Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777254

RESUMO

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Assuntos
Gastrópodes , Imunidade Inata , Metalotioneína , Novirhabdovirus , Estresse Oxidativo , Vibrio parahaemolyticus , Animais , Metalotioneína/genética , Metalotioneína/imunologia , Gastrópodes/imunologia , Gastrópodes/genética , Gastrópodes/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Novirhabdovirus/fisiologia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência/veterinária , Listeria monocytogenes/fisiologia , Listeria monocytogenes/imunologia , Camundongos , Perfilação da Expressão Gênica/veterinária , Células RAW 264.7 , Metais Pesados/toxicidade , Poluentes Químicos da Água
2.
Mar Biotechnol (NY) ; 26(3): 609-622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38717622

RESUMO

To assess the impact of different substrates in a recirculating water system on the immune response and antioxidant capacity of Babylonia areolata, we conducted a comparative analysis of the transcriptomes and antioxidant performance of the digestive glands in three substrate environments (sand-S group, ceramic granules-C group, and PVC breeding nest-P group). Transcriptome results revealed that the S group and P group exhibited the highest number of differentially expressed genes (DEGs), with a total of 2218 DEGs, including 928 upregulated and 1290 downregulated DEGs. The C group and P group had 1055 DEGs in common, with 316 upregulated and 739 downregulated DEGs. The C group and S group had the fewest DEGs, with 521 in total, including 303 upregulated and 218 downregulated DEGs. GO enrichment analysis showed that in the S vs P group, terms such as catalytic activity, membrane part, and cellular process were enriched with 287, 262, and 180 DEGs, respectively. In the C vs P group, binding, cellular process, and cell part were enriched with 146, 135, and 127 DEGs, respectively. In the C vs S group, catalytic activity, membrane part, and metabolic process were enriched with 90, 83, and 59 DEGs, respectively. Kegg enrichment analysis revealed significant changes in immune-related pathways in the S vs P group, including lysosome, phagosome, and leukocyte transendothelial migration, with 30, 13, and 10 enriched DEGs, respectively. In the C vs P group, phagosome, drug metabolism-other enzymes, and N-Glycan biosynthesis showed significant changes in immune-related pathways, with 9, 6, and 4 enriched DEGs, respectively. In the C vs S group, lysosome, PPAR signaling pathway, and fatty acid degradation exhibited significant changes in immune-related pathways, with 8, 4, and 3 enriched DEGs, respectively. Regarding antioxidant capacity, the S group showed significantly higher total T-AOC than the other experimental groups, while CAT, SOD, POD, and AKP were lower than in the C and P groups. The ACP level in the Sand group was not significantly different from the P group but significantly lower than the C group. In conclusion, substrate environments significantly influence the immune-related genes and key antioxidant enzyme activities in B. areolata.


Assuntos
Aquicultura , Perfilação da Expressão Gênica , Transcriptoma , Animais , Gastrópodes/genética , Gastrópodes/imunologia , Gastrópodes/metabolismo , Antioxidantes/metabolismo
3.
Fish Shellfish Immunol ; 149: 109533, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575039

RESUMO

The Commd (Copper Metabolism gene MURR1 Domain) family genes play crucial roles in various biological processes, including copper and sodium transport regulation, NF-κB activity, and cell cycle progression. Their function in Haliotis discus hannai, however, remains unclear. This study focused on identifying and analyzing the Commd genes in H. discus hannai, including their gene structure, phylogenetic relationships, expression profiles, sequence diversity, and alternative splicing. The results revealed significant homology between H. discus hannai's Commd genes and those of other mollusks. Both transcriptome quantitative analysis and qRT-PCR demonstrated the responsiveness of these genes to heat stress and Vibrio parahaemolyticus infection. Notably, alternative splicing analysis revealed that COMMD2, COMMD4, COMMD5, and COMMD7 produce multiple alternative splice variants. Furthermore, sequence diversity analysis uncovered numerous missense mutations, specifically 9 in COMMD5 and 14 in COMMD10. These findings contribute to expanding knowledge on the function and evolution of the Commd gene family and underscore the potential role of COMMD in the innate immune response of H. discus hannai. This research, therefore, offers a novel perspective on the molecular mechanisms underpinning the involvement of Commd genes in innate immunity, paving the way for further explorations in this field.


