sclerosing cholangitis (PSC)) control sera was assessed by ELISA/liquid chromatography-tandem mass spectrometry (LC-MS/MS). Human H69 cholangiocytes were subjected to short hairpin RNA (shRNA) knockdown targeting galectin-3 (LGALS3), prohibitin 1 (PHB1), and prohibitin 2 (PHB2). H69 cholangiocytes were also exposed to recombinant galectin-3, the inhibitor GB1107, recombinant prohibitin 1, and the pan-prohibitin inhibitor rocaglamide. Protection against bile acid toxicity was assessed by intracellular pH (pHi) measurements using BCECF-AM, 22,23-3H-glycochenodeoxycholic acid (3H-GCDC) influx, and GCDC-induced apoptosis using Caspase-3/7 assays. Results: Anti-galectin-3 autoantibodies were detected in 13.5% of individuals with IRC but not in PSC. Knockdown of LGALS3 and galectin-3 inhibition with GB1107 did not affect pHi, whereas recombinant galectin-3 incubation lowered pHi. LGALS3 knockdown increased GCDC-influx but not GCDC-induced apoptosis. GB1107 reduced GCDC-influx and GCDC-induced apoptosis. Recombinant galectin-3 tended to decrease GCDC-influx and GCDC-induced apoptosis. Anti-prohibitin 1 autoantibodies were detected in 61.5% and 35.7% of individuals with IRC and PSC, respectively. Knockdown of PHB1, combined PHB1/2 KD, treatment with rocaglamide, and recombinant prohibitin 1 all lowered pHi. Knockdown of PHB1, PHB2, or combined PHB1/2 did not alter GCDC-influx, yet knockdown of PHB1 increased GCDC-induced apoptosis. Conversely, rocaglamide reduced GCDC-influx but did not attenuate GCDC-induced apoptosis. Recombinant prohibitin 1 did not affect GCDC-influx or GCDC-induced apoptosis. Finally, anti-galectin-3 and anti-prohibitin 1 autoantibody pretreatment did not lead to increased GCDC-influx. Conclusions: A subset of individuals with IRC have autoantibodies against galectin-3 and prohibitin 1. Gene-specific knockdown, pharmacological inhibition, and recombinant protein substitution did not clearly disclose a protective role of these autoantigens in human cholangiocytes against toxic bile acids. The involvement of these autoantibodies in processes surpassing epithelial secretion remains to be elucidated.


Assuntos
Colangite , Doença Relacionada a Imunoglobulina G4 , Humanos , Anexinas , Autoanticorpos , Autoantígenos , Ácidos e Sais Biliares , Colangite/imunologia , Cromatografia Líquida , Galectina 3/imunologia , Imunoglobulina G , Proibitinas/imunologia , Espectrometria de Massas em Tandem
2.
J Fluoresc ; 32(2): 629-636, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35025017

RESUMO

The aim of this study was to establish a time-resolved fluorescent immunoassay (TRFIA) for the detection of serum Galectin-3 (Gal-3) and apply this method to evaluate the clinical significance of serum Gal-3 in predicting Idiopathic Membranous Nephropathy (IMN) progression. The Gal-3-TRFIA was established using the double antibody sandwich method, with the capture antibodies coated on a 96-well microplate and the detection antibodies chelated with Europium (III) (Eu3+). Serum Gal-3 was detected in 81 patients with IMN and 123 healthy controls to further evaluate the value of the Gal-3 in staging of IMN. The sensitivity of the Gal-3-TRFIA assay was 0.85 ng/mL, and the detection range was 0.85-1000 ng/mL. The Gal-3 intra-batch and inter-batch coefficients of variation were 3.45% and 5.12%, respectively. The correlation coefficient (R) between the Gal-3-TRFIA assay and commercially available enzyme-linked immunosorbent assay kits was 0.83. The serum Gal-3 concentration was higher in patients with IMN (65.57 ± 55.90 ng/mL) compared to healthy controls (16.29 ± 9.91 ng/mL, P < 0.0001). In this study, a wide detection range Gal-3-TRFIA assay was developed using lanthanide (Eu3+) chelates for the detection of Gal-3 concentrations in serum. Gal-3 concentration is elevated in patients with IMN.


