Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
1.
Mol Ecol ; 33(1): e17198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37933583

RESUMO

Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.


Assuntos
Variação Genética , Microbiota , Animais , Seleção Genética , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/genética , Microbiota/genética , Anfíbios/genética , Alelos
2.
Immunogenetics ; 75(4): 355-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37014380

RESUMO

This study investigated the MHC DRB genes in the Arabian camel (Camelus dromedarius). The results revealed the presence of - at least - two transcribed DRB-like genes in chromosome 20, designated MhcCadr-DRB1 and MhcCadr-DRB2. These genes are 155 Kb apart, have similar gene structure, and are transcribed in opposite directions. Compared to DRB1, the DRB2 locus contains a deletion of 12 nucleotides in the second exon (270 bp), exhibits lower transcript abundance, and is expressed as two splice variants differing by exon 2 skipping. This gene seems to be of minor functional relevance in the dromedary camel. Conversely, the DRB1 is thought to be the main gene in this species showing higher transcript abundance and polymorphism levels. A total of seven DRB1 exon 2 alleles were identified in the Tunisian dromedary camel resulting from 18 amino acid substitutions. Six full length alleles were characterized at the mRNA level. Although there is no clear evidence for balancing selection (i.e., heterozygote advantage), signals of weak historical positive selection acting on the DRB1 gene were detected, as indicated by the limited number of the sites being positively selected. This trend might be related to the low exposure to pathogens and to the demographic history of the species. Comparative analysis with Bactrian and wild camel genomes suggested occurrence of trans species polymorphism (TSP) in the Camelus genus. The results lay the foundation for the MHC DRB1 genetic diversity analysis in this genus since the developed genotyping protocols are fully applicable in the three Camelus species.


Assuntos
Camelus , Genes MHC da Classe II , Animais , Camelus/genética , Genes MHC da Classe II/genética , Éxons/genética , Alelos , Polimorfismo Genético , Filogenia
3.
Mol Ecol ; 31(24): 6390-6406, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208104

RESUMO

Pathogen-mediated selection and sexual selection are important drivers of evolution. Both processes are known to target genes of the major histocompatibility complex (MHC), a gene family encoding cell-surface proteins that display pathogen peptides to the immune system. The MHC is also a model for understanding processes such as gene duplication and trans-species allele sharing. The class II MHC protein is a heterodimer whose peptide-binding groove is encoded by an MHC-IIA gene and an MHC-IIB gene. However, our literature review found that class II MHC papers on infectious disease or sexual selection included IIA data only 18% and 9% of the time, respectively. To assess whether greater emphasis on MHC-IIA is warranted, we analysed MHC-IIA sequence data from 50 species of vertebrates (fish, amphibians, birds, mammals) to test for polymorphism and positive selection. We found that the number of MHC-IIA alleles within a species was often high, and covaried with sample size and number of MHC-IIA genes assayed. While MHC-IIA variability tended to be lower than that of MHC-IIB, the difference was only ~25%, with ~3 fewer IIA alleles than IIB. Furthermore, the unexpectedly high MHC-IIA variability showed clear signatures of positive selection in most species, and positive selection on MHC-IIA was stronger in fish than in other surveyed vertebrate groups. Our findings underscore that MHC-IIA can be an important target of selection. Future studies should therefore expand the characterization of MHC-IIA at both allelic and genomic scales, and incorporate MHC-IIA into models of fitness consequences of MHC variation.


Assuntos
Complexo Principal de Histocompatibilidade , Polimorfismo Genético , Animais , Filogenia , Complexo Principal de Histocompatibilidade/genética , Vertebrados/genética , Alelos , Mamíferos/genética , Peixes/genética , Seleção Genética , Genes MHC da Classe II/genética
4.
Front Immunol ; 13: 856497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003377

