Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Sci Rep ; 11(1): 20943, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686726

RESUMO

Non-functioning pituitary adenomas (NFPAs) are typical pituitary macroadenomas in adults associated with increased mortality and morbidity. Although pituitary adenomas are commonly considered slow-growing benign brain tumors, numerous of them possess an invasive nature. Such tumors destroy sella turcica and invade the adjacent tissues such as the cavernous sinus and sphenoid sinus. In these cases, the most critical obstacle for complete surgical removal is the high risk of damaging adjacent vital structures. Therefore, the development of novel therapeutic strategies for either early diagnosis through biomarkers or medical therapies to reduce the recurrence rate of NFPAs is imperative. Identification of gene interactions has paved the way for decoding complex molecular mechanisms, including disease-related pathways, and identifying the most momentous genes involved in a specific disease. Currently, our knowledge of the invasion of the pituitary adenoma at the molecular level is not sufficient. The current study aimed to identify critical biomarkers and biological pathways associated with invasiveness in the NFPAs using a three-way interaction model for the first time. In the current study, the Liquid association method was applied to capture the statistically significant triplets involved in NFPAs invasiveness. Subsequently, Random Forest analysis was applied to select the most important switch genes. Finally, gene set enrichment (GSE) and gene regulatory network (GRN) analyses were applied to trace the biological relevance of the statistically significant triplets. The results of this study suggest that "mRNA processing" and "spindle organization" biological processes are important in NFAPs invasiveness. Specifically, our results suggest Nkx3-1 and Fech as two switch genes in NFAPs invasiveness that may be potential biomarkers or target genes in this pathology.


Assuntos
Adenoma/genética , Ferroquelatase/genética , Genes de Troca/genética , Proteínas de Homeodomínio/genética , Invasividade Neoplásica/genética , Neoplasias Hipofisárias/genética , Fatores de Transcrição/genética , Adenoma/patologia , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Humanos , Invasividade Neoplásica/patologia , Neoplasias Hipofisárias/patologia , RNA Mensageiro/genética , Sela Túrcica/patologia
2.
Int J Mol Sci ; 22(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920138

RESUMO

Alzheimer's disease (AD) is a chronic, neurodegenerative brain disorder affecting millions of Americans that is expected to increase in incidence with the expanding aging population. Symptomatic AD patients show cognitive decline and often develop neuropsychiatric symptoms due to the accumulation of insoluble proteins that produce plaques and tangles seen in the brain at autopsy. Unexpectedly, some clinically normal individuals also show AD pathology in the brain at autopsy (asymptomatic AD, AsymAD). In this study, SWItchMiner software was used to identify key switch genes in the brain's entorhinal cortex that lead to the development of AD or disease resilience. Seventy-two switch genes were identified that are differentially expressed in AD patients compared to healthy controls. These genes are involved in inflammation, platelet activation, and phospholipase D and estrogen signaling. Peroxisome proliferator-activated receptor γ (PPARG), zinc-finger transcription factor (YY1), sterol regulatory element-binding transcription factor 2 (SREBF2), and early growth response 1 (EGR1) were identified as transcription factors that potentially regulate switch genes in AD. Comparing AD patients to AsymAD individuals revealed 51 switch genes; PPARG as a potential regulator of these genes, and platelet activation and phospholipase D as critical signaling pathways. Chemical-protein interaction analysis revealed that valproic acid is a therapeutic agent that could prevent AD from progressing.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Genes de Troca/genética , Inflamação/genética , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Proteína 1 de Resposta de Crescimento Precoce/genética , Córtex Entorrinal/patologia , Regulação da Expressão Gênica/genética , Humanos , Inflamação/patologia , PPAR gama/genética , Fosfolipase D/genética , Placa Amiloide , Transdução de Sinais/genética , Software , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Fator de Transcrição YY1/genética
3.
Nat Metab ; 2(12): 1443-1458, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257854