Assuntos
Fluorimunoensaio/métodos , Galectina 3/sangue , Glomerulonefrite Membranosa/sangue , Glomerulonefrite Membranosa/diagnóstico , Anticorpos/sangue , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Galectina 3/imunologia , Humanos , Estudos Prospectivos , Sensibilidade e Especificidade , Fatores de Tempo
3.
J Immunol ; 208(2): 278-285, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35017217

RESUMO

Despite tremendous success against hematological malignancies, the performance of chimeric Ag receptor T cells against solid tumors remains poor. In such settings, the lack of success of this groundbreaking immunotherapy is in part mediated by ligand engagement of immune checkpoint molecules on the surface of T cells in the tumor microenvironment. Although CTLA-4 and programmed death-1 (PD-1) are well-established checkpoints that inhibit T cell activity, the engagement of glycans and glycan-binding proteins are a growing area of interest due to their immunomodulatory effects. This review discusses exemplary strategies to neutralize checkpoint molecules through an in-depth overview of genetic engineering approaches aimed at overcoming the inhibitory programmed death ligand-1 (PD-L1)/PD-1 axis in T cell therapies and summarizes current knowledge on glycoimmune interactions that mediate T cell immunosuppression.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/transplante , Antígeno CTLA-4/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/métodos , Galectina 1/imunologia , Galectina 3/imunologia , Galectinas/imunologia , Humanos , Imunomodulação/imunologia , Ativação Linfocitária/imunologia , Neoplasias/imunologia , Polissacarídeos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
4.
Theranostics ; 11(4): 1864-1876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408786

RESUMO

Rationale: The high expression of Galectin-3 (Gal3) in macrophages of atherosclerotic plaques suggests its participation in atherosclerosis pathogenesis, and raises the possibility to use it as a target to image disease severity in vivo. Here, we explored the feasibility of tracking atherosclerosis by targeting Gal3 expression in plaques of apolipoprotein E knockout (ApoE-KO) mice via PET imaging. Methods: Targeting of Gal3 in M0-, M1- and M2 (M2a/M2c)-polarized macrophages was assessed in vitro using a Gal3-F(ab')2 mAb labeled with AlexaFluor®488 and 89Zr- desferrioxamine-thioureyl-phenyl-isothiocyanate (DFO). To visualize plaques in vivo, ApoE-KO mice were injected i.v. with 89Zr-DFO-Gal3-F(ab')2 mAb and imaged via PET/CT 48 h post injection. Whole length aortas harvested from euthanized mice were processed for Sudan-IV staining, autoradiography, and immunostaining for Gal3, CD68 and α-SMA expression. To confirm accumulation of the tracer in plaques, ApoE-KO mice were injected i.v. with Cy5.5-Gal3-F(ab')2 mAb, euthanized 48 h post injection, followed by cryosections of the body and acquisition of fluorescent images. To explore the clinical potential of this imaging modality, immunostaining for Gal3, CD68 and α-SMA expression were carried out in human plaques. Single cell RNA sequencing (scRNA-Seq) analyses were performed to measure LGALS3 (i.e. a synonym for Gal3) gene expression in each macrophage of several subtypes present in murine or human plaques. Results: Preferential binding to M2 macrophages was observed with both AlexaFluor®488-Gal3-F(ab')2 and 89Zr-DFO-Gal3-F(ab')2 mAbs. Focal and specific 89Zr-DFO-Gal3-F(ab')2 mAb uptake was detected in plaques of ApoE-KO mice by PET/CT. Autoradiography and immunohistochemical analyses of aortas confirmed the expression of Gal3 within plaques mainly in macrophages. Moreover, a specific fluorescent signal was visualized within the lesions of vascular structures burdened by plaques in mice. Gal3 expression in human plaques showed similar Gal3 expression patterns when compared to their murine counterparts. Conclusions: Our data reveal that 89Zr-DFO-Gal3-F(ab')2 mAb PET/CT is a potentially novel tool to image atherosclerotic plaques at different stages of development, allowing knowledge-based tailored individual intervention in clinically significant disease.


Assuntos
Anticorpos Monoclonais/imunologia , Desferroxamina/química , Galectina 3/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patologia , Radioisótopos/metabolismo , Zircônio/metabolismo , Animais , Feminino , Galectina 3/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo
5.
Mol Immunol ; 128: 205-218, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142138