RESUMO

Allelic diversity of human leukocyte antigen (HLA) class II genes may help maintain humoral immunity against infectious diseases. In this study, we investigated germline genetic variation in classical HLA class II genes and employed a systematic, unbiased approach to explore the relative contribution of this genetic variation in the antibody repertoire to various common pathogens. We leveraged a well-defined cohort of 800 adults representing the general Arab population in which genetic material is shared because of the high frequency of consanguineous unions. By applying a high-throughput method for large-scale antibody profiling to this well-defined cohort, we were able to dissect the overall effect of zygosity for classical HLA class II genes, as well as the effects associated with specific HLA class II alleles, haplotypes and genotypes, on the antimicrobial antibody repertoire breadth and antibody specificity with unprecedented resolution. Our population genetic studies revealed that zygosity of the classical HLA class II genes is a strong predictor of antibody responses to common human pathogens, suggesting that classical HLA class II gene heterozygosity confers a selective advantage. Moreover, we demonstrated that multiple HLA class II alleles can have additive effects on the antibody repertoire to common pathogens. We also identified associations of HLA-DRB1 genotypes with specific antigens. Our findings suggest that HLA class II gene polymorphisms confer specific humoral immunity against common pathogens, which may have contributed to the genetic diversity of HLA class II loci during hominine evolution.


Assuntos
Anticorpos , Genes MHC da Classe II , Antígenos HLA , Imunidade Adaptativa/genética , Adulto , Alelos , Anticorpos/genética , Frequência do Gene , Genes MHC da Classe II/genética , Antígenos HLA/genética , Haplótipos , Humanos
5.
Genes (Basel) ; 13(5)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627302

RESUMO

The major histocompatibility complex (MHC) enables vertebrates to cope with pathogens and maintain healthy populations, thus making it a unique set of loci for addressing ecology and evolutionary biology questions. The aim of our study was to examine the variability of Heermann's Gull MHC class II (MHCIIB) and compare these loci with other Charadriiformes. Fifty-nine MHCIIB haplotypes were recovered from sixty-eight Heermann's Gulls by cloning, of them, twelve were identified as putative true alleles, forty-five as unique alleles, and two as pseudogenes. Intra and interspecific relationships indicated at least two loci in Heermann's Gull MHCIIB and trans-species polymorphism among Charadriiformes (coinciding with the documented evidence of two ancient avian MHCIIB lineages, except in the Charadriidae family). Additionally, sites under diversifying selection revealed a better match with peptide-binding sites inferred in birds than those described in humans. Despite the negative anthropogenic activity reported on Isla Rasa, Heermann's Gull showed MHCIIB variability consistent with population expansion, possibly due to a sudden growth following conservation efforts. Duplication must play an essential role in shaping Charadriiformes MHCIIB variability, buffering selective pressures through balancing selection. These findings suggest that MHC copy number and protected islands can contribute to seabird conservation.


Assuntos
Charadriiformes , Animais , Aves/genética , Charadriiformes/genética , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Filogenia , Seleção Genética
6.
Immunogenetics ; 74(3): 327-346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35229174

RESUMO

Duplicates of genes for major histocompatibility complex (MHC) molecules can be subjected to selection independently and vary markedly in their evolutionary rates, sequence polymorphism, and functional roles. Therefore, without a thorough understanding of their copy number variation (CNV) in the genome, the MHC-dependent fitness consequences within a species could be misinterpreted. Studying the intra-specific CNV of this highly polymorphic gene, however, has long been hindered by the difficulties in assigning alleles to loci and the lack of high-quality genomic data. Here, using the high-quality genome of the Siamese fighting fish (Betta splendens), a model for mate choice studies, and the whole-genome sequencing (WGS) data of 17 Betta species, we achieved locus-specific amplification of their three classical MHC class II genes - DAB1, DAB2, and DAB3. By performing quantitative PCR and depth-of-coverage analysis using the WGS data, we revealed intra-specific CNV at the DAB3 locus. We identified individuals that had two allelic copies (i.e., heterozygous or homozygous) or one allele (i.e., hemizygous) and individuals without this gene. The CNV was due to the deletion of a 20-kb-long genomic region harboring both the DAA3 and DAB3 genes. We further showed that the three DAB genes were under different modes of selection, which also applies to their corresponding DAA genes that share similar pattern of polymorphism. Our study demonstrates a combined approach to study CNV within a species, which is crucial for the understanding of multigene family evolution and the fitness consequences of CNV.