Assuntos
Gastrópodes , Imunidade Inata , Filogenia , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Gastrópodes/imunologia , Gastrópodes/genética , Gastrópodes/microbiologia , Estresse Fisiológico/imunologia , Estresse Fisiológico/genética , Família Multigênica , Perfilação da Expressão Gênica , Alinhamento de Sequência , Sequência de Aminoácidos , Regulação da Expressão Gênica/imunologia , Evolução Molecular
4.
J Invertebr Pathol ; 204: 108113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631559

RESUMO

Macins are a family of antimicrobial peptides, which play multiple roles in the elimination of invading pathogens. In the present study, a macin was cloned and characterized from Pacific abalone Haliotis discus hannai (Designated as HdMac). Analysis of the conserved domain suggested that HdMac was a new member of the macin family. In non-stimulated abalones, HdMac transcripts were constitutively expressed in all five tested tissues, especially in hemocytes. After Vibrio harveyi stimulation, the expression of HdMac mRNA in hemocytes was significantly up-regulated at 12 hr (P < 0.01). RNAi-mediated knockdown of HdMac transcripts affected the survival rates of abalone against V. harveyi. Moreover, recombinant protein of HdMac (rHdMac) exhibited high antibacterial activities against invading bacteria, especially for Vibrio anguillarum. In addition, rHdMac possessed binding activities towards glucan, lipopolysaccharides (LPS), and peptidoglycan (PGN), but not chitin in vitro. Membrane integrity analysis revealed that rHdMac could increase the membrane permeability of bacteria. Meanwhile, both the phagocytosis and chemotaxis ability of hemocytes could be significantly enhanced by rHdMac. Overall, the results showed that HdMac could function as a versatile molecule involved in immune responses of H. discus hannai.


Assuntos
Gastrópodes , Animais , Gastrópodes/microbiologia , Gastrópodes/genética , Gastrópodes/imunologia , Vibrio/fisiologia , Antibacterianos/farmacologia , Hemócitos/metabolismo , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética
5.
Structure ; 32(6): 812-823.e4, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38513659

RESUMO

Mollusk hemocyanins, among the largest known proteins, are used as immunostimulants in biomedical and clinical applications. The hemocyanin of the Chilean gastropod Concholepas concholepas (CCH) exhibits unique properties, which makes it safe and effective for human immunotherapy, as observed in animal models of bladder cancer and melanoma, and dendritical cell vaccine trials. Despite its potential, the structure and amino acid sequence of CCH remain unknown. This study reports two sequence fragments of CCH, representing three complete functional units (FUs). We also determined the high-resolution (1.5 Å) X-ray crystal structure of an "FU-g type" from the CCHB subunit. This structure enables in-depth analysis of chemical interactions at the copper-binding center and unveils an unusual, truncated N-glycosylation pattern. These features are linked to eliciting more robust immunological responses in animals, offering insights into CCH's enhanced immunostimulatory properties and opening new avenues for its potential applications in biomedical research and therapies.


Assuntos
Sequência de Aminoácidos , Hemocianinas , Modelos Moleculares , Hemocianinas/química , Hemocianinas/imunologia , Animais , Cristalografia por Raios X , Glicosilação , Sítios de Ligação , Gastrópodes/imunologia , Gastrópodes/química , Cobre/química , Moluscos/imunologia , Ligação Proteica
6.
Fish Shellfish Immunol ; 117: 24-35, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274420

RESUMO

In molluscs, migration of hemocytes and epithelial cells is believed to play central roles in wound healing. Here, we assessed cellular and molecular mechanisms of wound healing in Pacific abalone, a marine gastropod. Light and electron microscopy in the wounds showed early accumulation of putative hemocytes, collagen deposition by fibroblasts, and further coverage of this tissue by migration of adjacent epithelial cells. Cell labelling technique allowed us to track hemocytes, which migrated to wound surface within 24 h. The migrated cells first expressed PCNA and SoxF weakly, and then the epithelial cells expressed abundant PCNA and SoxB1, SoxB2, and SoxC. These findings imply that abalone SoxF is involved in hemocyte migration or their differentiation into fibroblasts, and suggest that the migrated epithelia acquire stem cell-like property and undergo active proliferation. This study is the first to show direct evidence of hemocyte migration to wounds and expression of Sox genes in molluscan wound healing.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Hemócitos/imunologia , Fatores de Transcrição SOX/genética , Cicatrização/genética , Animais , Movimento Celular , Expressão Gênica , Antígeno Nuclear de Célula em Proliferação/genética
7.
Front Immunol ; 12: 685896, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295333