RESUMO

INTRODUCTION: Natural killer (NK) cells and natural killer T (NKT) cells are implicated in the development and progression of colorectal cancer (CRC). Tumor cells express NK cell receptor ligands that modulate their function. This study aimed to investigate the expression of such ligands in CRC in relation to the phenotype of circulating NK- and NKT cells, and clinical outcome. METHODS: Primary tumor tissues were analyzed for protein expression of NK cell ligands using immunohistochemistry with automated image analysis in a cohort of 78 CRC patients. For 24 of the 78 patients, RNA expression of NK cell ligands was analyzed in primary tumor tissue using RNA sequencing. Receptor expression on circulating NK- and NKT cells was previously measured by us in 71 of the 78 patients using flow cytometry. RESULTS: High Proliferating Cell Nuclear Antigen (PCNA) protein expression in the primary tumor associated with shorter disease-free survival (DFS) of CRC patients (P = 0.026). A trend was observed towards shorter DFS in CRC patients with above-median galectin-3 protein expression in the primary tumor (P = 0.055). High protein expression of galectin-3, CD1d, and human leukocyte antigen (HLA) class I, and high RNA expression of UL16-binding protein (ULBP)-1, -2, and -5, and HLA-E in the tumor tissue correlated with low expression of the corresponding receptors on circulating NK- or NKT cells (P < 0.05). CONCLUSIONS: Galectin-3 and PCNA expression in the primary tumor may be prognostic biomarkers in CRC patients. Furthermore, our results suggest that NK cell receptor ligands expressed by tumor cells may modulate the phenotype of circulating NK- and NKT cells, and facilitate immune escape of metastasizing cells.


Assuntos
Neoplasias Colorretais/imunologia , Células Matadoras Naturais/imunologia , Células T Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalo Livre de Doença , Feminino , Galectina 3/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ligantes , Masculino , Pessoa de Meia-Idade , Fenótipo , Antígeno Nuclear de Célula em Proliferação/imunologia
6.
F1000Res ; 9: 1078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33082935

RESUMO

The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor ß (TGF-ß) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.


Assuntos
Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/virologia , Galectina 3/imunologia , Pneumonia Viral/patologia , Betacoronavirus , COVID-19 , Humanos , Ácido N-Acetilneuramínico , Pandemias , SARS-CoV-2
7.
Exp Biol Med (Maywood) ; 245(16): 1425-1427, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32838557

RESUMO

IMPACT STATEMENT: There could be a close relationship between periodontal diseases (PDs) severity and Covid-19 infections. This relationship could be caused by Galectin-3-mediated increased immune response and increased viral attachment. Keeping PDs under control and maintaining rigorous oral hygiene during this troubled Covid-19 pandemic period is very important.Patients with older age and pre-existing conditions like cardiovascular disease, hypertension, diabetes, and obesity are in the higher risk group for developing severe Covid-19 infections. The inflammatory pathways that are involved in these conditions are the same pathways that we see in periodontal diseases (PDs). This raises a significant question: Is PD a pre-existing condition that can increase the risk of developing severe Covid-19 infection? Several studies have shown that Galectins play a key role in the homeostasis of immune cells, and recently, a relationship was found between Covid-19 and Galectin-3 (Gal-3).It has been determined that an important area in the spike protein of Coronavirus-19 is almost exactly the same as the morphology of Gal-3, and these spike proteins are critical for the entry of the virus into host cells. We suspect that there is enough evidence to support a close relationship between PDs severity and Covid-19 infections. There is accumulating evidence to suggest a relationship between the severity of PD and the risk of infection with Covid-19, which requires further investigation. This relationship could be caused by Gal-3-mediated increased immune response and increased viral attachment. In this context, we want to emphasize the importance of keeping PD under control by maintaining rigorous oral hygiene during this troubled Covid-19 pandemic period. We would also like to point out the possibility that having PD may be a pre-disposition toward developing a severe Covid-19 infection.


Assuntos
Betacoronavirus , Infecções por Coronavirus/etiologia , Galectina 3/metabolismo , Doenças Periodontais/complicações , Pneumonia Viral/etiologia , Betacoronavirus/patogenicidade , Proteínas Sanguíneas , COVID-19 , Galectina 3/sangue , Galectina 3/imunologia , Galectinas , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Doenças Periodontais/etiologia , Doenças Periodontais/virologia , Fatores de Risco , SARS-CoV-2
8.
PLoS Pathog ; 16(8): e1008741, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750085