RESUMO

The in vitro differentiation of insulin-producing beta-like cells can model aspects of human pancreatic development. Here, we generate 95,308 single-cell transcriptomes and reconstruct a lineage tree of the entire differentiation process from human embryonic stem cells to beta-like cells to study temporally regulated genes during differentiation. We identify so-called 'switch genes' at the branch point of endocrine/non-endocrine cell fate choice, revealing insights into the mechanisms of differentiation-promoting reagents, such as NOTCH and ROCKII inhibitors, and providing improved differentiation protocols. Over 20% of all detectable genes are activated multiple times during differentiation, even though their enhancer activation is usually unimodal, indicating extensive gene reuse driven by different enhancers. We also identify a stage-specific enhancer at the TCF7L2 locus for diabetes, uncovered by genome-wide association studies, that drives a transient wave of gene expression in pancreatic progenitors. Finally, we develop a web app to visualize gene expression on the lineage tree, providing a comprehensive single-cell data resource for researchers studying islet biology and diabetes.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Secretoras de Insulina/fisiologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Diabetes Mellitus/genética , Células-Tronco Embrionárias , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Genes de Troca/genética , Glucose/farmacologia , Humanos , Secreção de Insulina/efeitos dos fármacos , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Fatores de Transcrição HES-1/biossíntese , Fatores de Transcrição HES-1/genética
4.
Sci Rep ; 10(1): 8383, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433471

RESUMO

Synthetic biology is advancing into a new phase where real-world applications are emphasized. There is hence an urgent need for mathematical modeling that can quantitatively describe the behaviors of genetic devices in natural, fluctuating environments. We utilize an integrative circuit-host modeling framework to examine the dynamics of a genetic switch and its host cell in varying environments. For both steady-state and transient cases, we find increasing nutrient reduces the bistability region of the phase space and eventually drives the switch from bistability to monostability. In response, cellular growth and proteome partitioning experience the same transition. Antibiotic perturbations cause the similar circuit and host responses as nutrient variations. However, one difference is the trend of growth rate, which augments with nutrient but declines with antibiotic levels. The framework provides a mechanistic scheme to account for both the dynamic and static characteristics of the circuit-host system upon environmental perturbations, underscoring the intimacy of gene circuits and their hosts and elucidating the complexity of circuit behaviors arising from environmental variations.


Assuntos
Biologia Sintética/métodos , Redes Reguladoras de Genes/fisiologia , Genes de Troca/genética , Modelos Genéticos
5.
Sci Rep ; 10(1): 3361, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099002

RESUMO

Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Network-based analysis implemented by SWIM software can be exploited to identify key molecular switches - called "switch genes" - for the disease. Genes contributing to common biological processes or defining given cell types are usually co-regulated and co-expressed, forming expression network modules. Consistently, we found that the COPD correlation network built by SWIM consists of three well-characterized modules: one populated by switch genes, all up-regulated in COPD cases and related to the regulation of immune response, inflammatory response, and hypoxia (like TIMP1, HIF1A, SYK, LY96, BLNK and PRDX4); one populated by well-recognized immune signature genes, all up-regulated in COPD cases; one where the GWAS genes AGER and CAVIN1 are the most representative module genes, both down-regulated in COPD cases. Interestingly, 70% of AGER negative interactors are switch genes including PRDX4, whose activation strongly correlates with the activation of known COPD GWAS interactors SERPINE2, CD79A, and POUF2AF1. These results suggest that SWIM analysis can identify key network modules related to complex diseases like COPD.


Assuntos
Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica/genética , Software , Transcriptoma/genética , Adulto , Idoso , Antígenos CD79/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Genes de Troca/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/classificação , Doença Pulmonar Obstrutiva Crônica/patologia , Proteínas de Ligação a RNA/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Serpina E2/genética
6.
Cells ; 8(10)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547193

RESUMO

Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.