RESUMO

In recent years, more and more studies have shown that early pathogenic bacterial infection in invertebrates can enhance immunity and significantly reduce mortality when reinfected with the same pathogen. There are mechanisms to explain this phenomenon, but they are relatively few. In addition, dose-dependent primary infection is also associated with increased immunity. In the present study, the initial infection dose and mortality of abalone Haliotis diversicolor after reinfection with Vibrio harveyi were recorded, and the mechanism of immune enhancement was investigated by the transcriptomic response of abalone after two successive stimuli with V. harveyi. Priming with different concentrations of pathogen can enhance immunity; however, higher concentration is not always better. Compared with the first exposure, more genes were up-regulated after the second exposure. Among the commonly expressed genes, the immune related genes were significantly or persistently highly expressed after two infections and included pattern recognition receptors as well as immune effectors, such as toll-like receptors, perlucin 4, scavenger receptor class B-like protein, cytochrome P450 1B1-like, glutathione S-transferase 6, lysozyme and so on; in addition, these immune-related genes were mainly distributed in the pathways related to phagocytosis and calcium signaling. Among the specifically expressed genes, compared with the first infection, more genes were involved in the immune, metabolic and digestive pathways after the second infection, which would be more conducive to preventing the invasion of pathogens. This study outlined the mechanism of immune enhancement in abalone after secondary infection at the global molecular level, which is helpful for a comprehensive understanding of the mechanism of immune priming in invertebrates.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Gastrópodes/microbiologia , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Regulação da Expressão Gênica , Hemolinfa/microbiologia , Imunidade , Imunomodulação
8.
Dev Comp Immunol ; 124: 104176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34153282

RESUMO

The 14-3-3 proteins play important roles in various cellular processes by binding to different ligands, but little is known about these proteins in mollusks. In this study, two 14-3-3 cDNAs were identified from the Pacific abalone Haliotis discus hannai (designated 14-3-3ζ and 14-3-3ε), possessing 59.40% identity with each other. Both genes were predominantly expressed in the gills of unchallenged abalones, and their mRNA signals could also be detected in several other tissues, including the mantle, hepatopancreas and ovary. However, after Vibrio harveyi challenge, hemocytes were induced significantly (p < 0.01). Meanwhile, phagocytosis was inhibited, but apoptosis, reactive oxygen species formation, and caspase 3 expression were significantly induced (p < 0.01), and they were all suppressed with 14-3-3ζ knockdown (p < 0.01). The differences were that silencing 14-3-3ε reverted the decline in the phagocytic rate derived from bacterial infection, while ROS formation was not influenced significantly. In addition, the expression levels of several antimicrobial peptide and proinflammatory cytokine genes were also decreased with the silencing of 14-3-3 genes. However, with the knockdown of 14-3-3ζ, the expression of 14-3-3ε was further significantly increased (p < 0.01), and vice versa. Overall, our results suggested that 14-3-3ζ and 14-3-3ε should play important roles in innate immunity against V. harveyi infection.


Assuntos
Proteínas 14-3-3/imunologia , Gastrópodes/imunologia , Imunidade Inata , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Peptídeos Antimicrobianos/genética , Citocinas/genética , Perfilação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/metabolismo , Imunidade Celular , Fagocitose , Filogenia , Isoformas de Proteínas , Distribuição Tecidual , Vibrio/fisiologia
9.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200158, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33813886