RESUMO

Aspergillus fumigatus is an opportunistic mold that infects patients who are immunocompromised or have chronic lung disease, causing significant morbidity and mortality in these populations. While the factors governing the host response to A. fumigatus remain poorly defined, neutrophil recruitment to the site of infection is critical to clear the fungus. Galectin-3 is a mammalian ß-galactose-binding lectin with both antimicrobial and immunomodulatory activities, however the role of galectin-3 in the defense against molds has not been studied. Here we show that galectin-3 expression is markedly up-regulated in mice and humans with pulmonary aspergillosis. Galectin-3 deficient mice displayed increased fungal burden and higher mortality during pulmonary infection. In contrast to previous reports with pathogenic yeast, galectin-3 exhibited no antifungal activity against A. fumigatus in vitro. Galectin-3 deficient mice exhibited fewer neutrophils in their airways during infection, despite normal numbers of total lung neutrophils. Intravital imaging studies confirmed that galectin-3 was required for normal neutrophil migration to the airspaces during fungal infection. Adoptive transfer experiments demonstrated that stromal rather than neutrophil-intrinsic galectin-3 was necessary for normal neutrophil entry into the airspaces. Live cell imaging studies revealed that extracellular galectin-3 directly increases neutrophil motility. Taken together, these data demonstrate that extracellular galectin-3 facilitates recruitment of neutrophils to the site of A. fumigatus infection, and reveals a novel role for galectin-3 in host defense against fungal infections.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/fisiologia , Galectina 3/imunologia , Pulmão/microbiologia , Neutrófilos/citologia , Animais , Aspergilose/genética , Aspergilose/microbiologia , Aspergilose/fisiopatologia , Aspergillus fumigatus/genética , Movimento Celular , Feminino , Galectina 3/genética , Humanos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia
9.
Int J Mol Sci ; 21(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707678

RESUMO

Primary biliary cholangitis (PBC) is a chronic inflammatory autoimmune liver disease characterized by inflammation and damage of small bile ducts. The NLRP3 inflammasome is a multimeric complex of proteins that after activation with various stimuli initiates an inflammatory process. Increasing data obtained from animal studies implicate the role of NLRP3 inflammasome in the pathogenesis of various diseases. Galectin-3 is a ß-galactoside-binding lectin that plays important roles in various biological processes including cell proliferation, differentiation, transformation and apoptosis, pre-mRNA splicing, inflammation, fibrosis and host defense. The multilineage immune response at various stages of PBC development includes the involvement of Gal-3 in the pathogenesis of this disease. The role of Galectin-3 in the specific binding to NLRP3, and inflammasome activation in models of primary biliary cholangitis has been recently described. This review provides a brief pathogenesis of PBC and discusses the current knowledge about the role of Gal-3 in NLRP3 activation and PBC development.


Assuntos
Proteínas Sanguíneas/imunologia , Galectinas/imunologia , Inflamassomos/imunologia , Cirrose Hepática Biliar/etiologia , Animais , Modelos Animais de Doenças , Galectina 3/imunologia , Predisposição Genética para Doença , Humanos , Imunidade Inata , Inflamassomos/genética , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/imunologia , Camundongos , Modelos Imunológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fatores de Risco
10.
Fish Shellfish Immunol ; 102: 73-81, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32272257

RESUMO

Galectins belong to the ß-galactoside binding protein family and participate in both innate and acquired immunity. In this study, we described the molecular characteristics of Galectin3 gene from Japanese flounder (Paralichthys olivaceus), designed as PoGalectin3. Its open reading frame was 1128 bp, encoding a protein composed of 375 amino acids. PoGalectin3 belongs to chimeric galactose agglutinin, which contains a C-terminal carbohydrate recognition domain (CRD) (L250-P372), and its N-terminal is rich in proline (P) and glycine (G). Multiple sequence alignment and phylogenetic tree showed that PoGalectin3 was conservative in different aquatic animals. Tissue distribution confirmed that PoGalectin3 showed significantly highest expression in brain, moderate expression in liver, intestine and muscle. PoGalectin3 was significantly increased post infection with Edwardsiella tarda from intestine tissue of P. olivaceus. In order to investigate the binding ability of PoGalectin3 to pathogen-associated molecular patterns, the recombinant PoGalectin3 protein (rPoGalectin3) was successfully expressed and purified, and an Enzyme linked immunosorbent assay (ELISA) experiment was performed. ELISA refers to the qualitative and quantitative detection method of immune response by combining soluble antigen or antibody with solid-phase carrier. It was confirmed that rPoGalectin3 exhibited high affinity to lipopolysaccharide and peptidoglycan. The rPoGalectin3 also exhibited a concentration dependent binding capacity with Gram-positive bacteria (Bacillus pumilus, Bacillus subtilis, Bacillus cereus) and Gram-negative bacteria (Aeromonas salmonicida, E. tarda, Vibrio vulnificus). In addition, the results of microbial agglutination experiment showed that rPoGalectin3 could agglutinate Gram-positive bacteria (B. pumilus, B. subtilis) and Gram-negative bacteria (A. salmonicida, E. tarda) in the presence of Ca2+. In conclusion, this research laid an important foundation for the specific function analysis of PoGalectin3, which provide theoretical basis for the prevention and control of aquatic diseases.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Galectina 3/genética , Galectina 3/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Galectina 3/química , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Lipopolissacarídeos/farmacologia , Peptidoglicano/farmacologia , Filogenia , Alinhamento de Sequência/veterinária
11.
Einstein (Sao Paulo) ; 18: eAO5105, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32159607