Assuntos
Caderinas/genética , Carcinogênese/genética , Transição Epitelial-Mesenquimal/genética , Genes de Troca , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Regulação Neoplásica da Expressão Gênica , Genes de Troca/genética , Humanos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/normas , Terapia de Alvo Molecular/tendências , Família Multigênica/genética , Transdução de Sinais/genética
7.
Mol Microbiol ; 112(6): 1798-1813, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31545538

RESUMO

Genetic elements in the bacteriophage λ immunity region contribute to stable maintenance and synchronous induction of the integrated Escherichia coli prophage. There is a bistable switch between lysogenic and lytic growth that is orchestrated by the CI and Cro repressors acting on the lytic (PL and PR ) and lysogenic (PRM ) promoters, referred to as the Genetic Switch. Other less well-characterized elements in the phage immunity region include the PLIT promoter and the immunity terminator, TIMM . The PLIT promoter is repressed by the bacterial LexA protein in λ lysogens. LexA repressor, like the λ CI repressor, is inactivated during the SOS response to DNA damage, and this regulation ensures that the PLIT promoter and the lytic PL and PR promoters are synchronously activated. Proper RexA and RexB protein levels are critical for the switch from lysogeny to lytic growth. Mutation of PLIT reduces RexB levels relative to RexA, compromising cellular energetics and causing a 10-fold reduction in lytic phage yield. The RexA and RexB proteins interact with themselves and each other in a bacterial two-hybrid system. We also find that the transcription terminator, TIMM , is a Rho-independent, intrinsic terminator. Inactivation of TIMM has minimal effect on λ lysogenization or prophage induction.


Assuntos
Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/metabolismo , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Regulação Viral da Expressão Gênica/genética , Genes de Troca/genética , Genes Virais/genética , Lisogenia/genética , Mutação , Regiões Promotoras Genéticas/genética , Proteínas Repressoras , Serina Endopeptidases/metabolismo , Transcrição Gênica , Proteínas Virais Reguladoras e Acessórias , Ativação Viral
8.
Nat Plants ; 5(5): 505-511, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31036912

RESUMO

The engineering of plant genomes presents exciting opportunities to modify agronomic traits and to produce high-value products in plants. Expression of foreign proteins from transgenes in the chloroplast genome offers advantages that include the capacity for prodigious protein output, the lack of transgene silencing and the ability to express multicomponent pathways from polycistronic mRNA. However, there remains a need for robust methods to regulate plastid transgene expression. We designed orthogonal activators that boost the expression of chloroplast transgenes harbouring cognate cis-elements. Our system exploits the programmable RNA sequence specificity of pentatricopeptide repeat proteins and their native functions as activators of chloroplast gene expression. When expressed from nuclear transgenes, the engineered proteins stimulate the expression of plastid transgenes by up to ~40-fold, with maximal protein abundance approaching that of Rubisco. This strategy provides a means to regulate and optimize the expression of foreign genes in chloroplasts and to avoid deleterious effects of their products on plant growth.


Assuntos
Proteínas de Arabidopsis/genética , Cloroplastos/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Troca/genética , Engenharia de Proteínas , Transgenes/genética , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Engenharia de Proteínas/métodos , Proteínas de Ligação a RNA/genética
9.
Biochemistry (Mosc) ; 83(4): 381-392, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29626925

RESUMO

Vertebrates have multiple forms of hemoglobin that differ in the composition of their polypeptide chains. During ontogenesis, the composition of these subunits changes. Genes encoding different α- and ß-polypeptide chains are located in two multigene clusters on different chromosomes. Each cluster contains several genes that are expressed at different stages of ontogenesis. The phenomenon of stage-specific transcription of globin genes is referred to as globin gene switching. Mechanisms of expression switching, stage-specific activation, and repression of transcription of α- and ß-globin genes are of interest from both theoretical and practical points of view. Alteration of balanced expression of globin genes, which usually occurs due to damage to adult ß-globin genes, leads to development of severe diseases - hemoglobinopathies. In most cases, reactivation of the fetal hemoglobin gene in patients with ß-thalassemia and sickle cell disease can reduce negative consequences of irreversible alterations of expression of the ß-globin genes. This review focuses on the current state of research on genetic and epigenetic mechanisms underlying stage-specific switching of ß-globin genes.