RESUMO

Parasites threaten all free-living organisms, including molluscs. Understanding the evolution of immune defence traits in natural host populations is crucial for predicting their long-term performance under continuous infection risk. Adaptive trait evolution requires that traits are subject to selection (i.e. contribute to organismal fitness) and that they are heritable. Despite broad interest in the evolutionary ecology of immune activity in animals, the understanding of selection on and evolutionary potential of immune defence traits is far from comprehensive. For instance, empirical observations are only rarely in line with theoretical predictions of immune activity being subject to stabilizing selection. This discrepancy may be because ecoimmunological studies can typically cover only a fraction of the complexity of an animal immune system. Similarly, molecular immunology/immunogenetics studies provide a mechanistic understanding of immunity, but neglect variation that arises from natural genetic differences among individuals and from environmental conditions. Here, we review the current literature on natural selection on and evolutionary potential of immune traits in animals, signal how merging ecological immunology and genomics will strengthen evolutionary ecological research on immunity, and indicate research opportunities for molluscan gastropods for which well-established ecological understanding and/or 'immune-omics' resources are already available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Assuntos
Evolução Biológica , Gastrópodes/genética , Gastrópodes/imunologia , Variação Genética/imunologia , Imunidade Inata , Seleção Genética/imunologia , Animais , Genômica
10.
J Agric Food Chem ; 68(49): 14632-14642, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33175512

RESUMO

Paramyosin (PM) is an important structural protein in molluscan muscles. However, as an important allergen, there is a little information on PM in the molluscs. In this study, a 99 kDa molecular weight allergen protein was purified from Rapana venosa and confirmed as PM by mass spectrometry. The results of immunoglobulin E (IgE)-binding activity and physicochemical characterization showed that R. venosa PM could react with a specific IgE of the sera from sea snail-allergic patients, and the IgE-binding activity could be reduced by thermal treatment. The full-length cDNA of R. venosa PM was cloned, which encodes 859 amino acid residues, and it has a higher homology among molluscan species. According to the circular dichroism results, Fourier transform infrared, and 2D and 3D structure analysis, both PM and tropomyosin are conserved proteins, which are mainly composed of the α-helix structure. These results are significant for better understanding the anaphylactic reactions in sea snail-allergic patients and allergy diagnosis.


Assuntos
Alérgenos/química , Alérgenos/imunologia , Gastrópodes/imunologia , Tropomiosina/química , Tropomiosina/imunologia , Alérgenos/genética , Alérgenos/isolamento & purificação , Sequência de Aminoácidos , Animais , Gastrópodes/química , Gastrópodes/genética , Imunoglobulina E/imunologia , Conformação Proteica , Alinhamento de Sequência , Tropomiosina/genética , Tropomiosina/isolamento & purificação
11.
Fish Shellfish Immunol ; 107(Pt A): 385-394, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33141077

RESUMO

Glutaredoxins (Grxs) are well-known oxidoreductases involved in a wide range of redox activities in organisms. In this study, two invertebrate Grxs (AbGrx1-like and AbGrx2) from disk abalone were identified and characterized in an effort to gain a deeper understanding into their immune and redox regulatory roles. Both AbGrxs share typical thioredoxin/Grx structures. AbGrx1-like and AbGrx2 were identified as monothiol and diothiol Grxs, respectively. AbGrxs were significantly expressed at the egg and 16-cell stage of early abalone development. Although the expression of both AbGrxs demonstrated similar patterns, the expression of AbGrx1-like was higher than AbGrx2 during development stages. In contrast, AbGrx2 expression was significantly higher than that of AbGrx1-like in adult tissues. Highest AbGrx1-like expression was observed in the hepatopancreas and digestive tract, while highest AbGrx2 expression was found in the gills, followed by the mantle, in healthy adult abalone tissues. The highest expression of AbGrx1-like was observed in the gills at 12 h and 6 h post injection (p.i) of Vibrio parahemolyticus and other stimulants, respectively. The highest expression of AbGrx2 in the gills were observed at 120 h, 6 h, 24 h, and 12 h post injection of V. parahaemolyticus, Listeria monocytogenes, Viral hemorrhagic septicemia virus, and Polyinosinic:polycytidylic acid, respectively. AbGrxs possessed significant 2-hydroxyethyl disulfide (HED) and dehydroascorbate (DHA) reduction activity, but AbGrx2 exhibited higher redox activity than AbGrx1-like. Altogether, our results suggest an important role of AbGrx1-like and AbGrx2 in redox homeostasis, as well as in the invertebrate immune defense system. Our findings will aid the development of new disease management strategies for this economically valuable species.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Glutarredoxinas/genética , Glutarredoxinas/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Glutarredoxinas/química , Imunidade Inata , Oxirredução , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
Fish Shellfish Immunol ; 106: 920-929, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32931945