RESUMO

OBJECTIVE: To evaluate the density of anti-galectin-3-immunostained cells, collagen percentage, mast cell density and presence of pathological processes in intestinal muscle biopsies of patients. METHODS: Thirty-five patients who underwent intestinal biopsy were selected from 1997 to 2015. Patients were divided into three groups: chagasic patients with mucosal lesion (n=13), chagasic patients with intact mucosa (n=12) and non-chagasic patients with no mucosal lesion (n=10). Histological processing of the biopsied fragments and immunohistochemistry for galectin-3 were performed. Additional sections were stained with hematoxylin and eosin to evaluate the general pathological processes, picrosirius for evaluation of collagen and toluidine blue to evaluate the mast cell density. RESULTS: Patients of mucosal lesion group had a significantly higher frequency of ganglionitis and myositis when compared to the chagasic patients with intact mucosa and non-chagasic group. The density of anti-galectin-3-immunostained cells was significantly higher in the chagasic patients with intact mucosa group when compared to the non-chagasic group. The group of chagasic patients with intact mucosa presented a higher percentage of collagen in relation to the patients with mucosal lesion and to the non-chagasic group, with a significant difference. There was no significant difference in mast cell density among the three groups. CONCLUSION: The higher density of anti-galectin-3-immunostained cells in patients in the chagasic patients with intact mucosa group suggested the need for greater attention in clinical evaluation of these patients, since this protein is associated with neoplastic transformation and progression.


Assuntos
Anticorpos Monoclonais/análise , Doença de Chagas/patologia , Colonoscopia/métodos , Galectina 3/análise , Mucosa Intestinal/patologia , Megacolo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise de Variância , Biópsia , Estudos de Casos e Controles , Contagem de Células , Colágeno/análise , Feminino , Fibrose , Galectina 3/imunologia , Humanos , Imuno-Histoquímica , Masculino , Mastócitos/patologia , Pessoa de Meia-Idade , Miosite/patologia , Estudos Retrospectivos , Estatísticas não Paramétricas
12.
Mar Drugs ; 18(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033203

RESUMO

The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In this study the aim was to isolate and characterize galectin(s), ß-galactosides binding proteins, present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration. Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3 (galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination, and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney, and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13. Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.


Assuntos
Galectina 3/imunologia , Galectina 3/metabolismo , Moritella/efeitos dos fármacos , Muco/metabolismo , Aglutinação , Animais , Proteínas de Transporte , Proteínas de Peixes , Galectina 3/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Imunidade Inata , Peptídeos , Domínios e Motivos de Interação entre Proteínas , Proteoma , Salmo salar/metabolismo , Pele/metabolismo
13.
Glycobiology ; 30(7): 418-426, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31985798

RESUMO

Galectins play diverse roles in pathophysiology of infectious diseases and cancers. Galectin-3 is one of the most studied family member and the only chimeric type lectin. Many aspects of its biogenesis, range of activities, and the disease-modifying potential particularly during microbial infections are yet to be known. We review our current understanding of these issues and also highlight gaps in better defining the immune modulatory potential of galectin-3 during different stages of host responsiveness when an infection sets in. Additionally, we discuss commonly used strategies to disrupt galectin-3 functions both extracellulalry and intracellularly. Existing and improved novel strategies could help fine-tune immune responses to achieve better prognosis of infectious diseases.


Assuntos
Anti-Infecciosos/imunologia , Doenças Transmissíveis/imunologia , Galectina 3/imunologia , Animais , Humanos
14.
Clin Exp Immunol ; 199(2): 216-229, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31593356

