Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Cell Chem Biol ; 28(12): 1693-1702.e6, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34192523

RESUMO

Ganciclovir (GCV) is the first-line therapy against human cytomegalovirus (HCMV), a widespread infection that is particularly dangerous for immunodeficient individuals. Closely resembling deoxyguanosine triphosphate, the tri-phosphorylated metabolite of GCV (GCV-TP) is preferentially incorporated by the viral DNA polymerase, thereby terminating chain extension and, eventually, viral replication. However, the treatment outcome of GCV varies greatly among individuals, therefore warranting better understanding of its metabolism. Here we show that NUDT15, a Nudix hydrolase known to metabolize thiopurine triphosphates, can similarly hydrolyze GCV-TP through biochemical studies and co-crystallization of the NUDT15/GCV-TP complex. More critically, GCV efficacy was potentiated in HCMV-infected cells following NUDT15 depletion by RNAi or inhibition by an in-house-developed, nanomolar NUDT15 inhibitor, TH8321, suggesting that pharmacological targeting of NUDT15 is a possible avenue to improve existing anti-HCMV regimens. Collectively, the data further implicate NUDT15 as a broad-spectrum metabolic regulator of nucleoside analog therapeutics, such as thiopurines and GCV.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Ganciclovir/farmacologia , Pirofosfatases/metabolismo , Antivirais/química , Linhagem Celular Tumoral , Feminino , Ganciclovir/química , Humanos , Hidrólise , Testes de Sensibilidade Microbiana , Proteínas Recombinantes/metabolismo
2.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801024

RESUMO

In the area of gene-directed enzyme prodrug therapy (GDEPT), using herpes simplex virus thymidine kinase (HSV-tk) paired with prodrug ganciclovir (GCV) for cancer treatment has been extensively studied. It is a process involved with two steps whereby the gene (HSV-tk) is first delivered to malignant cells. Afterward, non-toxic GCV is administered to that site and activated to cytotoxic ganciclovir triphosphate by HSV-tk enzyme expressed exogenously. In this study, we presented a one-step approach that both gene and prodrug were delivered at the same time by incorporating them with polymeric micellar nanovectors. GCV was employed as an initiator in the ring-opening polymerization of ε-caprolactone (ε-CL) to synthesize hydrophobic GCV-poly(caprolactone) (GCV-PCL), which was furthered grafted with hydrophilic chitosan to obtain amphiphilic polymer (GCV-PCL-chitosan) for the fabrication of self-assembled micellar nanoparticles. The synthesized amphiphilic polymer was characterized using Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. Micellar prodrug nanoparticles were analyzed by dynamic light scattering, zeta potential, critical micelle concentration, and transmission electron microscopy. Polymeric prodrug micelles with optimal features incorporated with HSV-tk encoding plasmids were cultivated with HT29 colorectal cancer cells and anticancer effectiveness was determined. Our results showed that prodrug GCV and HSV-tk cDNA encoded plasmid incorporated in GCV-PCL-chitosan polymeric nanocarriers could be delivered in a one-step manner to HT-29 cells and triggered high cytotoxicity.


Assuntos
Neoplasias Colorretais , Portadores de Fármacos , Ganciclovir , Nanopartículas , Plasmídeos , Pró-Fármacos , Timidina Quinase/genética , Proteínas Virais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Ganciclovir/química , Ganciclovir/farmacologia , Células HT29 , Humanos , Micelas , Nanopartículas/química , Nanopartículas/uso terapêutico , Plasmídeos/química , Plasmídeos/genética , Plasmídeos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Simplexvirus
3.
Antiviral Res ; 180: 104857, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32562705