RESUMO

Galectins are well-known ß-galactoside-binding proteins, which play vital roles in innate immune responses of both vertebrates and invertebrates. However, knowledge regarding invertebrate galectins is still in its infancy. With the intention of filling the knowledge gap, here we identified a quadruple domain-containing galectin from marine invertebrate disk abalone, Haliotis discus discus (AbGalec), and characterized it. AbGalec consisted of four distinct carbohydrate-recognition domains (CRDs) and lacked a signal peptide. Expression analysis revealed AbGalec to be ubiquitously expressed in all the examined early embryonic stages of abalone, with highest expression in the 16-cell stage, suggesting the importance of AbGalec in early developmental processes. Tissue distribution analysis revealed the highest expression of AbGalec in abalone mantle, followed by that in gills and hemocytes. Immune challenge experiments revealed significant upregulation of AbGalec at 24 h and 48 h post injection (p.i.) with bacterial and viral components. These results suggested the possible involvement of AbGalec in host defense mechanisms. Polyinosinic: polycytidylic acid (Poly I:C) and viral hemorrhagic septicemia virus (VHSV) injections were capable of inducing AbGalec transcript expression more prominently than bacterial stimulants, thus providing evidence for its role in viral infections. We determined the virus-neutralizing ability of a quadruple domain-containing galectin for the first time, by analyzing the downregulation of VHSV transcripts during the overexpression of AbGalec. Significant downregulation of VHSV transcripts was observed after 24 h and 48 h of post infection. Collectively, our findings reveal the potent antiviral responses of molluscan quadruple domain-containing galectin, AbGalec, along with its involvement in innate immunity.


Assuntos
Galectinas/imunologia , Gastrópodes/imunologia , Novirhabdovirus , Infecções por Rhabdoviridae/imunologia , Animais , Galectinas/genética , Gastrópodes/embriologia , Gastrópodes/genética , Gastrópodes/virologia , Novirhabdovirus/genética , Poli I-C/farmacologia , Domínios Proteicos , Infecções por Rhabdoviridae/veterinária , Proteínas Virais/genética
13.
Aquat Toxicol ; 227: 105596, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827874

RESUMO

In aquatic animals, hypoxia is associated with growth retardation, impaired immunity, susceptibility to pathogens, oxidative stress, and mortality. However, the relative long-term effects of hypoxia on bivalves, including abalone, are not well understood. In this study, we examined the effects of exposure to hypoxic (2.5 and 4 mg O2 L-1) and normoxic (8 mg O2 L-1) conditions on the growth, survival, and immune and antioxidant responses of the economically important Pacific abalone Haliotis discus hannai over a 4 month period. We observed that exposure to 2.5 mg O2 L-1 resulted in marked reductions in assessed shell parameters, average meat weight, and survival compared with exposure to 4 and 8 mg O2 L-1. There were also significant reductions in oxygen consumption and ammonia-N excretion in abalone exposed to 2.5 mg O2 L-1. We also detected initial immunosuppression in the 2.5 mg O2 L-1-treated abalone, as evidenced by a significant reduction in total hemocytes and inhibition of antibacterial and lysozyme activities. Furthermore, intracellular malondialdehyde concentrations were significantly elevated at 1 month in the 2.5 mg O2 L-1 treatment group, whereas there were reductions in the levels of glutathione and enzymatic activities of catalase and superoxide dismutase, thereby indicating potential hypoxia-induced oxidative stress and a depression of antioxidant capacity. After 4 months of treatment, severe hypoxia (2.5 mg O2 L-1) had significantly modulated all measured parameters, whereas exposure to 4 and 8 mg O2 L-1 had induced no significant effects. Collectively, our observations indicate that under long-term exposure to hypoxia, Pacific abalone failed to maintain an effective antioxidant defense system and adequate immunity, with the observed biochemical disruptions leading to a reduction in growth and survival.