RESUMO

Galectin-3 is the best-characterized member of galectins, an evolutionary conserved family of galactoside-binding proteins that play central roles in infection and immunity, regulating inflammation, cell migration and cell apoptosis. Differentially expressed by cells and tissues with immune privilege, they bind not only to host ligands, but also to glycans expressed by pathogens. In this regard, we have previously shown that human galectin-3 recognizes several genetic lineages of the protozoan parasite Trypanosoma cruzi, the causal agent of Chagas' disease or American trypanosomiasis. Herein we describe a molecular mechanism developed by T. cruzi to proteolytically process galectin-3 that generates a truncated form of the protein lacking its N-terminal domain - required for protein oligomerization - but still conserves a functional carbohydrate recognition domain (CRD). Such processing relies on specific T. cruzi proteases, including Zn-metalloproteases and collagenases, and ultimately conveys profound changes in galectin-3-dependent effects, as chemical inhibition of parasite proteases allows galectin-3 to induce parasite death in vitro. Thus, T. cruzi might have established distinct mechanisms to counteract galectin-3-mediated immunity and microbicide properties. Interestingly, non-pathogenic T. rangeli lacked the ability to cleave galectin-3, suggesting that during evolution two genetically similar organisms have developed different molecular mechanisms that, in the case of T. cruzi, favoured its pathogenicity, highlighting the importance of T. cruzi proteases to avoid immune mechanisms triggered by galectin-3 upon infection. This study provides the first evidence of a novel strategy developed by T. cruzi to abrogate signalling mechanisms associated with galectin-3-dependent innate immunity.


Assuntos
Doença de Chagas/imunologia , Galectina 3/imunologia , Imunidade Inata , Metaloproteases/imunologia , Proteólise , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/imunologia , Proteínas Sanguíneas , Doença de Chagas/patologia , Galectina 3/química , Galectinas , Humanos , Metaloproteases/química , Domínios Proteicos , Proteínas de Protozoários/química
15.
Einstein (Säo Paulo) ; 18: eAO5105, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1090040

RESUMO

ABSTRACT Objective To evaluate the density of anti-galectin-3-immunostained cells, collagen percentage, mast cell density and presence of pathological processes in intestinal muscle biopsies of patients. Methods Thirty-five patients who underwent intestinal biopsy were selected from 1997 to 2015. Patients were divided into three groups: chagasic patients with mucosal lesion (n=13), chagasic patients with intact mucosa (n=12) and non-chagasic patients with no mucosal lesion (n=10). Histological processing of the biopsied fragments and immunohistochemistry for galectin-3 were performed. Additional sections were stained with hematoxylin and eosin to evaluate the general pathological processes, picrosirius for evaluation of collagen and toluidine blue to evaluate the mast cell density. Results Patients of mucosal lesion group had a significantly higher frequency of ganglionitis and myositis when compared to the chagasic patients with intact mucosa and non-chagasic group. The density of anti-galectin-3-immunostained cells was significantly higher in the chagasic patients with intact mucosa group when compared to the non-chagasic group. The group of chagasic patients with intact mucosa presented a higher percentage of collagen in relation to the patients with mucosal lesion and to the non-chagasic group, with a significant difference. There was no significant difference in mast cell density among the three groups. Conclusion The higher density of anti-galectin-3-immunostained cells in patients in the chagasic patients with intact mucosa group suggested the need for greater attention in clinical evaluation of these patients, since this protein is associated with neoplastic transformation and progression.


RESUMO Objetivo Avaliar a densidade de células imunomarcadas por anti-galectina-3, a percentagem de colágeno, a densidade de mastócitos e a presença de processos patológicos na musculatura intestinal de pacientes biopsiados. Métodos Foram selecionados 35 pacientes submetidos à biópsia de intestino entre 1997 a 2015. Os pacientes foram divididos em três grupos: chagásicos com lesão de mucosa (n=13), chagásicos com mucosa íntegra (n=12) e não chagásicos sem lesão de mucosa (n=10). Foram realizados processamento histológico dos fragmentos biopsiados e imunohistoquímica para galectina-3. Cortes adicionais foram corados por hematoxilina e eosina, para avaliar os processos patológicos gerais, pelo picrosírius, para avaliação do colágeno, e pelo azul de toluidina, para avaliar a densidade de mastócitos. Resultados Os pacientes do grupo chagásicos com lesão de mucosa apresentaram frequência significativamente maior de ganglionite e miosite quando comparados aos dos grupos chagásico com mucosa íntegra e não chagásicos. A densidade das células imunomarcadas por anti-galectina-3 foi significativamente maior no grupo chagásicos com mucosa íntegra quando comparada ao grupo não chagásico. O grupo de chagásicos com mucosa íntegra apresentou maior percentagem de colágeno em relação aos grupos chagásicos com mucosa lesada e ao grupo de não chagásicos, com diferença significativa. Não houve diferença significativa com relação à densidade de mastócitos entre os três grupos. Conclusão A maior densidade de células imunomarcadas por anti-galectina-3 nos pacientes do grupo chagásico com mucosa íntegra sugere a necessidade de maior atenção na avaliação clínica desses pacientes, uma vez que essa proteína está associada com transformação e progressão neoplásica.