RESUMO

SARS-CoV-2, a member of the coronavirus family, is responsible for the current COVID-19 worldwide pandemic. We previously demonstrated that five nucleotide analogues inhibit the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), including the active triphosphate forms of Sofosbuvir, Alovudine, Zidovudine, Tenofovir alafenamide and Emtricitabine. We report here the evaluation of a library of nucleoside triphosphate analogues with a variety of structural and chemical features as inhibitors of the RdRps of SARS-CoV and SARS-CoV-2. These features include modifications on the sugar (2' or 3' modifications, carbocyclic, acyclic, or dideoxynucleotides) or on the base. The goal is to identify nucleotide analogues that not only terminate RNA synthesis catalyzed by these coronavirus RdRps, but also have the potential to resist the viruses' exonuclease activity. We examined these nucleotide analogues for their ability to be incorporated by the RdRps in the polymerase reaction and to prevent further incorporation. While all 11 molecules tested displayed incorporation, 6 exhibited immediate termination of the polymerase reaction (triphosphates of Carbovir, Ganciclovir, Stavudine and Entecavir; 3'-OMe-UTP and Biotin-16-dUTP), 2 showed delayed termination (Cidofovir diphosphate and 2'-OMe-UTP), and 3 did not terminate the polymerase reaction (2'-F-dUTP, 2'-NH2-dUTP and Desthiobiotin-16-UTP). The coronaviruses possess an exonuclease that apparently requires a 2'-OH at the 3'-terminus of the growing RNA strand for proofreading. In this study, all nucleoside triphosphate analogues evaluated form Watson-Crick-like base pairs. The nucleotide analogues demonstrating termination either lack a 2'-OH, have a blocked 2'-OH, or show delayed termination. Thus, these nucleotide analogues are of interest for further investigation to evaluate whether they can evade the viral exonuclease activity. Prodrugs of five of these nucleotide analogues (Cidofovir, Abacavir, Valganciclovir/Ganciclovir, Stavudine and Entecavir) are FDA-approved medications for treatment of other viral infections, and their safety profiles are well established. After demonstrating potency in inhibiting viral replication in cell culture, candidate molecules can be rapidly evaluated as potential therapies for COVID-19.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/virologia , Nucleotídeos/farmacologia , Pneumonia Viral/virologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Síndrome Respiratória Aguda Grave/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Antivirais/química , Antivirais/uso terapêutico , Betacoronavirus/enzimologia , Betacoronavirus/genética , COVID-19 , Cidofovir/química , Cidofovir/farmacologia , Cidofovir/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Didesoxinucleosídeos/química , Didesoxinucleosídeos/farmacologia , Didesoxinucleosídeos/uso terapêutico , Ganciclovir/química , Ganciclovir/farmacologia , Ganciclovir/uso terapêutico , Guanina/análogos & derivados , Guanina/química , Guanina/farmacologia , Guanina/uso terapêutico , Nucleotídeos/química , Nucleotídeos/uso terapêutico , Pandemias , Pneumonia Viral/tratamento farmacológico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , RNA Viral/antagonistas & inibidores , RNA Viral/biossíntese , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/tratamento farmacológico , Estavudina/química , Estavudina/farmacologia , Estavudina/uso terapêutico , Valganciclovir/química , Valganciclovir/farmacologia , Valganciclovir/uso terapêutico
4.
Eur J Hosp Pharm ; 27(4): 209-215, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32587079

RESUMO

OBJECTIVES: The implementation of dose-banding (DB) in centralised, pharmacy-based cytotoxic drug preparation units allows the preparation of standardised doses in series. The aim of this study was to evaluate the feasibility of DB for the prescribing of ganciclovir (GV) infusion solutions and to investigate the microbiological stability of dose-banded, automatically prepared ready-to-administer GV infusion bags by media-fill simulation tests and sterility tests. METHODS: The frequency of prescription of GV doses was retrospectively analysed before and after implementing the DB scheme. Four dose-ranges or 'bands' and the corresponding standard doses (250, 300, 350, 400 mg) were identified. The maximum variance was set at ±10% of the individually prescribed dose. The aseptic preparation of a series of GV infusion bags was simulated with double strength tryptic soy broth as growth medium and prefilled 0.9% NaCl polyolefin infusion bags as primary packaging materials. The simulation process was performed with the APOTECAchemo robot on five consecutive days. In total, 50 infusion bags were filled, incubated and stored for 12 weeks at room temperature. The media-filled bags were visually inspected for turbidity after 2, 4, 8, 10 and 12 weeks. Following incubation, growth promotion tests were performed. During the simulation tests, airborne contamination was monitored with settle plates and microbial surface contamination with contact plates. Pooled sterility tests were performed for a series of 10 standard GV infusion bags after a 12-week storage period under refrigeration (2 °C-8 °C). RESULTS: After implementation of the DB scheme, about 60% of the prescribed GV doses were prepared as standard preparations by the robotic system. The number of different GV doses was reduced by 61.8% (76 vs 29). None of the 50 media-filled bags showed turbidity after a storage period of 12 weeks, indicating the absence of microorganisms. The environmental monitoring with settle/contact plates matched the recommended limits set for cleanroom Grade A zones, except in the loading area of the robot. Media fills used for the sterility tests remained clear during the incubation period, thereby revealing sterility. Positive growth promotion tests proved the process's reliability. CONCLUSIONS: A DB scheme for prescribing and preparation of standard GV infusion bags was successfully implemented. Microbiological tests of aseptic preparation of infusion bags in series by the APOTECAchemo robot revealed an adequate level of sterility and a well-controlled aseptic procedure. The sterility was maintained over extended storage periods, thereby encouraging extended beyond-use dating.