Assuntos
Epigênese Genética/genética , Genes de Troca/genética , Globinas beta/genética , Animais , Humanos
10.
PLoS Genet ; 14(1): e1007185, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351292

RESUMO

A common occurrence in metazoan development is the rise of multiple tissues/organs from a single uniform precursor field. One example is the anterior forebrain of vertebrates, which produces the eyes, hypothalamus, diencephalon, and telencephalon. Another instance is the Drosophila wing disc, which generates the adult wing blade, the hinge, and the thorax. Gene regulatory networks (GRNs) that are comprised of signaling pathways and batteries of transcription factors parcel the undifferentiated field into discrete territories. This simple model is challenged by two observations. First, many GRN members that are thought to control the fate of one organ are actually expressed throughout the entire precursor field at earlier points in development. Second, each GRN can simultaneously promote one of the possible fates choices while repressing the other alternatives. It is therefore unclear how GRNs function to allocate tissue fates if their members are uniformly expressed and competing with each other within the same populations of cells. We address this paradigm by studying fate specification in the Drosophila eye-antennal disc. The disc, which begins its development as a homogeneous precursor field, produces a number of adult structures including the compound eyes, the ocelli, the antennae, the maxillary palps, and the surrounding head epidermis. Several selector genes that control the fates of the eye and antenna, respectively, are first expressed throughout the entire eye-antennal disc. We show that during early stages, these genes are tasked with promoting the growth of the entire field. Upon segregation to distinct territories within the disc, each GRN continues to promote growth while taking on the additional roles of promoting distinct primary fates and repressing alternate fates. The timing of both expression pattern restriction and expansion of functional duties is an elemental requirement for allocating fates within a single field.


Assuntos
Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes/fisiologia , Genes de Troca/genética , Organogênese/genética , Asas de Animais/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero , Asas de Animais/metabolismo
11.
Am J Psychiatry ; 175(3): 262-274, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29361849

RESUMO

OBJECTIVE: Proinflammatory cytokines have recently received considerable attention for their role in suicidal behavior; however, how the expression of cytokine genes is regulated is not clearly known. The authors examined underlying mechanisms of critical cytokine gene tumor necrosis factor-alpha (TNF-α) dysregulation in the brains of individuals who died by suicide. METHOD: TNF-α expression was examined in the dorsolateral prefrontal cortex of the postmortem brains of persons with and without major depressive disorder who died by suicide and of persons with major depressive disorder who died of causes other than suicide. The role of putative microRNAs targeting TNF-α and RNA-binding protein Hu antigen R (HuR) was tested with in vitro and in vivo approaches and by examining expression of transactivation response RNA binding protein (TRBP). Genetic influence on TNF-α expression was determined by expression quantitative trait loci analysis and by genotyping three single-nucleotide polymorphisms in the promoter region of the TNF-α gene. Promoter methylation of TNF-α was determined by using methylated DNA immunoprecipitation assay. Expression of miR-19a-3p and TNF-α was also determined in the peripheral blood mononuclear cells of 12 healthy control subjects and 12 currently depressed patients with severe suicidal ideation. RESULTS: TNF-α expression was significantly higher in the dorsolateral prefrontal cortex of individuals who died by suicide, regardless of psychiatric diagnosis. Its expression level was also increased in individuals with major depressive disorder who died by causes other than suicide. On the other hand, expression of miR-19a-3p was upregulated specifically in individuals who died by suicide. In a preliminary observation, similar upregulation of TNF-α and miR-19a-3p was observed in the peripheral blood mononuclear cells of depressed patients with suicidal ideation. Despite its ability to directly target TNF-α in vitro, miR-19a-3p showed no interaction with TNF-α in the dorsolateral prefrontal cortex. HuR potentially stabilized TNF-α transcript, presumably by sequestering its 3' untranslated region from miR-19a-3p-mediated inhibition. Furthermore, decreased TRBP expression supported abnormality in the interaction between miR-19a-3p and TNF-α. Additionally, TNF-α transcriptional upregulation was associated with promoter hypomethylation, whereas no genetic influence on altered TNF-α or miR-19a-3p expression was observed in individuals who died by suicide. CONCLUSIONS: The data in this study provide mechanistic insights into the dysregulation of the TNF-α gene in the brains of individuals who died by suicide, which could potentially be involved in suicidal behavior.