Assuntos
Humanos , Masculino , Feminino , Adulto , Idoso , Idoso de 80 Anos ou mais , Colonoscopia/métodos , Doença de Chagas/patologia , Galectina 3/análise , Mucosa Intestinal/patologia , Megacolo/patologia , Anticorpos Monoclonais/análise , Biópsia , Fibrose , Imuno-Histoquímica , Estudos de Casos e Controles , Contagem de Células , Estudos Retrospectivos , Análise de Variância , Colágeno/análise , Estatísticas não Paramétricas , Galectina 3/imunologia , Mastócitos/patologia , Pessoa de Meia-Idade , Miosite/patologia
16.
Front Immunol ; 10: 2647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781126

RESUMO

Opsonins are soluble, extracellular proteins, released by activated immune cells, and when bound to a target cell, can induce phagocytes to phagocytose the target cell. There are three known classes of opsonin: antibodies, complement factors and secreted pattern recognition receptors, but these have limited access to the brain. We identify here two novel opsonins of bacteria, calreticulin, and galectin-3 (both lectins that can bind lipopolysaccharide), which were released by microglia (brain-resident macrophages) when activated by bacterial lipopolysaccharide. Calreticulin and galectin-3 both bound to Escherichia coli, and when bound increased phagocytosis of these bacteria by microglia. Furthermore, lipopolysaccharide-induced microglial phagocytosis of E. coli bacteria was partially inhibited by: sugars, an anti-calreticulin antibody, a blocker of the calreticulin phagocytic receptor LRP1, a blocker of the galectin-3 phagocytic receptor MerTK, or simply removing factors released from the microglia, indicating this phagocytosis is dependent on extracellular calreticulin and galectin-3. Thus, calreticulin and galectin-3 are opsonins, released by activated microglia to promote clearance of bacteria. This innate immune response of microglia may help clear bacterial infections of the brain.


Assuntos
Calreticulina/imunologia , Infecções por Escherichia coli/imunologia , Galectina 3/imunologia , Microglia/imunologia , Proteínas Opsonizantes/imunologia , Animais , Encéfalo/imunologia , Escherichia coli/imunologia , Imunidade Inata/imunologia , Camundongos , Fagocitose/imunologia , Ratos
17.
Vet Microbiol ; 239: 108461, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31767078

RESUMO

Corynebacterium pseudotuberculosis, a broad host-spectrum zoonotic pathogen, causes caseous lymphadenitis (CLA) in small ruminants and is responsible for considerable economic losses in the livestock industry worldwide. Macrophages play a pivotal role in the immunopathogenesis of CLA. However, the immunoregulatory mechanisms of macrophages against C. pseudotuberculosis remains poorly understood. In the present study, for the first time, the partial exoproteome of murine peritoneal macrophages infected with C. pseudotuberculosis was profiled and the differential expression of the identified proteins was analyzed. In macrophages, infection with C. pseudotuberculosis, rather than with heat-killed bacteria, induced release of diverse proteins. Three unconventional proteins: cofilin-1, peroxiredoxin-1, and galectin-3 were significantly expressed and released by infected macrophages into the culture supernatant. These proteins are involved in the host inflammatory response and may be responsible for the excessive inflammation of CLA. In C. pseudotuberculosis-infected macrophages, the release of cofilin-1 and peroxiredoxin-1 was predominant at later stages of infection, while the release of galectin-3 was independent of time. Taken together, the present work contributes to our understanding of the functional role of macrophage response to C. pseudotuberculosis infection.


Assuntos
Cofilina 1/imunologia , Infecções por Corynebacterium/imunologia , Corynebacterium pseudotuberculosis/imunologia , Galectina 3/imunologia , Macrófagos/imunologia , Peroxirredoxinas/imunologia , Cofilina 1/genética , Infecções por Corynebacterium/fisiopatologia , Galectina 3/genética , Regulação da Expressão Gênica/imunologia , Macrófagos/microbiologia , Peroxirredoxinas/genética
18.
ACS Appl Mater Interfaces ; 11(45): 41829-41841, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31617343