Assuntos
Composição de Medicamentos/métodos , Contaminação de Medicamentos/prevenção & controle , Ganciclovir/química , Serviço de Farmácia Hospitalar/métodos , Antivirais/química , Embalagem de Medicamentos/normas , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Infusões Parenterais , Refrigeração , Reprodutibilidade dos Testes , Estudos Retrospectivos , Robótica
5.
Molecules ; 25(9)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380673

RESUMO

The 3,9-dihydro-3-[(2-hydroxyethoxy)methyl]-6-(4-methoxyphenyl)-9-oxo-5H-imidazo[1,2-a]-purine (6-(4-MeOPh)-TACV) was selected to assess the enzymatic stability of the tricyclic acyclovir derivatives from the imidazo[1,2-a]-purine group. The parent compound and its esters (acetyl, isobutyryl, pivaloyl, nicotinic, ethoxycarbonyl) were subjected to kinetic studies and compared with the stability of analogous acyclovir (ACV) esters. The enzymatic hydrolysis was observed in vitro in a medium of 80% human plasma in the absence and presence of porcine liver esterase (PLE). The tests were carried out at 37 °C. To determine the kinetic parameters (kobs., t0.5) of the observed reaction, the validated HPLC-UV method in the reversed phase was used. The HPLC-MS/MS method was used to identify the degradation products under the tested conditions. In summary, it was found that 6-(4-MeOPh)-TACV esters are more susceptible to esterase metabolism than ACV esters. It was confirmed by HPLC-MS/MS that in the plasma, the main product of their hydrolysis is 6-(4-MeOPh)-TACV and not ACV, which confirms that their antiviral activity observed in vitro does not result from ring degradation.


Assuntos
Aciclovir/análogos & derivados , Esterases/metabolismo , Ésteres/síntese química , Plasma/química , Purinas/síntese química , Aciclovir/química , Animais , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Ésteres/química , Ésteres/farmacologia , Ganciclovir/análogos & derivados , Ganciclovir/química , Humanos , Hidrólise , Purinas/química , Purinas/farmacologia , Suínos , Espectrometria de Massas em Tandem
6.
Mol Pharm ; 17(6): 1945-1953, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320251

RESUMO

Because of poor ocular drug bioavailability, intravitreal injections have become the gold standard for drug delivery to the posterior eye. The prodrug approach can be used for optimizing the biopharmaceutical properties of intravitreal drugs. The preclinical screening of prodrugs' properties, such as hydrolysis and bioconversion, should be conducted in a resource-efficient way for an extensive set of synthesized compounds with validated methods. Our objective was to explore cassette dosing in in vitro prodrug hydrolysis and bioconversion studies in buffer, vitreous, and retinal pigment epithelium (RPE) homogenate for rapid medium-throughput screening. Moreover, our aim was to correlate the prodrug structure with hydrolytic behavior. We synthesized 18 novel ganciclovir prodrugs and first studied their hydrolysis in aqueous buffer and porcine vitreous in vitro with cassette dosing for 35 h. A method for vitreous homogenate pH equilibration to a physiological level by using buffer and incubation under 5% carbon dioxide was validated. The hydrolysis of the prodrugs was evaluated in porcine RPE homogenate in vitro with cassette dosing, and five prodrugs were assayed individually to examine their bioconversion into ganciclovir in RPE after 2 h. Lastly, the prodrugs' binding to melanin was studied in vitro. The prodrugs showed a wide spectrum of hydrolysis rates, ranging from a few percentages to 100% in the vitreous and RPE; in general, hydrolysis in RPE was faster than in vitreous. Prodrugs with long carbon chains and disubstitution showed lability in the tissue homogenates, whereas prodrugs with branched carbon chains and aromatic groups were stable. All five prodrugs chosen for the bioconversion study in RPE were hydrolyzed into ganciclovir, and their hydrolytic behavior matched results from the cassette mix experiment, supporting the cassette mix approach for hydrolysis and bioconversion studies. None of the prodrugs bound highly to melanin (<50% bound). In conclusion, cassette dosing proved useful for the rapid screening of prodrug hydrolysis and bioconversion properties. Analyzing several compounds simultaneously can complicate the analytics, and thus, choosing the compounds of the cassette mix should be done carefully to avoid mutual interference of the compounds with the results. The methodology and results of the work are applicable in ocular drug research and prodrug design.


Assuntos
Ganciclovir/química , Epitélio Pigmentado da Retina/metabolismo , Animais , Antivirais/química , Sistemas de Liberação de Medicamentos/métodos , Pró-Fármacos/química , Suínos , Espectrometria de Massas em Tandem
7.
Artigo em Inglês | MEDLINE | ID: mdl-32312162

RESUMO

АBSTRACTEsters of the antiherpetic drugs ganciclovir, penciclovir with the bile acids (cholic, chenodeoxycholic and deoxycholic) and amino acid esters of acyclovir were generated and evaluated for their in vitro antiviral activity against herpes simplex viruses type 1 and type 2 (HSV-1, HSV-2). The antiviral assays demonstrated that modified analogs of ACV and PCV are less active compared to the initial substances against HSV-1and HSV-2. CC50 for ganciclovir-deoxycholate corresponded to the CC50 of the other analogs and its activity is lower than ganciclovir. Obtained results show that tested modification do not improve bioavailability of nucleoside analogs in cells.