Assuntos
Epigênese Genética/genética , Genes de Troca/genética , Córtex Pré-Frontal/metabolismo , Fator de Necrose Tumoral alfa/genética , Regulação para Cima/genética , Estudos de Coortes , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Regulação da Expressão Gênica/genética , Genótipo , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único/genética , Córtex Pré-Frontal/patologia , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante , Valores de Referência , Ideação Suicida , Suicídio
12.
Br J Haematol ; 180(5): 630-643, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29193029

RESUMO

The major ß-haemoglobinopathies, sickle cell disease and ß-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.


Assuntos
Hemoglobinopatias/genética , Hemoglobinas/genética , Animais , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Epigênese Genética/genética , Globulinas Fetais/genética , Genes de Troca/genética , Globinas/genética , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Oncogênicas v-myb/genética , Proteínas Repressoras , Fatores de Transcrição/genética
13.
Nat Commun ; 8(1): 1671, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150615

RESUMO

Cybergenetics is a novel field of research aiming at remotely pilot cellular processes in real-time with to leverage the biotechnological potential of synthetic biology. Yet, the control of only a small number of genetic circuits has been tested so far. Here we investigate the control of multistable gene regulatory networks, which are ubiquitously found in nature and play critical roles in cell differentiation and decision-making. Using an in silico feedback control loop, we demonstrate that a bistable genetic toggle switch can be dynamically maintained near its unstable equilibrium position for extended periods of time. Importantly, we show that a direct method based on dual periodic forcing is sufficient to simultaneously maintain many cells in this undecided state. These findings pave the way for the control of more complex cell decision-making systems at both the single cell and the population levels, with vast fundamental and biotechnological applications.


Assuntos
Retroalimentação Fisiológica , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genes de Troca/genética , Transdução de Sinais/genética , Algoritmos , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Microscopia de Fluorescência , Modelos Genéticos , Biologia Sintética/métodos , Imagem com Lapso de Tempo/métodos
14.
ACS Synth Biol ; 6(9): 1642-1649, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28562030

RESUMO

Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization signals, a switch of the subcellular protein localization was achieved. This included the shift from the cytoplasm to the outer-membrane, which typically is inaccessible at the protein-level. Furthermore, the strategy allows to implement photocaging to achieve spatiotemporal control of isoform switching. The strategy does not require substantial genetic engineering, and might well complement current optogenetic and optochemical approaches.


Assuntos
Genes de Troca/genética , Genes de Troca/efeitos da radiação , Mutagênese Sítio-Dirigida/métodos , Proteínas/metabolismo , Edição de RNA/genética , Edição de RNA/efeitos da radiação , Frações Subcelulares/metabolismo , Células HEK293 , Humanos , Luz , Proteínas/genética
15.
ACS Synth Biol ; 6(9): 1663-1671, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602075

RESUMO

Accurate control of a biological process is essential for many critical functions in biology, from the cell cycle to proteome regulation. To achieve this, negative feedback is frequently employed to provide a highly robust and reliable output. Feedback is found throughout biology and technology, but due to challenges posed by its implementation, it is yet to be widely adopted in synthetic biology. In this paper we design a synthetic feedback network using a class of recombinase proteins called integrases, which can be re-engineered to flip the orientation of DNA segments in a digital manner. This system is highly orthogonal, and demonstrates a strong capability for regulating and reducing the expression variability of genes being transcribed under its control. An excisionase protein provides the negative feedback signal to close the loop in this system, by flipping DNA segments in the reverse direction. Our integrase/excisionase negative feedback system thus provides a modular architecture that can be tuned to suit applications throughout synthetic biology and biomanufacturing that require a highly robust and orthogonally controlled output.