Assuntos
Variações do Número de Cópias de DNA , Genes MHC da Classe II , Alelos , Animais , Variações do Número de Cópias de DNA/genética , Evolução Molecular , Peixes/genética , Genes MHC da Classe II/genética , Filogenia
7.
J Immunol ; 208(5): 1076-1084, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35181639

RESUMO

Upon virus invasion of the host, APCs process Ags to short peptides for presentation by MHC class II (MHC-II). The recognition of virus-derived peptides in the context of MHC-II by CD4+ T cells initiates the adaptive immune response for virus clearance. As a survival instinct, viruses have evolved mechanisms to evade Ag processing and presentation. In this study, we discovered that IFN-γ induced endogenous MHC-II expression by a sea perch brain cell line through the STAT1/IFN regulatory factor 1 (IRF1)/CIITA signaling pathway. Furthermore, viral hemorrhagic septicemia virus infection significantly inhibited the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes. By contrast, although STAT1 transcript was upregulated, paradoxically, the STAT1 protein level was attenuated. Moreover, overexpression analysis revealed that viral hemorrhagic septicemia virus N protein blocked the IFN-γ-induced expression of IRF1, CIITA, MHC-II-α, and MHC-II-ß genes, but not the STAT1 gene. We also found out that N protein interacted with STAT1 and enhanced the overall ubiquitination level of proteins, including STAT1 in Lateolabrax japonicus brain cells. Enhanced ubiquitination of STAT1 through K48-linked ubiquitination led to its degradation through the ubiquitin-proteasome pathway, thereby inhibiting the biological function of STAT1. Our study suggests that aquatic viruses target Ag presentation in lower vertebrates for immune evasion as do mammalian viruses.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Evasão da Resposta Imune/imunologia , Novirhabdovirus/imunologia , Nucleoproteínas/metabolismo , Percas/imunologia , Fator de Transcrição STAT1/metabolismo , Imunidade Adaptativa/imunologia , Animais , Apresentação de Antígeno/imunologia , Encéfalo/citologia , Encéfalo/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Doenças dos Peixes/patologia , Doenças dos Peixes/virologia , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/biossíntese , Fator Regulador 1 de Interferon/metabolismo , Interferon gama/imunologia , Novirhabdovirus/metabolismo , Proteínas Nucleares/metabolismo , Percas/virologia , Transdução de Sinais/imunologia , Transativadores/metabolismo , Transcrição Gênica/genética , Ubiquitinação/fisiologia
8.
Anim Biotechnol ; 33(7): 1746-1752, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33600274

RESUMO

Among different cattle types, Bos indicus are known for their ability to better resist the tropical microbial infections comparatively, wherein MHC molecules play a significant role. In this study allelic diversity at MHC locus, DQA of Bos indicus, Bos taurus and crossbred of taurine-indicus has been explored to understand the possible role of MHC region in differential immune response. Thirty nine different DQA alleles were identified, out of which 14 were novel, along with documentation of duplication of DQA alleles. Indicus cattle population presented diverse types of DQA alleles compared to crossbred and exotic. Translated amino acid sequence analysis indicated, codon 64 and 50 of peptide binding sites being highly polymorphic and most of the indicus cattle presented alanine and arginine amino acid at position 64 and 50. Within breed genetic variation found to be higher than between breeds. Because of their ability to bind and subsequently respond to a wide array of antigens, the newly identified DQA alleles with high diversity present in the form of duplicated haplotypes in different combinations in cattle populations provided significant insights into probable role of this MHC locus in better tropical disease combating ability and genetic fitness of indicus cattle.


Assuntos
Genes MHC da Classe II , Bovinos/genética , Animais , Alelos , Genes MHC da Classe II/genética , Haplótipos/genética
9.
PLoS One ; 16(8): e0254604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34383779

RESUMO

The major histocompatibility complex (MHC) is an important gene complex contributing to adaptive immunity. Studies of platyrrhine MHC have focused on identifying experimental models of immune system function in the equivalent Human Leukocyte Antigen (HLA). These genes have thus been explored primarily in captive platyrrhine individuals from research colonies. However, investigations of standing MHC variation and evolution in wild populations are essential to understanding its role in immunity, sociality and ecology. Capuchins are a promising model group exhibiting the greatest habitat diversity, widest diet breadth and arguably the most social complexity among platyrrhines, together likely resulting in varied immunological challenges. We use high-throughput sequencing to characterize polymorphism in four Class II DR and DQ exons for the first time in seven capuchin species. We find evidence for at least three copies for DQ genes and at least five for DRB, with possible additional unrecovered diversity. Our data also reveal common genotypes that are inherited across our most widely sampled population, Cebus imitator in Sector Santa Rosa, Costa Rica. Notably, phylogenetic analyses reveal that platyrrhine DQA sequences form a monophyletic group to the exclusion of all Catarrhini sequences examined. This result is inconsistent with the trans-species hypothesis for MHC evolution across infraorders in Primates and provides further evidence for the independent origin of current MHC genetic diversity in Platyrrhini. Identical allele sharing across cebid species, and more rarely genera, however, does underscore the complexity of MHC gene evolution and the need for more comprehensive assessments of allelic diversity and genome structure.