Assuntos
Aciclovir/farmacologia , Antivirais/farmacologia , Ganciclovir/farmacologia , Guanina/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Aciclovir/síntese química , Aciclovir/química , Animais , Antivirais/síntese química , Antivirais/química , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ganciclovir/síntese química , Ganciclovir/química , Guanina/síntese química , Guanina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
8.
J Pharm Biomed Anal ; 184: 113181, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32105943

RESUMO

Valganciclovir (VGC) is an orally available mono-valyl ester pro drug of the nucleoside analog (NA) ganciclovir (GCV) used to treat cytomegalovirus (CMV). Congenital CMV infection in the newborn is associated with progressive sensorineural hearing loss; however, effective CMV therapy with VGC can improve audiologic outcomes. Ongoing studies to demonstrate the effect of VGC in this setting are hampered by a poor understanding of the pharmacology of VGC and GCV in newborns, and the low blood volumes that can be safely collected from this population. We describe a simple method for determining systemic GCV concentrations using dried blood spot (DBS) samples. GCV was extracted from a single 6 mm punch via sonication in methanol, then quantified using liquid chromatography-tandem mass spectrometry. The assay was accurate and precise in the dynamic range of 10-10,000 ng/mL. GCV concentrations determined in DBS agreed well with GCV concentrations observed in serum. The assay was successfully applied to patient samples, and will be used to support pharmacokinetic studies in an ongoing clinical trial of VGC in infants with CMV-mediated hearing loss.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Ganciclovir/sangue , Ganciclovir/química , Antivirais/sangue , Antivirais/síntese química , Antivirais/uso terapêutico , Citomegalovirus/efeitos dos fármacos , Infecções por Citomegalovirus/tratamento farmacológico , Ganciclovir/uso terapêutico , Humanos , Valganciclovir/sangue , Valganciclovir/química
9.
Artigo em Inglês | MEDLINE | ID: mdl-29678260

RESUMO

Ganciclovir is synthetic nucleoside analog of guanine closely related to acyclovir but has greater activity against cytomegalovirus. This comprehensive profile on ganciclovir starts with a description of the drug: nomenclature, formulae, chemical structure, elemental composition, and appearance. The uses and application of the drug are explained. The methods that were used for the preparation of ganciclovir are described and their respective schemes are outlined. The methods which were used for the physical characterization of the dug are: ionization constant, solubility, X-ray powder diffraction pattern, crystal structure, melting point, and differential scanning calorimetry. The chapter contains the spectra of the drug: ultraviolet spectrum, vibrational spectrum, nuclear magnetic resonance spectra, and the mass spectrum. The compendial methods of analysis of ganciclovir include the United States Pharmacopeia methods. Other methods of analysis that were reported in the literature include: high-performance liquid chromatography alone or with mass spectrometry, electrophoresis, spectrophotometry, voltammetry, chemiluminescence, and radioimmunoassay. Biological investigation on the drug includes: pharmacokinetics, metabolism, bioavailability, and biological analysis. Reviews on the methods used for preparation or for analysis of the drug are provided. The stability of the drug in various media and storage conditions is reported. More than 240 references are listed at the end of the chapter.


Assuntos
Antivirais/química , Ganciclovir/química , Animais , Antivirais/farmacocinética , Disponibilidade Biológica , Biotransformação , Composição de Medicamentos , Estabilidade de Medicamentos , Ganciclovir/farmacocinética , Humanos , Tecnologia Farmacêutica/métodos
10.
BMC Ophthalmol ; 18(1): 36, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426296

RESUMO

BACKGROUND: Cytomegalovirus (CMV) retinitis is an opportunistic infection that primarily affects immunocompromised individuals. Intravitreal ganciclovir injection monotherapy or in combination with systemic anti-CMV therapy are effective treatments for CMV retinitis. Crystallization of ganciclovir after intravitreal injection is extremely rare. Only two cases had been reported in literature. Crystallization in only one eye after bilateral injections had not been reported before. We hereby report a case of intraocular ganciclovir crystallization in one eye after bilateral intravitreal injections, and repeated crystallization in the same eye after repeated injections. CASE PRESENTATION: A 79-year-old patient had bilateral cytomegalovirus retinitis and received bilateral intravitreal ganciclovir injections of 2.5 mg in 0.05 ml sterile water. Fundus examination after injection showed formation of needle-shaped, golden-yellow crystals in the vitreous of right eye but not in left eye. The crystals dissolved spontaneously. Repeated bilateral intravitreal ganciclovir injections 4 days later resulted in repeated crystallization of ganciclovir in right eye but not in left eye. The crystals dissolved spontaneously and completely after 5 minutes. Visual acuity remained unchanged and intraocular pressure was normal. CONCLUSIONS: Intraocular ganciclovir crystallization could occur after intravitreal injections. It is important to perform fundus examination after injection. The crystals may dissolve rapidly and vitrectomy may not be necessary. Our case suggested intraocular ganciclovir crystallization is an idiosyncratic phenomenon, subjects to distinctive intraocular environment which could be different between two eyes of the same patient. The susceptible intraocular environment could be persistent leading to repeated crystallization.