RESUMO

Photodynamic therapy (PDT) is an encouraging alternative therapy for melanoma treatment and Ce6-mediated PDT has shown some exciting results in clinical trials. However, PDT in melanoma treatment is still hampered by some melanoma's protective mechanisms like antiapoptosis mechanisms and treatment escape pathways. Combined therapy and enhancing immune stimulation were proposed as effective strategies to overcome this resistance. In this paper, a Chlorin-based photoactivable Galectin-3-inhibitor nanoliposome (PGIL) was designed for enhanced Melanoma PDT and immune activation of Natural Killer (NK) cells. PGIL were synthesized by encapsulating the photosensitizer chlorin e6 and low molecular citrus pectin in the nanoliposome to realize NIR-triggered PDT and low molecular citrus pectin (LCP) release into the cytoplasm. The intracellular release of LCP inhibits the activity of galectin-3, which increases the apoptosis, inhibits the invade ability, and enhances the recognition ability of Natural Killer (NK) cells to tumor cells in melanoma cells after PDT. These effects of PGIL were tested in cells and nude mice, and the mechanisms during the in vivo treatment were preliminarily studied. The results showed that PGIL can be an effective prodrug for melanoma therapy.


Assuntos
Antineoplásicos/administração & dosagem , Galectina 3/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Melanoma/tratamento farmacológico , Fotoquimioterapia , Porfirinas/administração & dosagem , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Galectina 3/imunologia , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Masculino , Melanoma/genética , Melanoma/imunologia , Melanoma/fisiopatologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Pectinas/administração & dosagem , Pectinas/química , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Porfirinas/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química
19.
Fish Shellfish Immunol ; 95: 268-276, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31655269

RESUMO

Galectin-3 is a kind of ß-galactoside-binding lectin involved in host defense against pathogen infection. However, the immune functions of fish galectin-3 remain poorly understood. In this study, the roles of a fish galectin-3 (OnGal-3) from Nile tilapia (Oreochromis niloticus) on the binding activity on bacterial pathogens or PAMPs, the agglutinating activity on bacterial pathogens and the regulatory effects on monocytes/macrophages activity were investigated. After in vitro challenge of Streptococcus agalactiae and Aeromonas hydrophila, OnGal-3 expressions were significantly up-regulated in monocytes/macrophages. In addition, recombinant OnGal-3(rOnGal-3) protein showed strong binding activity on bacterial pathogens or PAMPs. Also, rOnGal-3 agglutinated Gram-positive and Gram-negative bacteria. Moreover, rOnGal-3 could induce the inflammatory factors expressions in monocytes/macrophages and enhance phagocytosis and respiratory burst activity of monocytes/macrophages. These results suggest that fish galectin-3 participates in anti-bacterial immune response through recognizing pathogens and modulating monocytes/macrophages activity.


Assuntos
Ciclídeos/genética , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Galectina 3/genética , Galectina 3/imunologia , Regulação da Expressão Gênica/imunologia , Aeromonas hydrophila/imunologia , Testes de Aglutinação/veterinária , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus agalactiae/imunologia
20.
Sci Rep ; 9(1): 11716, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406212

RESUMO

The pathogenesis of intestinal Behçet's disease (BD) remains poorly understood. Therefore, we aimed to discover and validate biomarkers using proteomics analysis and subsequent functional studies. After two-dimensional electrophoresis, candidate proteins were identified using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS). We validated these results by evaluating the protein levels and their functions in vitro using HT-29 colorectal cancer cells, colon tissues from patients and mice, and murine bone marrow derived macrophages (BMDMs). Of the 30 proteins differentially expressed in intestinal BD tissues, we identified seven using MALDI-TOF/TOF MS. Focusing on galectin-3, we found that TGF-B and IL-10 expression was significantly lower in shLGALS3-transfected cells. Expression of GRP78 and XBP1s and apoptosis rates were all higher in shLGALS3-transfected cells upon the induction of endoplasmic reticulum stress. In response to lipopolysaccharide stimulation, microtubule-associated protein 1 light chain 3B accumulated and lysosomes decreased in these cells. Finally, Salmonella typhimurium infection induced caspase-1 activation and increased IL-1ß production, which facilitated activation of the NLRC4 inflammasome, in Lgals3-/- murine BMDMs compared to wild type BMDMs. Our data suggest that galectin-3 may play a protective role in the pathogenesis of intestinal BD via modulation of ER stress, autophagy, and inflammasome activation.


Assuntos
Síndrome de Behçet/imunologia , Células Epiteliais/imunologia , Galectina 3/imunologia , Intestinos/imunologia , Proteoma/imunologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Síndrome de Behçet/genética , Síndrome de Behçet/patologia , Proteínas Sanguíneas , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/imunologia , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Galectina 3/antagonistas & inibidores , Galectina 3/genética , Galectinas , Regulação da Expressão Gênica , Células HT29 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Lipopolissacarídeos/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Proteoma/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...