Assuntos
Cebus/imunologia , Evolução Molecular , Antígenos HLA-DQ/genética , Antígenos HLA-DR/genética , Alelos , Sequência de Aminoácidos/genética , Animais , Cebus/genética , Costa Rica , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Antígenos HLA-DQ/imunologia , Antígenos HLA-DR/imunologia , Humanos , Filogenia , Polimorfismo Genético/imunologia
10.
J Immunol ; 206(9): 2221-2232, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33863790

RESUMO

In both humans and mice, CTCF-binding elements form a series of interacting loops across the MHC class II (MHC-II) locus, and CTCF is required for maximal MHC-II gene expression. In humans, a CTCF-bound chromatin insulator termed XL9 and a super enhancer (SE) DR/DQ-SE situated in the intergenic region between HLA-DRB1 and HLA-DQA1 play critical roles in regulating MHC-II expression. In this study, we identify a similar SE, termed IA/IE-SE, located between H2-Eb1 and H2-Aa of the mouse that contains a CTCF site (C15) and a novel region of high histone H3K27 acetylation. A genetic knockout of C15 was created and its role on MHC-II expression tested on immune cells. We found that C15 deletion did not alter MHC-II expression in B cells, macrophages, and macrophages treated with IFN-γ because of functional redundancy of the remaining MHC-II CTCF sites. Surprisingly, embryonic fibroblasts derived from C15-deleted mice failed to induce MHC-II gene expression in response to IFN-γ, suggesting that at least in this developmental lineage, C15 was required. Examination of the three-dimensional interactions with C15 and the H2-Eb1 and H2-Aa promoters identified interactions within the novel region of high histone acetylation within the IA/IE-SE (termed N1) that contains a PU.1 binding site. CRISPR/Cas9 deletion of N1 altered chromatin interactions across the locus and resulted in reduced MHC-II expression. Together, these data demonstrate the functional redundancy of the MHC-II CTCF elements and identify a functionally conserved SE that is critical for maximal expression of MHC-II genes.


Assuntos
Fator de Ligação a CCCTC/genética , Genes MHC da Classe II/genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Animais , Fator de Ligação a CCCTC/imunologia , Genes MHC da Classe II/imunologia , Cadeias alfa de HLA-DQ/imunologia , Cadeias HLA-DRB1/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
Molecules ; 26(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809815

RESUMO

Peptide research has increased during the last years due to their applications as biomarkers, therapeutic alternatives or as antigenic sub-units in vaccines. The implementation of computational resources have facilitated the identification of novel sequences, the prediction of properties, and the modelling of structures. However, there is still a lack of open source protocols that enable their straightforward analysis. Here, we present PepFun, a compilation of bioinformatics and cheminformatics functionalities that are easy to implement and customize for studying peptides at different levels: sequence, structure and their interactions with proteins. PepFun enables calculating multiple characteristics for massive sets of peptide sequences, and obtaining different structural observables derived from protein-peptide complexes. In addition, random or guided library design of peptide sequences can be customized for screening campaigns. The package has been created under the python language based on built-in functions and methods available in the open source projects BioPython and RDKit. We present two tutorials where we tested peptide binders of the MHC class II and the Granzyme B protease.