Assuntos
Eutrofização , Gastrópodes/imunologia , Imunidade Inata/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Catalase/farmacologia , Gastrópodes/efeitos dos fármacos , Hipóxia , Estresse Oxidativo , Estresse Fisiológico , Superóxido Dismutase , Poluentes Químicos da Água/toxicidade
14.
Fish Shellfish Immunol ; 106: 241-251, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32781210

RESUMO

A 120-day feeding trial was conducted to investigate the effects of relative higher and lower dietary protein levels on the growth, immunity and anti-stress of abalone Haliotis discus hannai fed diets with 17.64% (low), 30.49% (normal) and 43.27% (high) of proteins, respectively. The results showed that compared with 30.49% of dietary protein, 17.64% and 43.27% of dietary protein levels significantly decreased the weight gain rate and the activities of α-amylase, trypsin, alanine aminotransferase and aspartate aminotransferase in the hepatopancreas and serum of abalone (P < 0.05). Abalone fed 30.49% of dietary protein had the highest activity of superoxidase, acid phosphatase, alkaline phosphatase, lysozyme and the total anti-oxidative capacity, and the lowest content of malondialdehyde in the serum and hepatopancreas (P < 0.05). The gene expressions of TOR, S6k, Bcl-2, IκB, NfκB, TNF-α and Nrf2 were significantly up-regulated in the group with 30.49% of dietary protein (P < 0.05). Pathological abnormalities in hepatocyte cells of abalone were found in the groups with 17.64% and 43.27% of dietary protein. Meanwhile, accumulative mortalities of abalone after the Vibrio parahaemolyticus challenge test and heat stress test were significantly increased within these two groups (P < 0.05). In conclusion, the excessive (43.27) or deficient (17.64) dietary protein levels depressed the growth and immunity of abalone. Combined with the stress tests results, 17.63% or 43.27% of dietary protein contents are not recommended to the abalone facing the stress of vibriosis or high-water temperature (≥28 °C).


Assuntos
Proteínas Alimentares/metabolismo , Gastrópodes/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Transdução de Sinais , Ração Animal/análise , Criação de Animais Domésticos , Animais , Dieta , Proteínas Alimentares/administração & dosagem , Gastrópodes/genética , Gastrópodes/crescimento & desenvolvimento , Gastrópodes/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Vibrio parahaemolyticus/fisiologia
15.
Fish Shellfish Immunol ; 106: 640-644, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32835850

RESUMO

The transcriptome of the caenogastropod mollusk Littorina littorea was scanned for the presence of sequences encoding Toll-like receptors (TLRs) and corresponding proteins involved in downstream TLR signaling pathway. In the transcriptomic snapshots of hemocytes and kidney tissues, 45 complete TLRs encoded by 35 genes were identified. Out of the 59 non-TLR molecules involved in a canonical TLR signaling pathway, 35 genes were classified as homologous and could be placed within the TLR-mediated MyD88-and MAPK-dependent circuitries. No reference vertebrate adapters TIRAP, TRIF and TRAM were identified in the transcriptome. The results of RNA-seq experiments with an immune challenge (rediae of the digenean Himasthla elongata) indicate that four TLRs (LlTLR1, 3, 5 and 8) and a set of upregulated genes involved in signal transduction (LlMyd88, LlTNFα, LlCASP8, LlFADD, LlNFKBIA (IkBα), LlIRAK1, LlSTAT1, LlMAPK14 (P38), LlMAP2K1 (MEK1/2), LlIRF3 and LlIRF5) may participate in the anti-digenean immune response of L. littorea.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Animais , Gastrópodes/parasitologia , Transdução de Sinais , Transcriptoma , Trematódeos , Infecções por Trematódeos/genética , Infecções por Trematódeos/imunologia , Infecções por Trematódeos/veterinária
16.
Fish Shellfish Immunol ; 104: 633-639, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569712