Assuntos
Antivirais/química , Precipitação Química , Retinite por Citomegalovirus/tratamento farmacológico , Ganciclovir/química , Corpo Vítreo/efeitos dos fármacos , Idoso , Antivirais/uso terapêutico , Cristalização , Retinite por Citomegalovirus/diagnóstico , Evolução Fatal , Ganciclovir/uso terapêutico , Humanos , Injeções Intravítreas , Masculino
11.
J Chemother ; 30(5): 310-315, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30843773

RESUMO

To assess the pharmaceutical quality of eight commercially available generic products of ganciclovir injection produced in China with original brand product (Cymevene, Roche, Switzerland). Tests were performed according to China Pharmacopoeia 2015 and Import Drug Registration Standard introduced by CFDA. Items including characteristics of the packing and reconstituted solution, pH, visible particles, content of active and related substances, sterility and bacterial endotoxin were all carried out based on the standard laboratory operating rules and requirements. Seven of all tested domestically produced generics of ganciclovir for injection failed to reach the in vitro quality requirements in comparison with the original brand product Cymevene. Three generics failed to meet the standards for pH of an aqueous solution. One out of eight generic products fell outside the specifications for API content. All generics showed impurities, whose levels were generally greater than observed in the brand product. One generic product was identified an endotoxin contamination. In addition, six generic products failed to reach the quality requirements of water content, which should be under 3%. Most tested ganciclovir products failed to meet the pharmaceutical quality standards for original brand product. Important items like pH, endotoxin contamination, content of API and impurities could cause clinical attention, as they directly affect the therapeutic efficacy and patient tolerance.


Assuntos
Medicamentos Genéricos/química , Medicamentos Genéricos/normas , Ganciclovir/química , Ganciclovir/normas , China , Endotoxinas/química , Humanos , Concentração de Íons de Hidrogênio , Injeções/normas , Controle de Qualidade
12.
Drug Deliv ; 25(1): 59-69, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29228826

RESUMO

Ganciclovir (GCV) is one of the most widely used antiviral drugs for the treatment of cytomegalovirus (CMV) retinitis. In this context, the aim of this study was to design in situ thermosensitive hydrogels for GCV ocular delivery by intravitreal injection to achieve sustained drug release behavior and improved ocular bioavailability in the treatment of CMV retinitis. A thermosensitive poly-(ß-butyrolactone-co-lactic acid)-polyethylene glycol-poly (ß-butyrolactone-co-lactic acid) (PBLA-PEG-PBLA) triblock copolymer was synthesized by ring-opening polymerization and characterization. The GCV-loaded PBLA-PEG-PBLA in situ hydrogels (15%, w/w) were then prepared with drug concentration at 2 mg·mL-1 and the gelation temperatures, rheological properties, in vitro degradation and syringeability of in situ hydrogels for intravitreal injection were also investigated. Membraneless dissolution model was used to explore drug release behavior of PBLA-PEG-PBLA in situ hydrogel. The results indicated that more than 45 and 85% of GCV can be released within 24 and 96 h, respectively, which was verified by a non-Fickian diffusion mechanism. In vivo ocular pharmacokinetics study showed that area under drug-time curve (AUC) and half-life of PBLA-PEG-PBLA in situ hydrogel was higher (AUC was 61.80 µg·mL-1·h (p < .01) and t1/2 was 10.29 h in aqueous humor; AUC was 1008.66 µg·mL-1·h (p < .01) and t1/2 was 13.26 h (p < .01) in vitreous) than GCV injection with extended therapeutic activity. Based on obtained results, it was concluded that the thermosenstive PBLA-PEG-PBLA in situ hydrogel is a promising carrier of GCV for intravitreal injection.


Assuntos
Humor Aquoso/metabolismo , Retinite por Citomegalovirus/tratamento farmacológico , Ganciclovir/química , Ganciclovir/farmacocinética , Hidrogéis/química , Hidrogéis/farmacocinética , 4-Butirolactona/química , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , Área Sob a Curva , Materiais Biocompatíveis/química , Retinite por Citomegalovirus/virologia , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ganciclovir/administração & dosagem , Hidrogéis/administração & dosagem , Ácido Láctico/química , Masculino , Polietilenoglicóis/química , Polímeros/química , Coelhos , Temperatura
13.
Acta Crystallogr C Struct Chem ; 73(Pt 12): 1116-1120, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29206123

RESUMO

Ganciclovir (GCV; systematic name: 2-amino-9-{[(1,3-dihydroxypropan-2-yl)oxy]methyl}-6,9-dihydro-1H-purin-6-one), C9H13N5O4, an antiviral drug for treating cytomegalovirus infections, has two known polymorphs (Forms I and II), but only the structure of the metastable Form II has been reported [Kawamura & Hirayama (2009). X-ray Struct. Anal. Online, 25, 51-52]. We describe a successful preparation of GCV Form I and its crystal structure. GCV is an achiral molecule in the sense that its individual conformers, which are generally chiral objects, undergo fast interconversion in the liquid state and cannot be isolated. In the crystalline state, GCV exists as two inversion-related conformers in Form I and as a single chiral conformer in Form II. This situation is similar to that observed for glycine, also an achiral molecule, whose α-polymorph contains two inversion-related conformers, while the γ-polymorph contains a single conformer that is chiral. The hydrogen bonds are exclusively intermolecular in Form I, but both inter- and intramolecular in Form II, which accounts for the different molecular conformations in the two polymorphs.