Assuntos
Quimioinformática/métodos , Biologia Computacional/métodos , Peptídeos/metabolismo , Genes MHC da Classe II/genética , Granzimas/metabolismo , Proteínas/metabolismo
12.
Immunogenetics ; 73(1): 79-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33225379

RESUMO

Major histocompatibility complex (MHC) genes are key players in the adaptive immunity providing a defense against invading pathogens. Although the basic structures are similar when comparing mammalian and teleost MHC class II (MHCII) molecules, there are also clear-cut differences. Based on structural requirements, the teleosts non-classical MHCII molecules do not comply with a function similar to the human HLA-DM and HLA-DO, i.e., assisting in peptide loading and editing of classical MHCII molecules. We have previously studied the evolution of teleost class II genes identifying various lineages and tracing their phylogenetic occurrence back to ancient ray-finned fishes. We found no syntenic MHCII regions shared between cyprinids, salmonids, and neoteleosts, suggesting regional instabilities. Salmonids have experienced a unique whole genome duplication 94 million years ago, providing them with the opportunity to experiment with gene duplicates. Many salmonid genomes have recently become available, and here we set out to investigate how MHCII has evolved in salmonids using Northern pike as a diploid sister phyla, that split from the salmonid lineage prior to the fourth whole genome duplication (4WGD) event. We identified 120 MHCII genes in pike and salmonids, ranging from 11 to 20 genes per species analyzed where DB-group genes had the most expansions. Comparing the MHC of Northern pike with that of Atlantic salmon and other salmonids species provides a tale of gene loss, translocations, and genome rearrangements.


Assuntos
Duplicação Gênica , Genes MHC da Classe II/genética , Genoma/genética , Salmonidae/genética , Animais , Mapeamento Cromossômico , Esocidae/classificação , Esocidae/genética , Esocidae/imunologia , Evolução Molecular , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Filogenia , Salmonidae/classificação , Salmonidae/imunologia
13.
J Dermatol Sci ; 100(2): 86-91, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33129650

RESUMO

Bullous pemphigoid (BP) is a common autoimmune blistering skin disease that mainly affects elderly patients. Although BP risk is strongly influenced by age, genetic factors are also important determinants of this disease. Many genomic regions, especially in the HLA-II region, have been found to influence BP susceptibility through targeted sequencing studies. However, the relationship between non-HLA regions and BP susceptibility remains poorly understood and the identification of functional variants and key genes within these association regions remains a major challenge. In this review, we summarize the genetic predisposition to BP through an overview of the research history in this field.


Assuntos
Autoantígenos/genética , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe II/imunologia , Penfigoide Bolhoso/genética , Autoantígenos/imunologia , DNA Mitocondrial/genética , DNA Mitocondrial/imunologia , Genes MHC da Classe II/genética , Estudo de Associação Genômica Ampla , Haplótipos , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Penfigoide Bolhoso/imunologia , Penfigoide Bolhoso/patologia , Polimorfismo de Nucleotídeo Único , Pele/imunologia , Pele/patologia
14.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253355

RESUMO

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Assuntos
Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Tolerância Imunológica , Mediadores da Inflamação/metabolismo , Animais , Células da Medula Óssea/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Progressão da Doença , Feminino , Genes MHC da Classe II/genética , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioma/imunologia , Glioma/metabolismo , Glioma/patologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Parabiose , Convulsões/induzido quimicamente , Baço/imunologia , Baço/patologia , Theilovirus , Timo/patologia
16.
Mol Immunol ; 128: 125-138, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33126081

RESUMO

Cartilaginous fish (chimaeras, rays and sharks) are the most basal extant jawed vertebrates with an adaptive immune system based on the Major Histocompatibility Complex (MHC). Despite being a key taxon in the evolution of vertebrate adaptive immunity, no comprehensive characterization of MHC class II genes has been undertaken for the group. We performed extensive bioinformatic searches on a taxonomically diverse dataset of transcriptomes and genomes of cartilaginous fish targeting MHC class II sequences. Class IIα and IIß sequences were retrieved from all taxa analyzed and showed typical features of classical class II genes. Phylogenetic trees of the immunoglobulin superfamily domain showed two divergent and remarkably ancient lineages of class II genes in Selachians (sharks), originating >350 million years ago. Close linkage of lineage-specific pairs of IIα and IIß genes was found, confirming previous results, with genes from distinct lineages segregating as alleles. Nonclassical class II DM sequences were not retrieved from these data and classical class II sequences lacked the conserved residues shown to interact with DM molecules, supporting claims that the DM system arose only in the lobe-finned fish lineage leading to tetrapods. Based on our search methods, other divergent class II genes are unlikely in cartilaginous fish.