Assuntos
DNA/genética , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/genética , Genes de Troca/genética , Genes Sintéticos/genética , Modelos Genéticos , Recombinases/genética , Simulação por Computador , Escherichia coli/genética , Melhoramento Genético/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Biologia Sintética/métodos
16.
ACS Synth Biol ; 6(9): 1710-1721, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28548488

RESUMO

RNA-RNA assembly governs key biological processes and is a powerful tool for engineering synthetic genetic circuits. Characterizing RNA assembly in living cells often involves monitoring fluorescent reporter proteins, which are at best indirect measures of underlying RNA-RNA hybridization events and are subject to additional temporal and load constraints associated with translation and activation of reporter proteins. In contrast, RNA aptamers that sequester small molecule dyes and activate their fluorescence are increasingly utilized in genetically encoded strategies to report on RNA-level events. Split-aptamer systems have been rationally designed to generate signal upon hybridization of two or more discrete RNA transcripts, but none directly function when expressed in vivo. We reasoned that the improved physiological properties of the Broccoli aptamer enable construction of a split-aptamer system that could function in living cells. Here we present the Split-Broccoli system, in which self-assembly is nucleated by a thermostable, three-way junction RNA architecture and fluorescence activation requires both strands. Functional assembly of the system approximately follows second-order kinetics in vitro and improves when cotranscribed, rather than when assembled from purified components. Split-Broccoli fluorescence is digital in vivo and retains functional modularity when fused to RNAs that regulate circuit function through RNA-RNA hybridization, as demonstrated with an RNA Toehold switch. Split-Broccoli represents the first functional split-aptamer system to operate in vivo. It offers a genetically encoded and nondestructive platform to monitor and exploit RNA-RNA hybridization, whether as an all-RNA, stand-alone AND gate or as a tool for monitoring assembly of RNA-RNA hybrids.


Assuntos
Aptâmeros de Nucleotídeos/genética , Corantes Fluorescentes , Genes Reporter/genética , Genes de Troca/genética , Microscopia de Fluorescência/métodos , RNA/genética , Técnicas Biossensoriais/instrumentação , Genes Sintéticos/genética , Imagem Molecular/métodos
17.
Integr Biol (Camb) ; 9(2): 156-166, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28098310

RESUMO

Cell signaling networks regulate a variety of developmental and physiological processes, and changes in their response to external stimuli are often implicated in disease initiation and progression. To elucidate how different responses can arise from conserved signaling networks, we have developed a mathematical model of the well-characterized Caenorhabditis vulval development network involving EGF, Wnt and Notch signaling that recapitulates biologically observed behaviors. We experimentally block a specific element of the EGF pathway (MEK), and find different behaviors in vulval development in two Caenorhabditis species, C. elegans and C. briggsae. When we separate our parameters into subsets that correspond to these two responses, they yield model behaviors that are consistent with observed experimental results, despite the initial parameter grouping based on perturbation in a single node of the EGF pathway. Finally, our analysis predicts specific parameters that may be critical for the theoretically and experimentally observed differences, suggesting modifications that might allow intentional switching between the two species' responses. Our results indicate that all manipulations within a signal transduction pathway do not yield the same outcome, and provide a framework to identify the specific genetic perturbations within a conserved network that will confer unique behaviors on the network.


Assuntos
Sequência Conservada/genética , Regulação da Expressão Gênica/genética , Genes de Troca/genética , Modelos Genéticos , Transdução de Sinais/genética , Especificidade da Espécie , Simulação por Computador
18.
Br J Cancer ; 116(1): 58-65, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27884016

RESUMO

BACKGROUND: Tumour budding, described as the presence of single cells or small clusters of up to five tumour cells at the invasive margin, is established as a prognostic marker in colorectal carcinoma. In the present study, we aimed to investigate the molecular signature of tumour budding cells and the corresponding tumour bulk. METHODS: Tumour bulk and budding areas were microdissected and processed for RNA-sequencing. As little RNA was obtained from budding cells, a special low-input mRNA library preparation protocol was used. Gene expression profiles of budding as compared with tumour bulk were investigated for established EMT signatures, consensus molecular subtype (CMS), gene set enrichment and pathway analysis. RESULTS: A total of 296 genes were differentially expressed with an FDR <0.05 and a twofold change between tumour bulk and budding regions. Genes that were upregulated in the budding signature were mainly involved in cell migration and survival while downregulated genes were important for cell proliferation. Supervised clustering according to an established EMT gene signature categorised budding regions as EMT-positive, whereas tumour bulk was considered EMT-negative. Furthermore, a shift from CMS2 (epithelial) to CMS4 (mesenchymal) was observed as tumour cells transit from the tumour bulk to the budding regions. CONCLUSIONS: Tumour budding regions are characterised by a phenotype switch compared with the tumour bulk, involving the acquisition of migratory characteristics and a decrease in cell proliferation. In particular, most tumour budding signatures were EMT-positive and switched from an epithelial subtype (CMS2) in the tumour bulk to a mesenchymal subtype (CMS4) in budding cells.