RESUMO

Vibriosis disease is a major constraint for sustainable molluscan aquaculture. Development of strategies to enhance disease resistance during grow out would greatly reduce stock mortality and boost production yields. In this study, New Zealand black-footed abalone (Haliotis iris) were fed a commercial diet enhanced with multi-strain probiotics (Exiguobacterium JHEb1, Vibrio JH1 and Enterococcus JHLDc) for four months, then challenged with an injection of pathogenic Vibrio splendidus. Host immune responses in haemocytes were characterized using flow cytometry by measuring total haemocyte counts (THC) and viability, degree of apoptosis, and production of reactive oxygen species (ROS) 48 h post-challenge. Probiotic-fed abalone had significantly higher survival rates compared to control animals after the bacterial challenge. Infected probiotic-fed abalone also had significantly higher haemocyte viabilities, slightly lower proportions of haemocytes undergoing early apoptosis, and lower proportions of ROS-producing haemocytes compared to infected control-fed abalone. In addition, metabolite profiles of muscle tissues generated via gas chromatography-mass spectrometry (GC-MS) delivered complimentary evidence to support a perturbed ROS-regulatory system in infected abalone through changes in key metabolites associated with glutathione biosynthesis. The results of this study provide valuable information to assist in farm management practices, leading to enhance production and sustainability of the New Zealand abalone aquaculture industry.


Assuntos
Gastrópodes/imunologia , Imunidade Inata , Probióticos/metabolismo , Vibrio/fisiologia , Ração Animal/análise , Animais , Dieta , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Nova Zelândia , Probióticos/administração & dosagem , Distribuição Aleatória
17.
Dev Comp Immunol ; 110: 103724, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360226

RESUMO

The slipper limpet Crepidula fornicata is an invasive, non-native, marine species found throughout the coastal waters of southern England and Wales, UK. These limpets are considered to blight commercial shellfish banks, notably oysters, yet little is known about their disease-carrying capacity or their immunobiology. To address the latter, we isolated haemolymph (blood) from limpets and tested for the presence of the immune-enzyme phenoloxidase. Invertebrate phenoloxidases produce melanic polymers from simple phenolic substrates, which are deployed in the presence of pathogens because of their potent microbicidal and microbiostatic properties. We used a series of established substrates (e.g., tyrosine, hydroquinone) and inhibitors (e.g., 4-hexylresorcinol, benzoic acid) to target three distinct enzymes: laccase (para-diphenoloxidase), catecholoxidase (ortho-diphenoloxidase) and tyrosinase (monophenoloxidase). We confirmed laccase and catecholoxidase activities and characterised their kinetic properties across temperature and pH gradients (5-70 °C and 5-10, respectively). Crucially, we demonstrated that products derived from such laccase and catecholoxidase activities reduced significantly the numbers of colony-forming units of both Gram-positive and Gram-negative bacteria in vitro. We further screened limpet tissues for signs of melanin using wax histology, and found cells replete with eumelanin-like pigments and lipofuscin in the digestive gland, connective tissues, barrier epithelia and gills. Our data represent the first account of enzyme-based antibacterial defences, notably laccase, in C. fornicata.


Assuntos
Infecções Bacterianas/metabolismo , Catecol Oxidase/metabolismo , Gastrópodes/imunologia , Hemolinfa/metabolismo , Intestinos/fisiologia , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Animais , Antibacterianos/metabolismo , Imunidade Inata , Lipofuscina/metabolismo , Melaninas/metabolismo
18.
Fish Shellfish Immunol ; 102: 185-194, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32289514

RESUMO

Bacterial infection in the marine environment is a serious problem to maintain the stability of marine ecosystems. Nevertheless, there is little report so far for the biological effects of pathogenic bacteria in coastal ecosystems. Hence, we investigated the responses of shell-less Onchidium reevesii to resist against pathogenic bacterial infection. Analysis of data here could be used as fundamental information for assessment of innate immune response of O. reevesii. The full-length OrCTL cDNA was cloned and consists of 1849 base pair (bp) encoding protein of 192 amino acids. Constructing multiple alignments suggested that OrCTL has conserved carbohydrate recognition domain (CRD) of CTLs, containing an EPS (Glu-Pro-Ser) motif that may imply the function of recognition of carbohydrates like others invertebrate. OrCTL mRNAs were mainly detected in ganglion and hepatopancreas, and expression was highly up-regulated from 2 h after Vibrio harveyi challenge, rapidly decreased at 4 h, and significantly increased at 12 h. In addition, after challenge with Vibrio parahaemolytics, OrCTL gene expression was slightly up-regulated from 2 h, peaked at 12 h. Enzyme activity (in the hepatopancreas) and cell immune (in the hemolymph) were investigated along with Superoxide dismutase (SOD) activity, alkaline phosphatase (ALP) activity and cell cycle. SOD activities were significantly higher after V. harveyi and V. parahaemolytics challenge than that in the control group, respectively. By contrast, ALP activities were significantly inhibited after challenged with bacteria than that in the control group, respectively. Enzyme activities in the hepatopancreas obviously fluctuated, and ALP activity was more sensitive to bacteria. Cell responses illustrated that there were a significant higher percentage of cells in the S and G2/M phase in hemolymph after challenged with bacteria. Our results suggested that the immune response of O. reevesii could be activated by pathogenic bacteria, and the data will provide referent for the disease prevention of systematic investigation in aquatic animal.