Assuntos
Antivirais/química , Ganciclovir/química , Cristalização , Cristalografia por Raios X , Ligação de Hidrogênio , Conformação Molecular
14.
Biomed Res Int ; 2017: 6037159, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401157

RESUMO

Embryonic trisomy leads to abortion or congenital genetic disorders in humans. The most common autosomal chromosome abnormalities are trisomy of chromosomes 13, 18, and 21. Although alteration of gene dosage is thought to contribute to disorders caused by extra copies of chromosomes, genes associated with specific disease phenotypes remain unclear. To generate a normal cell from a trisomic cell as a means of etiological analysis or candidate therapy for trisomy syndromes, we developed a system to eliminate a targeted chromosome from human cells. Chromosome 21 was targeted by integration of a DNA cassette in HeLa cells that harbored three copies of chromosome 21. The DNA cassette included two inverted loxP sites and a herpes simplex virus thymidine kinase (HSV-tk) gene. This system causes missegregation of chromosome 21 after expression of Cre recombinase and subsequently enables the selection of cells lacking the chromosome by culturing in a medium that includes ganciclovir (GCV). Cells harboring only two copies of chromosome 21 were efficiently induced by transfection of a Cre expression vector, indicating that this approach is useful for eliminating a targeted chromosome.


Assuntos
Transtornos Cromossômicos/terapia , Terapia Genética , Trissomia/genética , Deleção Cromossômica , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , Ganciclovir/química , Dosagem de Genes , Vetores Genéticos , Células HeLa , Humanos , Integrases/genética , Timidina Quinase/genética , Transfecção , Trissomia/patologia
15.
Nucleosides Nucleotides Nucleic Acids ; 36(1): 31-48, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27759493

RESUMO

DNA-binding properties of an antiviral drug, valganciclovir (valcyte) was studied by using emission, absorption, circular dichroism, viscosity, differential pulse voltammetry, fluorescence techniques, and computational studies. The drug bound to calf thymus DNA (ct-DNA) in a groove-binding mode. The calculated binding constant of UV-vis, Ka, is comparable to groove-binding drugs. Competitive fluorimetric studies with Hoechst 33258 showed that valcyte could displace the DNA-bound Hoechst 33258. The drug could not displace intercalated methylene blue from DNA double helix. Furthermore, the induced detectable changes in the CD spectrum of ct-DNA as well as changes in its viscosity confirm the groove-binding mode. In addition, an integrated molecular docking was employed to further investigate the binding interactions between valcyte and calf thymus DNA.


Assuntos
DNA/química , DNA/metabolismo , Ganciclovir/análogos & derivados , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , Ligação Competitiva , Bisbenzimidazol/química , Dicroísmo Circular , Eletroquímica/métodos , Ganciclovir/química , Ganciclovir/metabolismo , Substâncias Intercalantes/química , Azul de Metileno/química , Azul de Metileno/metabolismo , Simulação de Acoplamento Molecular , Conformação de Ácido Nucleico , Espectrometria de Fluorescência , Termodinâmica , Valganciclovir , Viscosidade
16.
São Paulo; s.n; s.n; 2017. 124 p. tab, ilus, graf.
Tese em Português | LILACS | ID: biblio-875323

RESUMO

O presente trabalho teve como objetivo o estudo do estado sólido do ganciclovir (GCV) e suas diferentes formas polimórficas. O GCV é um fármaco antiviral útil no tratamento de infecções por citomegalovírus (CMV). Embora seja um fármaco amplamente usado, poucos estudos têm sido realizados sobre seu estado sólido. Atualmente, o GCV é conhecido por apresentar quatro formas cristalinas, duas anidras (Forma I e II) e duas hidratas (III e IV). Neste trabalho, nós reportamos a solução da estrutura cristalográfica da Forma I do GCV, que foi encontrado durante o screening de cristalização do fármaco, em que nove ensaios de cristalização (GCV-1, GCV-A, GCV-B, GCV-C, GCV-D, GCV-E, GCV-F, GCV-G e GCV-H) foram realizados e os materiais resultantes foram caracterizados por Difratometria de raios X (DRX), análise térmica (DTA/TG) e Hot Stage Microscopy. De todas as cristalizações realizadas foram obtidas quatro formas sólidas, denominadas como Forma I (GCV-1, GCV-B e GCV-H), Forma III (GCV-C, GCV-D, GCV-F e GCV-G), Forma IV (GCV-A) e Forma V (GCV-E). Esta última está sendo descrita pela primeira vez na literatura e indica a presença de outra forma hidratada de GCV. As Formas I, III e IV corresponderam a forma anidra e as duas formas hidratadas do fármaco, respectivamente. Além disso, foi evidenciado por experimentos de conversão de slurry e análise térmica que o cristalizado de GCV-1 (Forma I) foi o mais estável entre os materiais obtidos, e este deu origem ao monocristal da Forma I de GCV, estrutura cristalina anidra do fármaco. Neste trabalho, pela primeira vez, a estrutura cristalina deste composto foi definida por cristalografia de raios X de monocristal. A análise estrutural mostrou que a Forma I do fármaco cristaliza no grupo espacial monoclínico P21/c e está composta por quatro moléculas de GCV na sua unidade assimétrica. Cada molécula está unida intermolecularmente por ligações de hidrogênio, que dão lugar à formação de cadeias infinitas e estas por sua vez se arranjam de maneira a formar uma estrutura tridimensional.