Assuntos
Genes MHC da Classe II/genética , Tubarões/genética , Rajidae/genética , Alelos , Sequência de Aminoácidos , Animais , Antígenos de Histocompatibilidade Classe II/genética , Filogenia
17.
Transplantation ; 104(8): 1566-1573, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732833

RESUMO

BACKGROUND: Xenogeneic organ transplantation has been proposed as a potential approach to fundamentally solve organ shortage problem. Xenogeneic immune responses across species is one of the major obstacles for clinic application of xeno-organ transplantation. The generation of glycoprotein galactosyltransferase α 1, 3 (GGTA1) knockout pigs has greatly contributed to the reduction of hyperacute xenograft rejection. However, severe xenograft rejection can still be induced by xenoimmune responses to the porcine major histocompatibility complex antigens swine leukocyte antigen class I and class II. METHODS: We simultaneously depleted GGTA1, ß2-microglobulin (ß2M), and major histocompatibility complex class II transactivator (CIITA) genes using clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins technology in Bamma pig fibroblast cells, which were further used to generate GGTA1ß2MCIITA triple knockout (GBC-3KO) pigs by nuclear transfer. RESULTS: The genotype of GBC-3KO pigs was confirmed by polymerase chain reaction and Sanger sequencing, and the loss of expression of α-1,3-galactose, SLA-I, and SLA-II was demonstrated by flow cytometric analysis using fluorescent-conjugated lectin from bandeiraea simplicifolia, anti-ß2-microglobulin, and swine leukocyte antigen class II DR antibodies. Furthermore, mixed lymphocyte reaction assay revealed that peripheral blood mononuclear cells from GBC-3KO pigs were significantly less effective than (WT) pig peripheral blood mononuclear cells in inducing human CD3CD4 and CD3CD8 T-cell activation and proliferation. In addition, GBC-3KO pig skin grafts showed a significantly prolonged survival in immunocompetent C57BL/6 mice, when compared with wild-type pig skin grafts. CONCLUSIONS: Taken together, these results demonstrate that elimination of GGTA1, ß2M, and CIITA genes in pigs can effectively alleviate xenogeneic immune responses and prolong pig organ survival in xenogenesis. We believe that this work will facilitate future research in xenotransplantation.


Assuntos
Rejeição de Enxerto/prevenção & controle , Xenoenxertos/imunologia , Transplante de Órgãos/métodos , Transplante Heterólogo/métodos , Aloenxertos/provisão & distribuição , Animais , Animais Geneticamente Modificados/imunologia , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Feminino , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes/métodos , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Xenoenxertos/transplante , Humanos , Masculino , Camundongos , Transplante de Órgãos/efeitos adversos , Suínos/genética , Suínos/imunologia , Transplante Heterólogo/efeitos adversos , Microglobulina beta-2/genética , Microglobulina beta-2/imunologia
18.
Nucleic Acids Res ; 48(15): 8332-8348, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633757

RESUMO

Negative cofactor 2 (NC2), including two subunits NC2α and NC2ß, is a conserved positive/negative regulator of class II gene transcription in eukaryotes. It is known that NC2 functions by regulating the assembly of the transcription preinitiation complex. However, the exact role of NC2 in transcriptional regulation is still unclear. Here, we reveal that, in Neurospora crassa, NC2 activates catalase-3 (cat-3) gene transcription in the form of heterodimer mediated by histone fold (HF) domains of two subunits. Deletion of HF domain in either of two subunits disrupts the NC2α-NC2ß interaction and the binding of intact NC2 heterodimer to cat-3 locus. Loss of NC2 dramatically increases histone variant H2A.Z deposition at cat-3 locus. Further studies show that NC2 recruits chromatin remodeling complex INO80C to remove H2A.Z from the nucleosomes around cat-3 locus, resulting in transcriptional activation of cat-3. Besides HF domains of two subunits, interestingly, C-terminal repression domain of NC2ß is required not only for NC2 binding to cat-3 locus, but also for the recruitment of INO80C to cat-3 locus and removal of H2A.Z from the nucleosomes. Collectively, our findings reveal a novel mechanism of NC2 in transcription activation through recruiting INO80C to remove H2A.Z from special H2A.Z-containing nucleosomes.