Assuntos
Fosfatase Alcalina/imunologia , Gastrópodes/imunologia , Hemócitos/imunologia , Imunidade Inata/genética , Lectinas Tipo C/imunologia , Superóxido Dismutase/imunologia , Vibrio/fisiologia , Fosfatase Alcalina/química , Fosfatase Alcalina/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Gastrópodes/enzimologia , Gastrópodes/genética , Lectinas Tipo C/química , Lectinas Tipo C/genética , Filogenia , Alinhamento de Sequência , Superóxido Dismutase/química , Superóxido Dismutase/genética , Vibrio parahaemolyticus/fisiologia
19.
Fish Shellfish Immunol ; 103: 111-125, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32320761

RESUMO

The IκB kinases (IKK) are large multiprotein complexes that regulate the activation of the transcription factor NF-κB and are involved in a diverse range of biological processes, including innate immunity, inflammation, and development. To explore the potential roles of invertebrate IKKs on immunity, three IKK encoding genes have been identified from molluscan species disk abalone and designed as AbIKK1, AbIKK2 and AbIKK3 at the transcriptional level. Coding sequences of AbIKK1, AbIKK2 and AbIKK3 encode the peptides of 746, 751 and 713 amino acids with the predicted molecular mass of 86.16, 86.12 and 81.88 kDa respectively. All three AbIKKs were found to share conserved IKK family features including the kinase superfamily domain (KD), ubiquitin-like domain (ULD), and α-helical scaffold/dimerization domain (SDD), similar to their mammalian counterparts. Under normal physiological conditions, AbIKKs were ubiquitously detected in six different tissues, with the highest abundance in the digestive tract and gills. Temporal transcriptional profiles in abalone hemocytes revealed the induction of AbIKK1, AbIKK2, and AbIKK3 expression following exposure to Gram-negative (Vibrio parahemolyticus) and Gram-positive (Listeria monocytogenes) bacteria, viruses (viral hemorrhagic septicemia virus, VHSV), LPS, or poly I:C. The overexpression of AbIKKs in HEK293T or RAW264.7 murine macrophage cells induced NF-κB promoter activation independent of stimulation by TNF-α or LPS. Moreover, iNOS and COX2 expression was induced in AbIKK transfected RAW264.7 murine macrophage cells and the induced state was maintained post-LPS treatment. Furthermore, mRNA levels of three selected cytokine-encoding genes (IL-1ß, IL-6, and TNF-α) were found to be elevated in abalone IKK overexpressed RAW264.7 murine macrophage cells, both with and without LPS exposure. Overall, our findings demonstrated that AbIKKs identified in this study were positively involved in eliciting innate immune responses in abalone. In addition, the data revealed the presence of an evolutionarily conserved signaling mechanism for IKK mediated NF-κB activation in mollusks.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Quinase I-kappa B/genética , Imunidade Inata/genética , Animais , Gastrópodes/virologia , Regulação da Expressão Gênica , Células HEK293 , Humanos , Quinase I-kappa B/imunologia , Imunidade Inata/imunologia , Listeria monocytogenes/fisiologia , Camundongos , Novirhabdovirus/fisiologia , Poli I-C/farmacologia , Células RAW 264.7 , Análise de Sequência de Proteína , Vibrio parahaemolyticus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...