Assuntos
Divisão Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Genes de Troca/genética , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Margens de Excisão , Pessoa de Meia-Idade , Invasividade Neoplásica , Fenótipo , Análise Serial de Tecidos
19.
PLoS Genet ; 12(10): e1006353, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27711197

RESUMO

Heritable epigenetic changes underlie the ability of cells to differentiate into distinct cell types. Here, we demonstrate that the fungal pathogen Candida tropicalis exhibits multipotency, undergoing stochastic and reversible switching between three cellular states. The three cell states exhibit unique cellular morphologies, growth rates, and global gene expression profiles. Genetic analysis identified six transcription factors that play key roles in regulating cell differentiation. In particular, we show that forced expression of Wor1 or Efg1 transcription factors can be used to manipulate transitions between all three cell states. A model for tristability is proposed in which Wor1 and Efg1 are self-activating but mutually antagonistic transcription factors, thereby forming a symmetrical self-activating toggle switch. We explicitly test this model and show that ectopic expression of WOR1 can induce white-to-hybrid-to-opaque switching, whereas ectopic expression of EFG1 drives switching in the opposite direction, from opaque-to-hybrid-to-white cell states. We also address the stability of induced cell states and demonstrate that stable differentiation events require ectopic gene expression in combination with chromatin-based cues. These studies therefore experimentally test a model of multistate stability and demonstrate that transcriptional circuits act synergistically with chromatin-based changes to drive cell state transitions. We also establish close mechanistic parallels between phenotypic switching in unicellular fungi and cell fate decisions during stem cell reprogramming.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Proteínas Fúngicas/biossíntese , Genes de Troca/genética , Fatores de Transcrição/genética , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida tropicalis/genética , Candida tropicalis/crescimento & desenvolvimento , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas Fúngicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição/biossíntese
20.
PLoS Comput Biol ; 12(10): e1005154, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768683

RESUMO

During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signalling molecules-morphogens-guide this process by controlling downstream transcriptional networks. A mechanism commonly used in these networks to convert the continuous information provided by the gradient into discrete transitions between adjacent cell types is the genetic toggle switch, composed of cross-repressing transcriptional determinants. Previous analyses have emphasised the steady state output of these mechanisms. Here, we explore the dynamics of the toggle switch and use exact numerical simulations of the kinetic reactions, the corresponding Chemical Langevin Equation, and Minimum Action Path theory to establish a framework for studying the effect of gene expression noise on patterning time and boundary position. This provides insight into the time scale, gene expression trajectories and directionality of stochastic switching events between cell states. Taking gene expression noise into account predicts that the final boundary position of a morphogen-induced toggle switch, although robust to changes in the details of the noise, is distinct from that of the deterministic system. Moreover, the dramatic increase in patterning time close to the boundary predicted from the deterministic case is substantially reduced. The resulting stochastic switching introduces differences in patterning time along the morphogen gradient that result in a patterning wave propagating away from the morphogen source with a velocity determined by the intrinsic noise. The wave sharpens and slows as it advances and may never reach steady state in a biologically relevant time. This could explain experimentally observed dynamics of pattern formation. Together the analysis reveals the importance of dynamical transients for understanding morphogen-driven transcriptional networks and indicates that gene expression noise can qualitatively alter developmental patterning.


Assuntos
Adaptação Fisiológica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes de Troca/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Genéticos , Morfogênese/genética , Animais , Simulação por Computador , Homeostase/genética , Humanos , Modelos Estatísticos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...