Assuntos
Catalase/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Transcrição Gênica , Núcleo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Genes MHC da Classe II/genética , Histonas/genética , Neurospora crassa/genética , Nucleossomos/genética , Nucleossomos/ultraestrutura , Fosfoproteínas/ultraestrutura , Ligação Proteica/genética , Fatores de Transcrição/ultraestrutura , Ativação Transcricional/genética
19.
Life Sci ; 256: 118026, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32615187

RESUMO

AIM: We aimed to determine the biological processes and pathways involved in cervical carcinogenesis associated with high-risk human papillomavirus (HPV) infection. MATERIALS AND METHODS: Total RNA was extracted from three formalin-fixed paraffin-embedded (FFPE) samples each of normal cervix, HPV-infected low-grade squamous intraepithelial lesion (LSIL), high-grade SIL (HSIL) and squamous cell carcinoma (SCC). Transcriptomic profiling by microarrays was conducted followed by downstream Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS: We examined the difference in GOs enriched for each transition stage from normal cervix to LSIL, HSIL, and SCC, and found 307 genes to be differentially expressed. In the transition from normal cervix to LSIL, the extracellular matrix (ECM) genes were significantly downregulated. The MHC class II genes were significantly upregulated in the LSIL to HSIL transition. In the final transition from HSIL to SCC, the immunoglobulin heavy locus genes were significantly upregulated and the ECM pathway was implicated. CONCLUSION: Deregulation of the immune-related genes including MHC II and immunoglobulin heavy chain genes were involved in the transitions from LSIL to HSIL and SCC, suggesting immune escape from host anti-tumour response. The extracellular matrix plays an important role during the early and late stages of cervical carcinogenesis.


Assuntos
Genes de Cadeia Pesada de Imunoglobulina/genética , Genes MHC da Classe II/genética , Infecções por Papillomavirus/complicações , Lesões Intraepiteliais Escamosas Cervicais/patologia , Neoplasias do Colo do Útero/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Regulação para Baixo , Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Infecções por Papillomavirus/genética , Lesões Intraepiteliais Escamosas Cervicais/genética , Lesões Intraepiteliais Escamosas Cervicais/virologia , Transcriptoma , Regulação para Cima , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/virologia
20.
Proc Natl Acad Sci U S A ; 117(25): 14405-14411, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518111

RESUMO

Periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) syndrome is the most common periodic fever syndrome in children. The disease appears to cluster in families, but the pathogenesis is unknown. We queried two European-American cohorts and one Turkish cohort (total n = 231) of individuals with PFAPA for common variants previously associated with two other oropharyngeal ulcerative disorders, Behçet's disease and recurrent aphthous stomatitis. In a metaanalysis, we found that a variant upstream of IL12A (rs17753641) is strongly associated with PFAPA (OR 2.13, P = 6 × 10-9). We demonstrated that monocytes from individuals who are heterozygous or homozygous for this risk allele produce significantly higher levels of IL-12p70 upon IFN-γ and LPS stimulation than those from individuals without the risk allele. We also found that variants near STAT4, IL10, and CCR1-CCR3 were significant susceptibility loci for PFAPA, suggesting that the pathogenesis of PFAPA involves abnormal antigen-presenting cell function and T cell activity and polarization, thereby implicating both innate and adaptive immune responses at the oropharyngeal mucosa. Our results illustrate genetic similarities among recurrent aphthous stomatitis, PFAPA, and Behçet's disease, placing these disorders on a common spectrum, with recurrent aphthous stomatitis on the mild end, Behçet's disease on the severe end, and PFAPA intermediate. We propose naming these disorders Behçet's spectrum disorders to highlight their relationship. HLA alleles may be factors that influence phenotypes along this spectrum as we found new class I and II HLA associations for PFAPA distinct from Behçet's disease and recurrent aphthous stomatitis.


Assuntos
Síndrome de Behçet/genética , Febre/genética , Predisposição Genética para Doença , Linfadenite/genética , Faringite/genética , Estomatite Aftosa/genética , Alelos , Síndrome de Behçet/imunologia , Criança , Estudos de Coortes , Febre/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Genes MHC da Classe II/genética , Genes MHC da Classe II/imunologia , Loci Gênicos/imunologia , Humanos , Linfadenite/imunologia , Faringite/imunologia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Estomatite Aftosa/imunologia , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...