This presented work aims to study the solid state of ganciclovir (GCV) and its different polymorphic forms. GCV is an antiviral drug useful in the treatment of cytomegalovirus (CMV) infections. Although it is a widely-used drug, few studies have been conducted on its solid state. Currently, GCV is known to have four crystalline forms, two anhydrous (Form I and II) and two hydrates (III and IV). In this investigation, we report a successful preparation of GCV Form I and its crystallographic structure, which was found during the crystallization of the drug, in which nine crystallization tests (GCV-1, GCV-A, GCV-B, GCV- D, GCV-E, GCV-F, GCV-G and GCV-H) were performed and the resulting materials were characterized by X-ray diffractometry (XRD), thermal analysis (DTA/TG) and Hot Stage Microscopy. Of all the crystallizations performed, four solid forms were obtained, denoted as Form I (GCV-1, GCV-B and GCV- H), Form III (GCV-C, GCV-D, GCV-F and GCV-G), Form IV (GCV-A) and Form V (GCV-E). The latter is being described for the first time in the literature and indicates the presence of another hydrated form of GCV. Forms I, III and IV corresponded to the anhydrous form and the two hydrated forms of the drug, respectively. In addition, it was evident by both the slurry conversion and the thermal analysis methods that the GCV-1 crystallized (Form I) was indeed the most stable amongst the materials obtained. This gave rise to GCV Form I monocrystal, anhydrous crystalline structure of the drug. The compound was characterized by monocrystal X-ray crystallography. The structural analysis showed that Form I of the drug crystallized in the monoclinic system space group P21/c is composed of four molecules of GCV in its asymmetric unit. Each molecule is linked intermolecularly by hydrogen bonds, which give rise to the formation of infinite chains arranged in a way that form a three-dimensional structure.


Assuntos
Ganciclovir/análise , Cristalização , Ganciclovir/química , Análise Diferencial Térmica/métodos
17.
PLoS One ; 11(7): e0159052, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391697

RESUMO

BACKGROUND: The objective of this randomized, prospective and controlled study was to investigate the ability of a closed-system transfer device (CSTD; BD-Phaseal) to reduce the occupational exposure of two isolators to 10 cytotoxic drugs and compare to standard compounding devices. METHODS AND FINDINGS: The 6-month study started with the opening of a new compounding unit. Two isolators were set up with 2 workstations each, one to compound with standard devices (needles and spikes) and the other using the Phaseal system. Drugs were alternatively compounded in each isolator. Sampling involved wiping three surfaces (gloves, window, worktop), before and after a cleaning process. Exposure to ten antineoplastic drugs (cyclophosphamide, ifosfamide, dacarbazine, 5-FU, methotrexate, gemcitabine, cytarabine, irinotecan, doxorubicine and ganciclovir) was assessed on wipes by LC-MS/MS analysis. Contamination rates were compared using a Chi2 test and drug amounts by a Mann-Whitney test. Significance was defined for p<0.05. Overall contamination was lower in the "Phaseal" isolator than in the "Standard" isolator (12.24% vs. 26.39%; p < 0.0001) although it differed according to drug. Indeed, the contamination rates of gemcitabine were 49.3 and 43.4% (NS) for the Standard and Phaseal isolators, respectively, whereas for ganciclovir, they were 54.2 and 2.8% (p<0.0001). Gemcitabine amounts were 220.6 and 283.6 ng for the Standard and Phaseal isolators (NS), and ganciclovir amounts were 179.9 and 2.4 ng (p<0.0001). CONCLUSION: This study confirms that using a CSTD may significantly decrease the chemical contamination of barrier isolators compared to standard devices for some drugs, although it does not eliminate contamination totally.


Assuntos
Antineoplásicos/química , Composição de Medicamentos/métodos , Camptotecina/análogos & derivados , Camptotecina/química , Ciclofosfamida/química , Citarabina/química , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Contaminação de Medicamentos , Fluoruracila/química , Ganciclovir/química , Humanos , Ifosfamida/química , Irinotecano , Metotrexato/química , Exposição Ocupacional/análise , Estudos Prospectivos , Gencitabina
18.
AAPS PharmSciTech ; 17(5): 1120-30, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26552400

RESUMO

A hydroxyethylcellulose-poly(acrylic acid) (HEC-PAA) lyomatrix was developed for ganciclovir (GCV) intestine targeting to overcome its undesirable degradation in the stomach. GCV was encapsulated within the HEC-PAA lyomatrix prepared by lyophilization. Conventional tablets were also prepared with identical GCV concentrations in order to compare the GCV release behavior from the lyomatrix and tablets. GCV incorporation (75.12%) was confirmed using FTIR, DSC, and TGA. The effect of GCV loading on the microstructure properties of the lyomatrix was evaluated by SEM, AFM, and BET surface area measurements. The in vitro drug release study showed steady and rapid release profiles from the GCV-loaded lyomatrix compared with the tablet formulation at identical pH values. Minimum GCV release was observed at acidic pH (≤40%) and maximum release occurred at intestinal pH values (≥90%) proving the intestinal targeting ability of the lyomatrix. Kinetic modeling revealed that the GCV-loaded lyomatrix exhibited zero-order release kinetics (n = 1), while the tablets were best described via the Peppas model. Textural analysis highlighted enhanced matrix resilience and rigidity gradient (12.5%, 20 Pa) for the GCV-loaded lyomatrix compared to the pure (7%, 9.5 Pa) HEC-PAA lyomatrix. Bench-top MRI imaging was used to confirm the mechanism of GCV release behavior by monitoring the swelling and erosion rates. The swelling and erosion rate of the tablets was not sufficient to achieve rapid zero-order GCV release as with the lyomatrix. These combined results suggest that the HEC-PAA lyomatrix may be suitable for GCV intestinal targeting after oral administration.


Assuntos
Resinas Acrílicas/química , Celulose/análogos & derivados , Ganciclovir/química , Administração Oral , Celulose/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Mucosa Intestinal/metabolismo , Comprimidos/química
19.
Drug Deliv ; 23(7): 2399-2409, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25564964

RESUMO

Poly(d,l-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of Val-Val dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1)-induced viral corneal keratitis. Nanoparticles containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Nanoparticles were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. Prodrugs-loaded NP were incorporated into in situ gelling system. These formulations were examined for in vitro release and cytotoxicity. The results of optimized entrapment efficiencies of LLGCV-, LDGCV- and DLGCV-loaded NP are of 38.7 ± 2.0%, 41.8 ± 1.9%, and 45.3 ± 2.2%; drug loadings 3.87 ± 0.20%, 2.79 ± 0.13% and 3.02 ± 0.15%; yield 85.2 ± 3.0%, 86.9 ± 4.6% and 76.9 ± 2.1%; particle sizes 116.6 ± 4.5, 143.0 ± 3.8 and 134.1 ± 5.2 nm; and zeta potential -15.0 ± 4.96, -13.8 ± 5.26 and -13.9 ± 5.14 mV, respectively. Cytotoxicity studies suggested that all the formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases.


Assuntos
Dipeptídeos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Oftalmopatias/tratamento farmacológico , Ganciclovir/administração & dosagem , Géis/administração & dosagem , Ácido Láctico/química , Nanopartículas/química , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem , Ácido Poliglicólico/química , Pró-Fármacos/química , Administração Oftálmica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Dipeptídeos/química , Emulsões , Ganciclovir/química , Géis/química , Ácido Láctico/administração & dosagem , Microesferas , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
20.
Drug Deliv ; 23(7): 2532-2540, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25775276

RESUMO

PURPOSE: The objective of this study is to investigate cellular uptake of prodrug-loaded nanoparticle (NP). Another objective is to study bioconversion of stereoisomeric dipeptide prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and d-Val-l-Val-GCV (DLGCV) in human corneal epithelial cell (HCEC) model. METHODS: Poly(D,L-lactic-co-glycolic acid) (PLGA) NP encapsulating prodrugs of GCV were formulated under a double emulsion method. Fluorescein isothiocyanate isomer-PLGA conjugates were synthesized to fabricate biocompatible fluorescent PLGA NP. Intracellular uptake of FITC-labeled NP was visualized by a fluorescent microscope in HCEC cells. RESULTS: Fluorescent PLGA NP and non-fluorescent NP display similar hydrodynamic diameter in the range of 115-145 nm with a narrow particle size distribution and zeta potentials around -13 mV. Both NP types showed identical intracellular accumulation in HCEC cells. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NPs are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. CONCLUSION: LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Córnea/fisiologia , Dipeptídeos/administração & dosagem , Células Epiteliais/fisiologia , Ganciclovir/administração & dosagem , Nanopartículas/química , Pró-Fármacos/metabolismo , Antivirais/química , Antivirais/metabolismo , Córnea/química , Dipeptídeos/química , Dipeptídeos/metabolismo , Emulsões , Células Epiteliais/química , Células Epiteliais/efeitos dos fármacos , Ganciclovir/química , Ganciclovir/metabolismo , Humanos , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...